DIRECT VARIATIONAL
METHODS

7.1 INTRODUCTION

In Chaplers 5 and 6 we saw how energy principles can be used to obtain governing
equations, associated boundary conditions, and, in certain simple cases, solutions
for displacements and forces at selective poinis of a structure. However, the energy
methods considered in Chapters 5 and 6 cannot be used, in general, to determine
continuous solutions to complex problems,

The present chapter deals with approximate methods that employ the variational
statements (i.e., either variational principles or weak formulations) to determine con-
tinuous solutions of problems of mechanics. Recall that the energy principles contain,
in a single statement, the governing equation(s) and the natural boundary condition(s)
of the problem. The energy principles involved setting the first variation of an appro-
priate functional with respect to the dependent variables to zero. 'The procedures of
the calculus of variations were then used to obtain the governing (Buler-Lagrange)
equations of the problem. In contrast, the methods described in this chapter seek a
solution in terms of adjustable parameters that are determined by substiluting the
assumed solution into the funclional and {inding its extremum or stalionary value
with respect Lo the parameters, Such solution methods are called direet methods,
hecause the approximate solutions arc obtained directly by using the same variational
principle thal was used to derive the governing equations.

The assumed solutions in the variational methods arc in the form of a finite linear
combination of undetermined parameters with appropriately chosen functions. This
amounts to representing a continuous function by a finite linear combination of func-
tions. Since the solution of a continuum problem in general cannot be represented
by a finite set of functions, error is introduced into the solution. Therefore, the solu-
tion oblained is an approximation of the true solution for the equations describing a
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physical problem. As the number of linearly independent terms in the assumed solu-
tion is increased, the error in the approximation will be reduced, and the assumed
solution converges to the desired solution.

The equations governing a physical problem themselves are approximate. The
approximations are introduced via several sources, including the geometry, the rep-
resentation of specified loads and displacements, and the material behavior, In the
present study, our primary interest is to determine accurate approximate solutions to
appropriate analytical descriptions of physical problems,

The variational methods of approximation described here include the classical
methods of Ritz, Galerkin, and Petrov-Galerkin (weighted residuals), Examples of
applications of these methods are drawn from the problems of bars, beams, torsion,
and membranes [1-23]. Applications of these methods to circular and rectangular
plates are considered in Chapter 8. We begin with some mathematical preliminaries.

7.2 CONCEPTS FROM FUNCTIONAL ANALYSIS

7.21 General introduction

Before we discuss the variational methods of approximation, it is useful to equip our-
selves with certain mathematical concepts, These include the vector spaces, norm,
inner product, linear independence, orthogonality, and linear and bilinear forms of
functions. Since the objective of the present study is to learn about variational meth-
ods, we limit our discussion here only to concepts that are pertinent in the conlexi.
The reader already familiar with these concepts may browsc through the section to
gain familiarity with the notation. Others who do not wish to burden themselves with
the formalism of functional analysis may skip this scetion; it would not prevent them
from gaining an understanding of the main ideas of variational methods.

A set X is any well-defined collection of things, which ave called members or
elements of X. In the present study we are concerned with collections of numbers,
sequences, functions, and functions of functions. Examples of sets are provided
below:

1. The set i of all real numbers.

2. The set C|0, L] of all real-valued continuous functions f(x) defined on the
closed interval (0 < x < L,

3. The collection of all closed intervals, I; = [x;, x;41 1, on the real line.

The following notation, very standard in mathematics, is adopted here:

C means “a subset of”
¢ means “not a subset of™
—J__.

€ means “an element o

¢ means “nol a clement of” (1.1
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¥ means “for all”
3 means “there exists”

> means “such that”.

