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On the other hand, the first derivative of the function ‘.fix is infinity in the point

i = 0; therefore, approximation of \j"; in the neighborhood of x = {1 by poly-
nomials is considerably more difficult.

Exercise 3.14. Using 2, 3, and 4 Gaussian quadrature points, evaluiate each of
the following integrals:

“a i Pl
I, = J sin x X, fi= [ \I,."r_t dx, Iy = J \,-".\' dx

L] 1] (L}

and compute the relative errors. (Hint: Use the transformation (3.10u)) (Parual
answer; for n = 3, [, = 066917963, and the relative error s 0.38%.)

Exercise 3.15. An clastic bur is loaded by traction defined as follows:

fx—ux P

| ———— forjx—x. /==

T '{_\'] = i

0 for|x —x,l>=a

where x,, and o are input data, Assuming thal x;, +a < X = X, — o, compute
the luad vector term A by Gaussian quadrature, Use the smuliest number of
Gauss points such that o' is computed exactly. (Hint: Use the mapping

x=ux, +ui —1 &= 4+ L) Answer: o' = dax, /3,
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CHAPTER 4

EXTENSIONS AND THEIR
CONVERGENCE RATES IN ONE °
DIMENSION

In Chapter 3 we saw that the finite clement method selects thal we, from the
finite clement space of admissible functions § which minimizes the energy nonm
of the errar:

I — 1 1l i
ttgy — Ml pgy = N {lpy — Uy (4.1}

e

We have noted that this relationship indicates that the error [el jq, depends on
gy and the space § which is determined by the mesh, the polynomial degrees
of elements, and the mapping lunciions, collectively called diseretization. Dhs-
cretization is contrelled by the users of finite element compuler programs, gither
directly or through procedures designed 1o select or modily certain discretiza-
tion parameters automatically on the basis of data generated in the course of
the solution process.

Engineering computations are performed for the purpose of obtaining
mformation concerning the expected response of physical systems to certitin
imposed conditions, generally called loads. This information is then used in
muking engincering decisions. Obviously, the computed data must be of such
quality that decisions based on them will be substantially the same ws i the
exeer sofution were known, Therefore, we wish to seleet the discretization so
that e 15 close 10 tgy, in some sensc. In general, we wish to determine
functionals vy (i =1,2,...), such as displacements, stresses, reactions,
stress intensity factors, ele, so that:

Wilugy) — Wiluge)

i)

[

4.2)

=T (i=1.
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where t, represents specific tolerances. The gquestion naturally arises: Htl.mr
can we tell whether W itpg) is close to W fugy) if we do not knswr' wgy? The
answer is: by performing extensions and certain tests on 1hF finite 1:I1+:mcnt
solutions. Both the estimation and control of the crrors of discretizalion are
bascd on extensions.

Extensions arc systematic changes of discretization so :.h:u the number of
degrees of freedom is inereased at each change. _Mnn; precisely, a sequence of
finite element spaces §;, S;. 8 ... with progressively lmpm_'-cd approximation
properiies is created and the corresponding fin!nllﬂnzi nhl:um:f;l. Ir extension is
hased on mesh refinement, then the process 1s called f-extensiont. If exlension
is based on increasing the polynomial degree of ::h:lmcn_ts, then the process 1s
called p-extensiond. 1l extension is hased on a combination of r-wu'ulrrt_'.r.rr mesh
refinement wnd inerease in the palynomial degree of rh'fnﬁnm. l._hL‘n it is c:nl]_ed
hip-extension. Extensions provide information on the Elhl_sm of which we can draw
conclusions concerning the overall quality of the finite clement solution gy
and the accuracy of functionals computed from wtpp. When convergence of the
finite element solutions corresponding 1o spaces 8. Sz.... 18 of interest, then
we reler to fi-, p-. or hp-convergence; when aspects of |mplen'fcr_|t:+.tmn are
emphasized, then we refer 1o the k-, p-, or hp-versions of the lnile clement
method. ] _ o

