Prova Scritta

Esercizio n°1

Calcolare mediante a) il metodo della radiazione, b) il metodo aerodinamico, c) il metodo combinato e d) il metodo di Priestley e Taylor il tasso di evaporazione a fronte di una tasso di radiazione media netta pari a 185 W/m², una temperatura dell'aria di 29 °C, una densità dell'acqua di 996.3 kg/m³, una umidità relativa del 55%, una velocità del vento di 2.7 m/s alla quota di 2 m, una pressione atmosferica standard di 101.3 kPa, una altezza di scabrezza z_0 =0.03 cm e un calore specifico a pressione costante Cp=1005 J/kg°K.

Esercizio n°2

Propagare l'onda osservata a monte di una asta idraulica riportata nella tabella sottostante mediante il metodo di Muskingum assumendo i seguenti parametri k=1.16 ore, x=0.12.

Commentare la posizione del picco dell'onda propagata rispetto all'onda osservata a monte dell'asta idraulica.

t	I
ore	m^3/s
0	0
1	30
2	90
3	120
4	100
5	80
6	40
7	20
8	0

Esercizio n°3

Per quale tempo di ritorno deve essere dimensionata una opera idraulica affinché la probabilità che fallisca almeno una volta su di un orizzonte temporale di 20 anni sia del 10%? Quale sarebbe la probabilità che fallisca una sola volta sul medesimo orizzonte temporale?

Prova Scritta

Esercizio nº1

Calcolare mediante a) il metodo della radiazione, b) il metodo aerodinamico, c) il metodo combinato e d) il metodo di Priestley e Taylor il tasso di evaporazione a fronte di una tasso di radiazione media netta pari a 185 W/m², una temperatura dell'aria di 29 °C, una densità dell'acqua di 996.3 kg/m³, una umidità relativa del 55%, una velocità del vento di 2.7 m/s alla quota di 2 m, una pressione atmosferica standard di 101.3 kPa, una altezza di scabrezza z_0 =0.03 cm e un calore specifico a pressione costante Cp=1005 J/kg°K.

Soluzione

a) Metodo della radiazione

Il calore latente di vaporizzazione è :

$$l_v = 2.501 \cdot 10^6 - 2370 \cdot 29 = 2432 \cdot 10^3 \text{ J/kg}$$

Il tasso di evaporazione E_r è quindi:

$$E_r = \frac{R_n}{l_v \rho_w} = \frac{185}{2432 \cdot 10^3 \cdot 996.3} = 7.63 \cdot 10^{-8} \text{ m/s} = 6.6 \text{ mm/die}$$

b) Metodo aerodinamico

La pressione di vapor saturo è:

$$e_s = 61 \operatorname{lexp} \left(\frac{17.27 \cdot T}{237.3 + T} \right) = 61 \operatorname{lexp} \left(\frac{17.27 \cdot 29}{237.3 + 29} \right) = 4007 \operatorname{Pa}$$

La pressione di vapore è:

$$e = e_s \cdot R_h = 4007 \cdot 0.55 = 2203 \text{ Pa}$$

L'umidità specifica è:

$$q_v = 0.622 \frac{e}{P} = 0.622 \frac{2203}{101300} = 0.0144$$

la costante del gas per l'aria è

$$R_a$$
=287(1+0.608 q_v)=287(1+0.608·0.0144)=289.5 J/kg/°K

e la densità dell'aria è:

Corso di Idrologia

8 luglio 2009

Prova Scritta

$$\rho_a = \frac{P}{R_a T} = \frac{101300}{289.5 \cdot (273 + 29)} = 1.16 \text{ kg/m}^3$$