One way of defining a set S is to specify two picces of information: (1) assume
that each element of S is an element of a universal set (Le., a well-known setl), say
X, and (2) list the properties that elements of the universal set must satisfy in order
to be in 5. For example, let X be the set of all sequences of complex numbers
¥ = {x1, X2, x3, ...} and § be all elements of X possessing the property

o

MFL < 0O.

n=l

We shall use the following notation

.=}
S=1x € X: MWH:_ < 00r, mﬂww

=]

which is read “S is the set of all elements of X such that (the colon stands for ‘such
that') 302 byl < 00"

Aset A C WM is said to be bounded from above if there exists a real number
such that @ < p for all @ € A. The real number j is said to be an upper boand of
the set A, Similarly, a set A is said to be bounded from below if there cxists a real
number p such that ¢ > y for all @ € A. The real number y is said to be a lower
bound of the set A, 1f a set A is bounded from above and from helow, we say that A s
bounded. An upper (lower) bound M (m) for A is said to be the maximum (minimum)
of A CNif M € A (m € A). Tt should be noted that even a bounded set need not
have a maximum or a minimum. Every noncmpty set of real numbers bounded [rom
above has a “least upper bound,” and every nonempty set of real numbers bounded
from below has a “greatest lower bound.” The least upper bound of a set A is denoted
by sup A (“supremum of A”), and the greatest lower bound of A is denoted by inf A
(“infimum ol A™).

7.2.2 Linear Vector Spaces

As wec have seen in Chapter 2, the term vecior is used often to imply a physical
vector that has “magnitude and dircction” and obeys certain rules of vector addition
and scalar multiplication, These ideas can be extended to functions, which are also
called vectors, provided that the rules of vector addition and scalar multiplication are
defined. While the definition of a vector “from a linear vector space™ does not require
the vector to have a magnitude, in nearly all cases of practical interest the vector is
endowed with a magnitude, called the nosm. In such cases the vector is said to belong
to a normed vector space. We begin with a formal definition of an abstract vector
mwumﬁn.}

|
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A collection of vectors, u, v, w, ... is called a real linear vector space V over
the real number field 9 if the following rules of vector addition and sealar muliipli-
cation of a vector are satisfied by the elements of the vector space.

Vector Addition To every pair of vectors « and v there corresponds a unique
vector v + v € V, called the sum of i and v, with the following properties:

(1a) u + v = v + w (commutative);

(Ib) (u+v)+w=u+ (v w) (associative);

(le) there exists a unique vector, &, independent of ¢ such that u + & = u
for every u € V {existence of an identity element);

(1d) to every u there exists a unique vector, —u (that depends on 1), such
that i + (—u) = © for every u € V (existence of the additive inverse
clement), (7.3)

Scalar Multiplication To cvery vector 1 and every real number ¢ € W there
corresponds a unique vector an € V, called the product of 1 and «@, such that the
following propertics hold:

(2a) e(fu) = (pf)u (associative);
(2b) (o + B)u = wu + Bu (distributive w.rt, the scalar addition):
(2¢) @(u 4 v) = ae + v (distributive w.r.t. the vector addition};
2d) 1 u—u-1. (7.4)
Note that in order to prove that a set of vectors qualifies as a vector space, one must
define the identity and inverse elements and prove the “closure properiy” u + v € V
andau € Viorallu,ve Vandw € M.
A subsct § of a vector space V is called a subspace of V, denoted § C V, if

§ itself is a vector space with respect to veclor addition and scalar multiplication
defined over V.

Example 7.1
i. ”E_n sci of ordered n-tuples (xq, x2, x3, ..., xp) of real numbers xp, x2, ..., x,
is called the Cartesian space, denoted 9t". A typical element of 3% is denoted

X = (x1,x2,x3,...,%;). The Cartesian space is a linear vector space with
respect to the usval rules of addition and scalar multiplication:

Vector addition: X+y= (1 +y, %2+ Yy, ... 0 + ¥ ¥Xyedi”

Scalar multiplication:  ax = (wxy, axy, ..., 0x;) ¥xe N ande ¢ R,

The identity element is 0 = (0,0, 0, ...) (n zeros) and the inverse element is
the negative of the vector.
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2. Let P be the set of all polynomials in x with real cocfficients, A typical clement