An important consideration is the perfornmance of extensions. Engincering
problems can be quite large, and engincering computations generally ‘trm_w:
multiple goals, In addition, several load cases are usually cunmdc!cd. Tlu: finite
clement discretizations, therefore, must be such that all engineering dm_;z
computed from the finite element solution should concurrently sulls[): t‘mluh-
tions (4.2 for all load cases. The available resources, hum'.n_r :1.]“] m:u_-lun_c time
and disk storage space, are generally [jmiic_:li. Th-.:r_ulurc, it is not feasible to
perform extensions in the practical engincering environment unless the i::tlli:l'-l:
sion process is efficient. There are very substantial dl.f.’clrcncc.»: in the performance
of the various extension processes. We lirst consider the performance f'-i'
gatension processes in terms of the relationship between the error measured in
energy norm and the number of degrees of freedom N, '

Beeause the finite element solution minimizes the strain energy of the error
{4.1), the strain cnergy of the crror is a logical measure n!l' the u'-'cml.l Llll;liﬂﬂlr'
of ;. It is not the only important measure, 1I'iuwm'»::r_ We will see that sl HC-EE
of crror in ¢nergy norm docs not necessarily guu.mnigc that the error in @
quantitics of interest is small. Also, we must bear in mind that l!u: numl;:e_r{_;f
degrees of freedom is not an accurdle MEasure UF resource rcqglrepmntb.dl _e
compuler ime depends on the sparsity of the matrices, the orgm:u.r_.umn of .alt.a.
and several factors which depend, in turn, on the pnrucui:lEﬁ of implementation
and the characteristics of the computer uscd, Considerations of human time
involved in data preparation and verification of the accuracy of computed data

1t I represents the size of elements, h-Extension involves letting h,, - . .
¢ prepresents the polynomial degree of clements, p-Eatensions involve Jetting po,, -+ o
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are usually of overwhelming importance. 1t is, however, very difficult to quantily
these factors. Thus, while the relationship between the error in energy norm
and the number of degrees of freedom is the most readily quantifiable and best
understood measure of performance, it is an imperfect measure and must be
considered along with other factors when evaluating alternative strategies for
the estimation and control of discretization errors.

41. RATES OF CONVERGENCE IN ENERGY NORM

A well developed, eluborate, thearetical basis exists [or the estimation of crror
in cnergy norm for the h-, p-, and hp-extension processes. The basic ideas are
illustrated for very simple problems in the ollowing. For the other cascs, o
sumntary of the relevant theorems is given. A detailed survey, covering one- and
two-dimensional cases, is presented in [4.1].

411. h-Convergence, Uniform Mesh Refinement, p= |

Let us consider the following problem: Find gy & £(€2) such that:

3

[ i
[{.4!:]:‘,_._11“ + cupyr) dy = [_,ﬁl dx forall pe Fig) (4

w0 1

and et us first assume that AE, ¢, and [ are such that wiy is a bounded,
continuous function with [uly| < Cin the interval 0 < x < [.

Subdivide the interval 0 < x <{ into n elements of cqual length. (Here
n= M{A)) The length of cach element is then: h = Ifn, Let u, be the linear
interpolant of wgy, that is, i, is a continuous, piccewise, linear function such
that:

i) = vgd jh, =l Lo (4.4

We denote the error of interpolation on the kth element by é;:

) D ) —ufx),  (k—Dhsx<kh,  k=1,2...n (45

Because &(x) vanishes al the endpoints of the element, there is a point X
where |&,| is maximal. In this point & = 0. (See Figure 4.1.) Then:

eix) = J‘ ey dr = ( trgydr) e, (k — Dh-=x < kb {6

i e i = e, AT




6o EATe e W) THEir Gl sty A IES IN ONE L4

Bl = U=l

x=tk-Dh %,

FIGURE 4.1.

