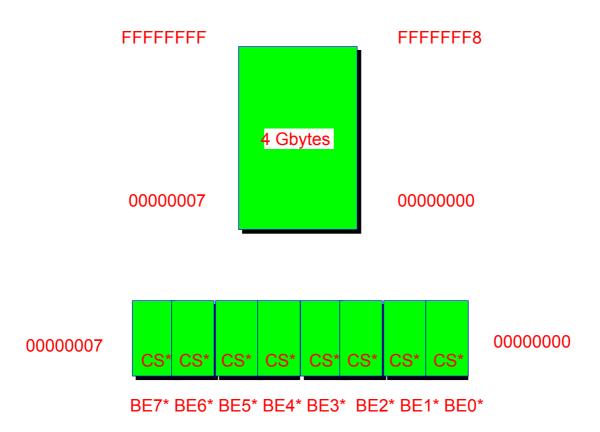

Parallelismo del bus

- •Dato un microprocessore con parallelismo del bus dati a Nd bit, con Nd = $2^K * 8$, assumiamo che nel suo bus degli indirizzi i primi K bit $A_{0+}A_{K-1}$ siano sostituiti da 2^K segnali BE_i . (es. $16=2^{1*}8$, K=1. 1 bit per la codifica dei banchi)
- •I segnali BE_i sono la versione "decodificata" degli Ai: ciascuno di essi si attiva individualmente quando il corrispondente banco di memoria deve essere abilitato.
- •La dimensione in byte della memoria è arbitraria (ad esempio, 4 GB, cioè NA = 32).

Memoria a 16 bit

Organizzazione della memoria: parallelismo a 16 bit

I bit BE0* e BE1* corrispondono esattamente a A0* e BHE* dell'8086


Memoria a 32 bit

Organizzazione della memoria: parallelismo a 32 bit (esempio, bus del 486).

I bit BE0*, BE1*, BE2*, BE3* abilitano il corrispondente banco in funzione dell'istruzione eseguita dal processore (in genere sono lecite solo configurazioni di byte contigui in memoria).

Memoria a 64 bit

Organizzazione della memoria: parallelismo a 64 bit (esempio, bus del Pentium). Semplice estensione del caso a 32 bit.

Questa organizzazione della memoria consente di accedere in un solo ciclo a dati la cui dimensione va da 1 a 2^K byte, purché questi siano allineati in memoria.