5

<

of P is of the form
plx) =ao+arx +anx® -

where ap, ay, .., are real numbers. Then 7 is a linear veclor space with respect
to the usual rules of addition and scalar multiplication. Also, the set 77, of
polynomials of degree less than or equal to degree n is also a linear vector space,
as can be verified (by the closure property). Moreover, 7, < P. However, the
set of polynomials of degree equal to 1 is not a vector space as the closurc
property is violated. For example, consider the set of all cubic polynomials,
Thesumof py(x) =1 —2x + 3x? 4 6xF and m =345+ 2x% - ext s
not a cubic polynomial.
Let C"[a, b], where 1 = 0 is an integer, denote the set of all real-valued func-
tions u(x) defined on the interval ¢ < » < b such that 1 is continuous, and the
derivatives @*u /dx* of order k < n exist and are continuous on e, b]. I can
be shown that C"[u, b] is a linear vector space with respect to the usual rules
of vector addition and scalar mulitiplication,
The set

d du

So=qu:ulx)e H..b.—:. L], I_u.| nﬁhum +clxu =10,
- :

0<«x <L

is a vector space with respect to the usual addition and sealar multiplication,
However, the set
d du

S=duu(x)eC0, L), —— | a(x)
dx dx

Fe(xu= fx), O=x<L

is not a lincar vector space (why?).

Consider the transverse motion of a cable of length L, fixed at its ends (scc
Fig. 7.1). Let C|0, L| denote the set of all real-valued, continuous functions
u(x, 1) defined on the closed interval 0 = x = L for any time 1. The transverse
deflection uf-, 1) (1.e.. configuration) of the cable at any time ¢ can be viewed
as an element ol C[0, L]. However, not every element of C0, L] is a possible

uint)

* fotd it

Figure 7.1 Transverse molion of a cable fixed at both ends,
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configuration of the cable hecause all possible configurations must pass through
the points x = 0 and x = L; ie., the boundary conditions (0, 7) = 0 and
u(l., 1) = 0 must be safisfied. Let § be the subset of C[0, L] madc up of all
real-valued, continnous functions i (x, 1) suchthat 4 (0, 1) = Oandu(L, {) —

S={uwulx)eCl0, L), w0, 1) = 0, u(l., 1) =0}

Then § is a subspace of C[0, L], and all possible configurations (i.e.,
deflections) are contained in this space.

Let &/ and V be each a linear vector space. An ardered pair is a pair of clements
u € U/ and v < V where one of the elements is designated as the first member of
the pair and the other iy designated as the second. We denote ordered pairs by (u, v)
with the obvious order. Then U % V is called a product space W with elements
w=(u,v),uecllandvecV:

W=tluww=_0uuv), ucel ve V),

which is also a linear vector space with respect to the following definitions of vector
addition and scalar multiplication of a vector in the product space U x V:

ey, v1) + (2, v2) = (i + w2, v1 + v2), (7.5a)
w (i, v) = (o, o), o R (7.5b)

for (uy, vp), (w2, ) e W=UxVwithu,us cUanduvy, v € V.

Consider an open-bounded domain £ ¢ 9. Note that €2 is a set of points x =
(x1, x2, x3). Areal-valued function ¢ (X) is said 10 be square-integrable in the domain
€2 if the integrals (in the Lebesgue sense)

,\ u(x)dx,
Q

exist and are finite. The space of square-integrable [unctions 1 defined over a domain
Q is called the Lo space:

\a lee(x)|* dx (7.6)

L) = {u(x): % () dx } . 7.7
i

There is a corresponding space 1., (€2), which consists of all real-valued functions
u(x) defined in the domain £2 such that there exists an N with the property that

)| < N.
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Linear Independence Recall the concepls of coplanar and collinear vectors in
Euclidean space from Chapter 2. These concepls can be generalized to function
spaces. An expression of the form

ity + oty f - = MD:.:._ (7.8)

i=l1

for all functions uw; (x) and scalars «; & N (real number field) is called a linear
combination of u;. The equation Y 7 oju; = 0 is called a linear relation among the
functions ;. A set of n functions, u(, 42, ..., iy, is said to be linearly dependent it
a sel of 1 numbers, oy, @, ..., u,, not all of which are zero, can be found such that
the following linear relation holds:

(7.9)

If there does not exist at least one nonzero number among o; such that the above
relation is satisfied, the vectors are said to be finearly independeni.

