Esercizio nº1

Le ordinate di un idrogramma unitario definito a passo orario sono (in m³/s/mm): 50, 30, 18, 6 e 1. Calcolare l'area del bacino, la curva a S e l'idrogramma unitario definito a passo bio-orario per questo bacino.

Esercizio n°2

Propagare l'onda osservata a monte di una asta idraulica riportata nella tabella sottostante mediante il metodo di Muskingum assumendo i seguenti parametri k=1.8 ore, x=0.15.

Commentare la posizione del picco dell'onda propagata rispetto all'onda osservata a monte dell'asta idraulica.

T (h)	0	1	2	3	4	5	6	7	8
I (m ³ /s)	0	60	100	80	20	0	0	0	0

Esercizio n°3

Si considerino le altezze di precipitazione massime annue osservate sulla durata di 1 ora in un pluviometro. Assumendo di adottare una distribuzione di Gumbel determinare l'altezza di precipitazione massima annua con tempo di ritorno 20 anni. Valutare inoltre mediante il test del χ^2 l'adattamento della distribuzione al campione di dati.

Anno	h (mm)	Anno	h (mm)
1940	37	1961	24.6
1941	23.2	1962	12
1942	15.8	1963	38.4
1943	12	1964	26.4
1944	11.7	1965	27
1946	28	1966	22.8
1947	44	1967	35.9
1948	28	1968	30.4
1949	29.6	1969	46.8
1950	24.4	1970	32.8
1951	21.6	1971	35
1952	23.8	1972	29
1953	23.8	1973	16.6
1954	27	1985	21.2
1955	54	1986	36.5
1956	19.8	1987	37
1957	31.4	1989	41.4
1958	56	1990	36.2
1959	23	1994	62
1960	25.6	1995	29

Corso di Idrologia 22 giugno 2010

Prova Scritta

Esercizio n°1

Le ordinate di un idrogramma unitario definito a passo orario sono (in m³/s/mm): 50, 30, 18, 6 e 1. Calcolare l'area del bacino, la curva a S e l'idrogramma unitario definito a passo bio-orario per questo bacino.

Soluzione

Il volume defluito dell'idrogramma unitario è:

$$V_d = \Delta t \sum_{i=1}^{5} u_i = 3600(50+30+18+6+1) = 378000 \ m^3/mm$$

Corrispondente ad un area del bacino di 378 km².

La curva a S è data da:

$$g(t) = \Delta t \left[h(t) + h(t - \Delta t) + h(t - \Delta t) + \dots \right]$$

ovvero, essendo Δt =1 ora

$$g(t) = h(t) + h(t-1) + h(t-2) + ...$$

quindi

$$g(1)=h(1)=50 m^3/s/mm$$

$$g(2)=h(2)+h(1)=50+30=80 \text{ m}^3/\text{s/mm}$$

$$g(3)=h(3)+h(2)+h(1)=50+30+18=98 m^3/s/mm$$

etc.

l'idrogramma unitario per una precipitazione di 2 ore può essere derivato dalla curva a S come:

$$h(t) = [g(t) - g(t - \Delta t)]/\Delta t$$

Ovvero, per esempio,

$$h(1) = [g(1) - g(-1)]/2 = (50 - 0)/2 = 25m^3/s/mm$$

$$h(2) = [g(2) - g(0)]/2 = (80 - 0)/2 = 40m^3/s/mm$$

$$h(3) = [g(3) - g(1)]/2 = (98 - 50)/2 = 24m^3/s/mm$$

etc.

Esercizio n°2

Propagare l'onda osservata a monte di una asta idraulica riportata nella tabella sottostante mediante il metodo di Muskingum assumendo i seguenti parametri k=1.8 ore, x=0.15.

Commentare la posizione del picco dell'onda propagata rispetto all'onda osservata a monte dell'asta idraulica.