Since Jupy| = C, we have:

max|gix)| < hC, (k=) sx<kh 4.7)

Let us now expand & into a Taylor series about the point %, and let us
assume that %, is located such that kh — 5, < /2. We now have:

oylkh) = 0 = eyfx) + (kh — Z)E(xy) + Lkh — %80 (4.8)
where 1 is a point between %, and x = k. Because &(%,) = 0
L 1 i i
max|élx,)] = = [hle — 78] < q L5 (4.9

EF .i'i_ is closer 1o (k — 1) than 1o &l then we write the Taylor series expression
fur IE’E[{.‘{ - ]}irj.msl::nd of &(xh) and obtain the same result. Equation (4.9) is a
basic result of interpolation theory. In view of (4.6) and (4.9), the strain energy
of ihe error of é is:

o B e 1 n [
WE) = = (AEE): 4+ cBY) iy = = E J ﬂ.#ff[i.i'ﬂl + ¢il) dx

=« 0 =&=1 Jik-13k

| 2 2
22 .m(f:l{cw + K,('-‘-: (') )
2 Al

}vhure _H, and K, are constants chosen so that AFx) < K, and ¢x) = K,
n Ihr.:l interval 0 < x < [ Clearly, K,, K, are independent of h. Since nh = |
there is a constant K such that: |

{4.10a)

WE) = KICH2. (4.10h)

F L|l|.'::1![;.-. because the encrgy norm of the error of the finite element solution
€ =tgy —ltgp 18 less than or equal 1o the energy norm of the error of

€ (see (4.1]), we have:

lel gy = /#(e) < kCh (4.11a)

T

e i

gt i

Gy A
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where € depends on AL, ¢, £ but is independent of h. This estimate is a typical
a priori estimate. A priori cstimates are based on some general information
about the exact solution. For example, in this case, we were concerned with
solutions which satisfy [u}y] = C. Inactual problems C is not known, or known
very inaccurately. A priori estimates indicate how fast the error changes as the
discretization is changed. To obtain error estimates for specific problems,
additional information is necessary. The source of additional information is the
finite clement salution, Estimates which employ such infe:mation are called «
pusteriori estimates. We will demonstrate that it is possible to obtain very
pocurale a posteriors estimales.
In order to allow comparison between discretization strategies, we will write
o priori estimates in terms of the number of degrees of [reedom. In the one
dimensional case for p = | N = I/h, therefore we can write (4.1 La) in the Torm:
L
= IERRT:

fell oy =< —
1 1
M

The constant & in (4.118) is not the same as the constant &k in (4.1 1a),
Expressions of this type should be interpreted to mean that there is a constant
such that the ineguality holds.

We will consider problems for which the exact solution is of the form:

sl

(4.12)

where w, is a constant and 0 < a < [. The solution is said to be smooth il 4 1s
large. If 2 = 2, then the foregoing analysis is valid for this class of problems. In
our formulation of the finite element method, called the displacement formula-
tinr, we require only that #{u,y) < wo. 1t is left to the reader to show that this
condition is satisfied when 4 = 172

Exercise 4.1. Show that if ugy 15 of the form (4.12) and 4 = 172, then ()
is finite.

In many practical problems the solutions are not smooth. Consequently,
[4.12) with 1/2 < 4 < 2 is representative. For any 4> /2, the relationship
hetween the error in encrgy norm and the number of degrees of freedom is:

s k i
Hell gy < (4.13a)

Sy
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where k and [} arc constants, & is independent of i but is dependent on the
polynomial degree of elements p, and:

fi = mjn(p, A— ;)

Detailed proof of (4.13a.h) can be found in [4.2]. This estimate is valid under
much less restrictive assumptlions. We have restricted our statement to the class
of problems (4.12) in order 1o avoid having to give a precise definition for the
smoothness parameter A for the peneral case. In its general form this estimate
shows that any function in {2} can be approximated arbitrarily closely in
energy norm by using sulliciently fine mesh.