Example 7.2

1. Consider the following set of polynomials, {p;}, with

prix)=1+x, pa(xy=1+4 x2, px)=14x4x",

Consider the lincar relation
apptaxpy Hoaapy =10

for e; € . Since the above relation must hold for all x, it follows thal the
coefficients of powers of x must be zero separately. Collecting the coefficients
of various powers of x and setting them to zero, we obtain

o o oy —0, wy + oy =0, wy =0, w3 =0,

The solution to these equations is frivial (ie., all @ = 0); hence, the set
{p1, p2, p3} is linearly independent.

2, Tf pyisreplaced by py =2 4 x x2, we see thal the linear relation

ayp) +azpr+aaps =0

requires that
i

oy + a2 + 2oeg = 0, o Fayg =0, oy +aq = 0.
Aninfinite number of solutions to the above set of equations exists. Forexample,

oy = 1, o =ur =~—1
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is a solution. Hence, the set {p, p2, p4} is linearly dependent. Indeed, ps can
be expressed as a linear combination of py and pa:

Py = w1 py +aapa, o) =ay = 1.

7.2.3 Normed and Inner Product Spaces

Norm The concepts of distance between two points and length of a physical vector
can be generalized to abstract vectors, i.¢., vectors that are functions. Let V be a linear
vector space over the real number field 5. We shall use the notation |j - || to denote
the norm of real-valued functions #(x), x € £ < %3, Then, associated with every
vector 4 € V, there exists a real number || - || € M, called the norm, that satisfies

certain rules, as discussed below. Thus the norm is the operation, || - || : V —» %,
(1) Nonnegative:
{(a) flull = 0 for all u.
(b) Jlull = Oonlyifu =0. (7.10)

(2) Homogeneous: |loneff = || lat].

(3) Triangle incquality:|lu + v|} < |

If [jue}i satisfies (1a}, (2), and (3), it is called a seminorm, and is denoted by |u/.

A linear vector space endowed with a norm is called a normed vector space. A
linear subspace § of a normed vector space ¥ is a linear subspace equipped with the
norm of V,

A norm || - || can be used to define a notion of distance hetween vectors, called
natural metric:

d{u, v) = {lu — v foruw,ve V. (7.11)

Examples of norms will be given shortly,
For 1 < p = oo, we define the Lebesgue spaces {see Eq. (7.7)]:

Lp(82) = {u: fjullp < oo}, (7.12)
where
Iip
leelzpc09 = Nullp = \ [P dx| < oo, (7.13)
Q2
For p = oo we set
el zoey = Nulloo = sup {Ju(x)|: x € 2}. {(7.14)

This is called the “sup-norm.”
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Two norms || - |} and || - {2 on a normed vector space V are said to be equivalent it
there exist positive numbers 1 and ¢z, independent of u € V, such that the following
double incquality holds:

eyl < lellz < c2llafh. (7.15)

Anormed space V is called complere if every Cauchy sequence (i;} of elements of
V has a limit # € V. For a normed vector space, a Cauchy sequence is one such that

flu; —ugll =0 as j k — oo,
and completeness means that
e —upll = 0 as j — oo,

A normed vector space which is complete in its natural metric is called a Banach
space. A linear subspace of a Banach space is itself a Banach space if and only il the
subspace is complete.

Example 7.3

1. The n-dimensional Euclidean space " is a Banach space with respect o the
Euclidean norm:

(7.16)

2. The space C[0, 1] of real-valued continuous functions f(x) defined on the
closed interval [0), 1] with the sup-norm (7.14) is a Banach space. It is a lin-
ear vector space with respect to the vector addition and scalar multiplication
defined as

(f +8)(x) = f{x)+glx), (af)(x) = af(x), o € 9t
Further, it is complete with respect to the sup-norm in (7.14):
[ fllce = max|f(x)].