Assegnati i dati si ha quindi:

$$B = \frac{0.622 \cdot k^2 \cdot \rho_a \cdot u_2}{P \cdot \rho_w \cdot \ln^2(z_2 / z_0)} = \frac{0.622 \cdot 0.4^2 \cdot 1.16 \cdot 2.7}{101300 \cdot 996.3 \cdot \ln^2(2 / 0.0003)} = 3.98 \cdot 10^{-11} \text{ m/Pa/s}$$

ed il tasso di evaporazione E_a è:

$$E_a = B(e_s - e) = 3.98 \cdot 10^{-11} (4007 - 2203) = 7.18 \cdot 10^{-8} \text{ m/s} = 6.2 \text{ mm/die}$$

c) Metodo combinato

Il gradiente di pressione di vapor saturo vale:

$$\Delta = \frac{4098 \cdot e_s}{(237.3 + T)^2} = \frac{4098 \cdot 4007}{(237.3 + 29)^2} = 231.5 \text{ Pa/°C}$$

e la costante psicometrica vale:

$$\gamma = \frac{Cp \cdot k_h \cdot P}{0.622 \cdot l_v \cdot k_w} = \frac{1005 \cdot 1 \cdot 101300}{0.622 \cdot 2432 \cdot 10^3} = 67.3 \text{ Pa/}^{\circ}\text{C}$$

Quindi il tasso di evaporazione è:

$$E = \frac{\Delta}{\Delta + \gamma} E_r + \frac{\gamma}{\Delta + \gamma} E_a = \frac{231.5}{231.5 + 67.3} 6.6 + \frac{67.3}{231.5 + 67.3} 6.2 = 6.5 \text{ mm/die}$$

d) Metodo di Priestley e Taylor

$$E = \alpha \frac{\Delta}{\Delta + \gamma} E_r = 1.3 \cdot \frac{231.5}{231.5 + 67.3} 6.6 = 6.65 \text{ mm/die}$$

 $con \alpha = 1.3$

Prova Scritta

Esercizio n°2

Propagare l'onda osservata a monte di una asta idraulica riportata nella tabella sottostante mediante il metodo di Muskingum assumendo i seguenti parametri k=1.16 ore, x=0.12.

Commentare la posizione del picco dell'onda propagata rispetto all'onda osservata a monte dell'asta idraulica.

t	I
ore	m ³ /s
0	0
1	30
2	90
3	120
4	100
5	80
6	40
7	20
8	0

Soluzione

Assegnati i parametri del modello, le costanti c_1 , c_2 e c_3 valgono

$$c_1 = \frac{\Delta t - 2kx}{2k(1-x) + \Delta t} = 0.24$$

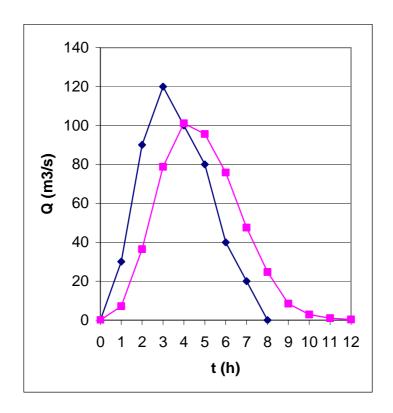
$$c_2 = \frac{\Delta t + 2kx}{2k(1-x) + \Delta t} = 0.42$$

$$c_3 = \frac{2k(1-x) - \Delta t}{2k(1-x) + \Delta t} = 0.34$$

Sulla base di tali costanti i valori della portata Q propagata a valle sono:

Prova Scritta

t	I	Q
ore	m³/s	m³/s
0	0	0
1	30	7.1173
2	90	36.398
3	120	78.761
4	100	101.13
5	80	95.643
6	40	75.867
7	20	47.538
8	0	24.686
9		8.4536
10		2.8949
11		0.9914
12		0.3395



Prova Scritta

Esercizio n°3

Per quale tempo di ritorno deve essere dimensionata una opera idraulica affinché la probabilità che fallisca almeno una volta su di un orizzonte temporale di 20 anni sia del 10%? Quale sarebbe la probabilità che fallisca una sola volta sul medesimo orizzonte temporale?

Soluzione

Se T è il tempo di ritorno per cui è dimensionata l'opera, la probabilità annua di fallimento è P=1/T

La probabilità che fallisca almeno una volta su di un orizzonte temporale n=20 anni è:

$$R=1-(1-P)^{n}$$

Quindi affinché sia R=10% deve essere

Per questo tempo di ritorno la probabilità che fallisca y=1 sola volta in n=20 anni è:

$$P_{Y}(y) = \frac{n!}{y!(n-y)!} p^{y} (1-p)^{n-y} = \frac{20!}{1!(19)!} \left(\frac{1}{190}\right)^{1} \left(1 - \frac{1}{190}\right)^{19} = 9.5\%$$