The form of expression {(4.13a) 15 typical of h- and p-extensions. These
estimates are “sharp™ for large N values in the sense that the less than or equal
sign {=) can be replaced by “approximately cqual™ {=) when N is large.
Taking the logarithm ol both sides we have:

(4.13h)

logllel g = log kb — i log N, (4.14)
Il we plot [og| el gy versus log N, then, lor large N, we see o downward sloping
straight line with the slope — . The absolute value of the slope, /1, is called the
asyniaric rate of convergence fnoencrgy nerme or, simply, the rate of con-
vergence. When the estimaie is of the form (4.13a.h) then the rate of convergence
is said 1o be algedraic, The rate of convergence is a measure of how difficult it
is to control the error in encrgy norm, When f is large, then the error decrenses
rapidly as N is increased. When [ is small, then the error decreases slowly. Of
course, the error also depends on k. There are methods for estimating & from
the resulis of extensions. This will be discussed in Scction 4.2

Example 4.7, Let AE =1, c= 1,1 = 1| and define 5o that gy is of the form

(4.12) with @ = 0} and & = 0.65. Solve this problem using a sequence of uniform

meshes pnd uniform p-distribution of p = 1. Plot the relative error in cnergy

Aor: )

oy el Uy — Urell gy

{lrJE = " L
lttgxl gy

against N on log-log scale. Repeat the computations for £ = 1.2 and 4 = 2.0,

Solution: The results are shown in Figure 4.2. Observe that the asymplotic
convergence rates predicted by (4.130h) are realized.

4.1.2. h-Convergence, Oplimal or Nearly Optimal Mesh Refinement

Equations (4.13a.h) indicate that when w,y is smooth, ie., A is large, then
the rale of converpgence is controlled by the polynomial degree of elements.

T TIIrT

T
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Log RELATIVE ERROR IN ENERGY NORM
RELATIVE ERACH IN ENERGY NORM (38}

log N

FIGURE 4.2, h-Converpence; uniform mesh refinement, p= |

When £ — 1/2 < p, ic., ugy is not smooth, then we can still realize the same
rate of convergence if we use properly refined sequences of meshes. However,
preper mesh refinement depends on uypy, which 1s not known. Therefore, optimal
meshes can be generated only by adaprive procedures. Adaptive mesh refinement
involves the computation of a finite clement solution using an initial, coarse
mesh. The relative error contribution (in encrgy norm) of each element is then
estimated. This estimate is based on the idea that the finite element solution
tep can be viewed as the exact solution to a problem which differs from the
original problem by the loading lunction only. The loading correspond-
Ing 10 tpg is called apparent loading. For example, il p = 1, then there is generally
a jump in the axial force term AEuy, between neighboring clements. Thesc
Jumps can be interpreled as a series of concentrated lorces applied at the nodal
points. The jumps also provide information about the second derivative of gy,
which, as we have scen, poverns the error of the finite element solution. By
comparing the apparent loading with the original loading, we can determine
which elements contribute most to the total error of approximation. We then
refine the mesh, for example, by halving those elements where the estimated
sirain energy due to the discrepancy between the original loading and the
apparent loading is the greatest, and repeat the computations. The resulting
sequence of meshes can have the property that the size of the largest element
(h..) divided by the smallest element () is bounded as h.. — 0, Such
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sequences of meshes are called guasiuniforn: meshes®. Quasiuniform meshes are
created by the adaplive process when gy 18 smooth. When gy is not smooth
{eg, 1/2 < 1< 3/2), then the adaptive process creates sequences of meshes such
that &, /M, — <0 as b, — 0.

The error estimate for sequences of adaptively refined meshes is then:

mianl " rmin

k 2
lelem = N {4.15)

That is, the rute of convergence is independent of the smoothness parameter
A of the exaet solution. Of course, adaptive procedures increase the volume of
computations, but the benefit gained by the faster rate of convergence is much
greater than the increase in computations. For example, if ugy is of the form
(4.12) and £ is close to 0.5 (say £ = (L65), then it is impractical to reduce the
relative error in energy norm 1o under 1% by uniform mesh refinement; whereas
the problem is tractable by adaptive methods, In general, the less smooth the
exuct solution, the greater the bencfits gained through the use of adaptive
methods, Detailed analysis is available in [4.2].