3. Sobolev space, W"-#(Q). Let C™(2) denote the set of all real-valued lunc-
tions with 1 continuous derivatives defined in € e $?, and let C°(2) denote
the set of infinitely differentiable continuous functions. We define on € THE(E)
the norm, called the Sobolev norm,

e

lellse, p = .\a M 1D (x)|” dx . (7.17)

|eel =
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forl = p = ooand forall u € C"(Q2). In Eq, (7.17), @ denotes an n-tuple of
integers:

n
@=(o, 0. @), lel=) o, =0,
i

(7.18)
leel

D' =
x9S e Ay

Form=1,n=2,and 1 = p < oo, we have [o = (&), a2), @y, 2 =0, 1], and

Bull  |ou|? /e
iy, p = \ ful? 4| —1{ +1—| |dxdy . (7.19)
QCm? dx dy

The space C™(£2) is not complete with respect to the Soboley norm || - |y, P
The completion of C'"(£2) with respect to the norm |- {|,,,, » s called the Sobolev
space of order (m, p), denoted by W"-7(Q2). The completion of C(£2) is the
L2(£2) space. Hence the Sobolev space is a Banach space. Of course, he
Lebesque space L ,(£2) is a special case of the Sobolev space W7 form = (),
and L3(€2) is a special case of L,(2) for p = 2, with the norms defined
in (7.13).

1f U7 and V are each normed vector spaces, we can define a norm on the product
space I/ » V in one of the following ways:

) i, ) = Nully + lvliy.

@ N ol = (Il + 1), p
3) @, vl = max Quly. 1]v).

I

(7.20)

Then U/ x V is a normed vector space with respect to any onc of the above norms.

Inner Product Analogous to the scalar product of physical vectors, the inner
product of a pair of vectors # and v from an abstract vector space V is defined to
be a real number, denoted (4, v)v |ie., (-, v 1 V x V — M|, which satisfies the
following rules for every uy, uz, 4, v € V and @ ¢ it

(1) Symmelry: (i1, v)y = (v, u}y.
(2a) Homogenecous: (wir, v)v = w(u, v)y. -
(2b) Additive: (] + w2, v)v = (1, v)v + (42, V)y. (20
{3) Posilive-delinite: {u, i)y > 0 forall g # 0.

One can define a number of inner products and associated natwral norms for pairs
of functions that, along with their derivatives, are square-integrable. In particular,
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the Soholev space W#-2(£2) = H"(£2), which is also known as the Hilbert space of
order m, is endowed with the inner product

(1, V) = \ 3 DU u(x) D u(x) dx, (7.22)

Ja |ce| <

for all i, v € H™(§2). Note that for m = 0, we have HOY() = I5(Q). Some special
cascs of Eq. (7.22) are given hy

(u, Mo = \ wvdxdy,  fullo = v/ 1o, (7.232)
52

. Jm
?.cup.l ‘\. z:+ mn @ +. mh _Aakvr __:___\{_.‘t.:v_.ﬁ.muvv
o dx dx  dydy

du dv + du du _ #u 9%
Q.evw| \s _;+ﬂﬂm]vé_m§§i;

2, 92 82, g2
du 3w 8u 3*v liells = /(u, ). (7.23¢)

-+ 02 02 + 1|v:... ..&m. ..b«&w.

A linear veetor space on which an jnner product can be defined is called an inner
product space. A lincar subspace § of an inner product space V is a subspace with
the inner product of V. Note that the square root of the inner product of a vector with
itself satisfies the axioms of a norm. Consequently, one can associate with every inner
product in vector space V a norm

fully = v, wy. (1.24)

The norm thus obtained is called the norm indiced by the inner product. Since we can
associate with each inner product a norm, every inner product space is also a normed
vector space. It should be obvious to the reader that the converse does not hold in
general.

Orthogonality Two vectors u, v € V are said to be orthogonal if
(u, v)y =0, (7.25)

where (-, )y denotes an inner product in V. Note thal the concept of orthogonality
is a generalization of the familiar notion of perpendicularity of one vector to another
in Euclidean space, A set of mutually orthogonal vectors is called an orthogonal set.
A sequence of functions {¢;} in L3(§2) is called orthonormal if
i

1, ifi=j,

. (7.26)
0, ifi # j.