T (h)	0	1	2	3	4	5	6	7	8
I (m ³ /s)	0	60	100	80	20	0	0	0	0

Soluzione

Assegnati i parametri del modello, le costanti c_1 , c_2 e c_3 valgono:

$$c_1 = \frac{\Delta t - 2kx}{2k(1-x) + \Delta t} = 0.11$$

$$c_2 = \frac{\Delta t + 2kx}{2k(1-x) + \Delta t} = 0.38$$

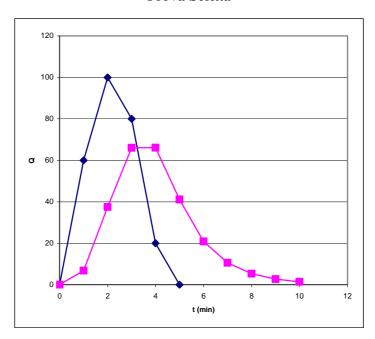
$$c_3 = \frac{2k(1-x) - \Delta t}{2k(1-x) + \Delta t} = 0.51$$

Sulla base di tali costanti i valori della portata Q propagata a valle sono:

t	I	Q
ore	m3/s	m3/s
0	0	0
1	60	6.8
2	100	37.5
3	80	66.0
4	20	66.1
5	0	41.1
6	0	20.9
7	0	10.6
8	0	5.4
9	0	2.7
10	0	1.4

Corso di Idrologia 22 giugno 2010

Prova Scritta



Esercizio n°3

Si considerino le altezze di precipitazione massime annue osservate sulla durata di 1 ora in un pluviometro. Assumendo di adottare una distribuzione di Gumbel determinare l'altezza di precipitazione massima annua con tempo di ritorno 20 anni. Valutare inoltre mediante il test del χ^2 l'adattamento della distribuzione al campione di dati.

Anno	h (mm)	Anno	h (mm)
1940	37	1961	24.6
1941	23.2	1962	12
1942	15.8	1963	38.4
1943	12	1964	26.4
1944	11.7	1965	27
1946	28	1966	22.8
1947	44	1967	35.9
1948	28	1968	30.4
1949	29.6	1969	46.8
1950	24.4	1970	32.8
1951	21.6	1971	35
1952	23.8	1972	29
1953	23.8	1973	16.6
1954	27	1985	21.2
1955	54	1986	36.5
1956	19.8	1987	37
1957	31.4	1989	41.4
1958	56	1990	36.2
1959	23	1994	62
1960	25.6	1995	29

Soluzione

Sulla base del campione di dati, mediante il metodo dei momenti si stimano i parametri della distribuzione di Gumbel:

$$F_x(x) = \exp\left\{-\exp\left[-\frac{(x-u)}{\alpha}\right]\right\};$$

$$\sigma^2 = 1.645\alpha^2;$$

$$\mu = u + 0.5772\alpha$$
;

essendo

$$\hat{\mu} = 30.02 \text{ mm}$$

$$\hat{\sigma}^2 = 132.42 \text{ mm}^2$$

da cui

$$u=24.84$$
, $\alpha=8.97$.

L'altezza di precipitazione di assegnato tempo di ritorno T=20 anni sarà:

$$Q_{T=20} = u - \alpha \ln \left(-\ln \left(1 - \frac{1}{20} \right) \right) = 51.5 \text{ mm.}$$

Per valutare l'adattamento della distribuzione di probabilità assumo k=5 classi equiprobabili $(p_i=0.2)$, ovvero:

F	h
0	-inf
0.2	20.57
0.4	25.62
0.6	30.87
8.0	38.30
1	inf

Essendo il numero totale di osservazioni pari N=40, il numero atteso di osservazioni per ogni classe sarebbe pari a $N p_i = 8$.

Il numero n_i effettivo di osservazioni che ricade in ciascuna classe è:

11.7	
12	
12	
15.8	
16.6	
19.8	6
21.2	
21.6	
22.8	
23	
23.2	
23.8	
23.8	
24.4	
24.6	
25.6	10
26.4	
27	
27	
28	
28	
29	
29	
29.6	
30.4	9
31.4	
32.8	

Corso di Idrologia 22 giugno 2010

Prova Scritta

35	
35.9	
36.2	
36.5	
37	
37	8
38.4	
41.4	
44	
46.8	
54	
56	
62	7

Cui corrisponde

$$\chi^{2} = \sum_{i=1}^{5} \frac{\left(n_{i} - Np_{i}\right)^{2}}{Np_{i}} = 1.25$$

Livello di significatività α =0.10

Dalle tabelle della distribuzione $\,\chi^2\,$ ottengo

$$\chi^2_{5-2-1,0.1} = 4.6$$

Per cui essendo 1.25<4.6 posso accettare H_0 al livello di significatività α =0.10