4.1.3. p-Convergence, Uniform or Quasiuniform Meshes

I by is smooth {e.g, wgy = sin(ax/l), then the rate of p-convergence is fasier
than algebraice, that is, the error in energy norm plotted against the number of
degrees of freedom on log-log scale 15 not a straight hne but a downward
curving line. For smooth solulions p-convergence is very rapid.

If gy is not smooth, then we need to distinguish between two cases: (a) Let
us assume that the selution is of the form of (4.12), x = @ is a nodal point, and
A5 not an integer. In this case we have:

[fell B = REJ'_ T (4.1 6a)

That is, the rate of p-convergence is exaclly twice the rate of h-convergence
when h-extensions are based on uniform mesh refinement, provided that
p=A—1/2 in the h-extension process (see (4.13awh)), and [aster otherwise.
th) If x =ais not a nodal point and 2 is not an integer, then we have:

k
"E"" Eifl = J'Nr" e {*IJ.{!JJF

That is, the rate of p-canvergence is the same as the rite of h-convergence
when h-extensions are based on uniform mesh refinement, provided that

* Compare with geometric meshes, defined in section 4. 1.4,
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p = i— 1/2 in the h-cxtension process, and fasier otherwise. From this we sce
that the rate of p-convergence cannot be slower than the rate of h-convergence
when uniform mesh refinement is used. OF these 1wo cases, case (a) is representa-
tive of an important class of practical problems, whereas problems analogous
1o case (b) occur relatively rarely in practical problems that imvolve elliptic
partial differential equations.

Example 4.2. Asin Example 4.l let AE=1Lec=1, [ = 1 and define fso that
gy is of the form (4.12) with a =0 and 1 =065 Let A be a mesh of two
clements of equal length and compute the Bnite element solutions for p= 1, 2,
... 16, Plot the relative error in energy norm vs. N on log-log scale. Repeat
the computations for 4 = 1.2,

Solution: The resulls arc shown in Figure 4.3, Note that the asymptatic
convergence rates dare exactly twice those of the corresponding values in Figure
42 In the case 4 = 2 the exact solution is a4 polynomial of degree 2; hence, lor
p = 2, the exact solution is oblained,

4.1.4. hp-Convergence

We have seen that when sequences of optimal or nearly optimal meshes
are used, then the rite of h-convergence is independent of the smoothness

200 500 1000
T 1 100
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FIGURE 4.3 p-Convergence; umiform mesh, M{A) =
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parameter 4 and is equal lo the polynomial degree of elements. Clearly,
the fastest rale of convergence is obtained when hoh the meshes and p-
distributions are optimal. When the solution is of the type (4.12) and 4 is not
an integer, then the optimal meshes are graded so that the sizes of clements
decrease in geomelric progression toward 1o point x = a (which is often called
a paint of singularity). For example, when a =0 then the nodal points are
defined as follows: ;

_ [0 forj=0 417

1.'l|"‘llrrf‘.r|.\| i f{.lrj: !13“”“1‘]{&] l: : J
where 0 < ¢ = 1 is the common factor of the geometric progression. Such
geometric meshes have the property that the ratio N s 15 unbounded as
k., — 0. Interestingly, the asymptotically optimal value of g is independent of
the smoothness parameter 2 and is given by: ¢ = [\_."'2 — 1% = 0,17. In general,
overrefinement is preferable to underrefinement and often the values g = (.15
and g = 0.10 are used in practice, Because the mesh is independent of 4, mesh
design in hp-extensions is much simpler than in the case of adaptive h-
exlensions.

Unlike the common factor ¢, optimal p-distributions depend on A The
smallest clement is assigned p= 1 and the largest clement 1s assigned p =
(22 — 1(MI(A) — 1) rounded to the nearest integer. The optimal p-distribution
varics linearly between thesc values. IT the p-distribution is restricted 1o be
uniform, then optimal results are obtained for p = p.,,. (For prool see [4.2])
In this way, over that part of the domain where the solution is very smooth,
high p-values are used to take advantage of the fact that p-extensions are very
efficient in the case of smooth solutions. Strong mesh grading is used in the
vicinity of singular points 1o take advantage of the fact that with proper mesh
grading the rate of convergence is independent of the smoothness parameter.
Because the mesh grading i independent of 4 and the performance of hp-
extensions is not sensitive to the p-distribution, hp-extensions are very robust.

In the case of hp extensions, the rate of convergence is exponential:

k
[ledl gieny = = {4.18)
Ll B cxp[ﬂh""i
where &, i, and 5 are positive constants. From (4.18) we have:
loglel po, = log k= fiNT log ¢ {4.19)

where ¢ is the base of natural logarithm, Thus, if we plot logle|l go, vs. N, then
we see a downward sloping straight line for large N*. It has been shown in
[4.2] that under certain conditions which are normally met in practice y = 1/2.

® rrtacires 14 10k ety 14 144
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Example 4.3. Solve the problem of Example 4.1 for the case of 4 =065
using a sequence of meshes graded in geometric progression toward x = 0 with
¢ = 0.15 (see (4.17)) and a sequence of p-distributions such that p ranges from
1 1o M{A) with the smallest clement assigned p = | and the largest p = M{AL
Plot the logarithm of the relative crror in energy norm against NE

Solution: The results are shown in Figure 4.4. In designing the mesh we made
use of the fact that we know the location of the singular points. In the case of
elliptic boundary value problems, the locations of singular points are known o
prioei, and it is fcasible to grade the mesh in geometric progression around
singular points.

4.1.5. p-Convergence, Geometric Meshes

If we use a fixed geometric mesh and increase the polynomial degree of elements
uniformly, then, typically, convergence is very rapid at first, because al low
p-values the error is coming from that part of the domain where Lhe solution
is smooth (and the elements are large). For low p-values the rate of convergence
is as il the exacl solution were smooth. As the polynomial degree of elements
is increased, the error caused by the singularity begins to dominate and the

Log RELATIVE ERROR IN ENERGY NORM
i
=
RELATIVE ERROR IN ENERGY NORM (%)

<43
L M{al=18
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FIGURE 44, hp-Convergence: geometrie mesh: g = 015, groded p-distribulion
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cunvergence rate slows o the convergence rate of prexiensions, (Sce (4.16a.h).)
Of course, we would like 1o select the mesh so that the desired level ol precision
is reached belore the rate of convergence slows. By increasing M{A) we can
extend the steep part of the convergence path. This is demonstrated by the
lollowing example.

Example 4.4, Once again, let AE =1, ¢=1,1=1 and define 5o that Hpy I8
al the form (4.12) with a = 0 and J = (L65. Create six meshes of 3, 4, 6, 8, 10,
12 elements and grade each mesh in geometnic progression with g = 0,15,
Compute the finite element solutions corresponding top = 1,2,3, 4, 5,6, 8, 10,
12, Plot the logarithm of the relative error in encrgy norm vs. N2

Solution: The results are shown in Figure 4.5, Note that the covelope of the
family of curves shown in Figure 4.5 is very nearly a straight line, which is
characteristic of hp-convergence. This envelape represents the optimal combina-
twn of M{A) and p for unifora p-distributions, In practice the slowing of the
tonvergence rale can be detected and the number of clements inereased to keep
the convergence path close to (he optinal one,

0.0 T T T T T 100

Log RELATIVE ERROR IN ENERGY NORM
1
=

RELATIVE ERROR IN ENERGY NORM {2}

FIGURE 4.5, p-Convergence; geometric meshes: ¢ = 0.15; uniform p-distribution
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Exercise 4.2. The exuct solution of the problem in Exercise 3.10 is:

3 .]( [ ¢ J
o — - =1y e A ]
T ey |( c, oY
K inkf £
AE T \/,w;' T2 ST

What is the rate of convergence in energy norm if:
unilorm mesh refinement and p = 2 are used?
uniform mesh refinement and p = 3 are used?
one finile clement and p-extension are used?

4.2. A POSTERIORI ESTIMATION OF ERROR IN ENERGY NORM

We have scen in Section 4.1 that in the case of h- and peextensions the o priori
estimate is of the form:

k
ey = Urghony = T (4.20h

where & and fi are positive constants, N is the number of degrees of freedom,
We have noted that these estimators are “sharp™ for large N values, Hence,
the “less than or equal”™ (<) can be replaced by “approximately equal™ (=)
in (4.20) when N is large. We now outline a procedure for obtaining an &
pusteriori estimate for [igy — tpgl| oy which is based on (4.20) and utilizes data
generated by p-extensions.

Define the error e wyy — uy,. Since gy € B and uyy € E(CY), ¢ lies in the
same space as the function w introduced in Section 24. Therefore, {2.48) holds
for ¢

1.'|1:| = 1de, ¢) = [Matgg) — THeigy). (4.21)

Using (4.21}, we can write (4.20) in the following form:

ety — ”]?.I_.:!:'qu_l = THupg) — Hingy) = Nl_ﬂ (4.22}

We have three unknowns: Mugy), & and f. 1f we have three values of MMiergg)
und ¥ corresponding to three different values of p, then we have three equations
for computing the unknowns, We denote these three values by I T
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N Ny g Nt and Tagy) by T1. Then, from (4.22) we have:

n-n N,

log — £ log —2—

H=1 i N,
M=t Ny ()

log L = =

=1l N

Denating the right hand side of {(4.23) by @, we have:

= o L
Sl O (” ntl!) : (4.24)
M=, , \T-T

X p=2/

To obtain an estimate of the exact polential energy 1, we need to solve
(4.24). Computational expericnee has shown this estimate 1o be reliable and
generally accurate, with the accuracy of the estimate increasing with the
accuracy of I1,. Specilic examples will be presented in connection with two-
dimensional prohlems.

This method of error estimation is based on the assumption that T1,
converges monotonically. For this to occur, it is necessary that the sequence
of finite element spaces S,_;, 5,_. §, have the properly §,_, = §,_, = 5. In
p-extensions the finite element spaces have this properly; however, in h-
extensions the relined mesh 15 generally not imbedded in the coarser ones.
Hence, monotonicity is generally not guaranieed. The problem with mesh-
imbedment in h-extensions is that it is computationally expensive.

The exponent ff has o pood practical meaning. Il error in energy norm is
plotted against the number of degrees of freedom, as in Figure 4.2, for example,
then fi is the approximate slope of this error curve. In the case of p-extensions
we would like 1o design the mesh so that s increasing when the desired
aceuracy is reached. This point is discussed in Section 10.2.4.

In the case of hp-cxtensions the o priori cstimate is of the form (4.18). We
may scl y = 1/2 and compule estimaltes for k, f, and [T{irg,), analogously to the
case described in this section.

Exercise 4.3. Assume Lhal strain energy values have been computed for a
sequence of finite ¢lement spaces §,_, = §,_; = §,. Prove the following:

|, If loading is by imposed tractions or temperature, that is, E(Q) = E(0)

and F(¢) # 0, the computed strain energy values increase monotonically.

. If loading is by imposed displacements, that is, £{Q) # E(Q) and F(v) = 0,

the computed strain energy values decremse monotonically.

3. Il loading is by imposed displacements and traclions or temperature, that
is, £(Q) = I}{ﬂ] and F(r) # 0, the computed sirain energy values do not, in
general, converge monotonically. However, the energy norm of the error
does,
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43. REFERENCES T

The forcgoing discussion was confined to the error measured in energy norm.
It is possible to derive estimates for the error measured in other norms also.
For some estimates for the h-version we refer to [4.3]. For error estimales in
cipenvalue computations we refer to [4.4],
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