(@i, ﬂ..__“v.__.__ == ..m__.‘__“ =

Here 8;; denotes the Kronecker delta. It can be shown that every orthonormal system
is linearly independent.
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If two vectors ¢ and v of an inner product space V are orthogonal, then the
Pythagorean theorem holds even in function spaces:

lu+ vl =+ v, u+v)y = @0y + 2, vy + @,y = )} + v}

Asctof functions {¢y; } is said o be complefe in L, () if every piecewise continnous
function f can be approximated in € by the sum MU“H_ ¢;¢; in such a way that

2

"
& = - ol d 7.27
.\n, X f Wm cid; X ( )

can be made as small as we wish (by increasing n). This property of the coordi-
nate functions is the key to the proof of the convergence ol the Ritz and Galerkin
approximations.

A complete (in its natural metric) inner product space is called a Hilbert space.
We mention without proof the fact that every inner product space (hence a normed
space) has a completion.

The following lemma, relerred o as the fundamental lemma of variational
culculus, plays an important role in variational theory.

Lemma 7.1 Let V be an inner product space. If (i, v}y =0 for all v € V,
then u = 0.

Proof: Since (1, v}y = 0 for all v, it must also hold for v = u. Then (u, u)y = 0
implies that z = 0.

7.2.4 Transformations, and Linear and Bilinear Forms

A transformation T from a linear vector space U into another lincar vector space V
{(both vector spaces are defined on the same field of scalars) is a correspondence that
assigns Lo each element 1 ¢ 7 a unique clement v = Tu € V. We use the terms
transformation, mapping, and operator interchangeably, and the transformation is
expressedas T : U7 — V.,

A transformation T : U —» V, where U and V vector spaces that have the same
scalar field, is said to be linear if

1. T{au) =l (), Torallu ¢ U, @ € M (homogeneous);
20 Ty +u2) =Ty} + Tlin), foralluy, up € U, (additive). (7.28)

Otherwise if is said to be a nonlinear transformation.

Transformations that map vectors (functions) into real numbers are of special
interest in the present study. Such transformations arc called fimctionals. A linear
transformation [ : ¥V — 9t that maps a lincar vector space V into the real number
field W is called a finear functional.
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Similarly, a linear transformation that maps pairs of vectors (¢, v) € V x V into
real number field M, or B(-,-) : V % V —» W, is called a bilinear form. Examples of
linear and bilinear forms are provided by

v e,_.h
REH,\. ,D:?; ME_&H\, Hu.m.:ﬁ&.a.
1 Ju

A bilinear form is said to be symmerric if it is symmetric in its arguments:

Bu, v) = B{v, u). (7.29)

7.2.5 Minimum of a Quadratic Functional

Consider an operator equation of the form
A = f, (7.30)

where A is a cerlain operator (often a dilferential operator), A : Dy — H, and
f © H is a given fimclion. Here D4 denotes a set of elements ftom a Hilbert space
I. The denseness of D4 in H is oflen assumed, but we will not discuss this Lopic in
the present study.

The differential equations

~dEAYY 2 ry, EA=0,  0<x <L, (1.31)
dx dx
2 2
LAY L ey, EIs0, O<x<l, (7.32)
dx? dx?
are special cascs ol the operator equation (7.30) with
d d(-) d? d*(-)
A= —. FA--1, A=—IE] )
dx dx dx? dx?

respectively. In these cases, i = L2{0, L). The set Dy for Eq. (7.31) consists of
functions from (2 (0, L.} and for (7.32) functions from o, L).
An operator A : D4 - » H is called symmerric (or self-adjoint) if

(Au, viy = (1, Av)g (7.33)

holds for all u, v € D4, where (-, -)g is the inner product in H. An operator A is
called strictly positive in Dy if 1t is symmetric in Dy and if .

(Au, i)y > Oholds forallu € Dy and u #0, (7.34a)
(A, )y =0iland only ifn « Dy and w =0. (7.34b)

'
H
5
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A guadratic functional O H — W is one that is quadratic in its arguments,
Olan) = o? Q{u) for @ € M. Every hilinear form B(., -} can be used 1o generate a
quadratic form @ by setting

Q) = B(u, ), we I, (7.35)
The following results are of fundamental importance for the present study.
Theorem 7.1 If A is a strictly positive operator in Dy, then
Au= f in H
has at most one solution # € D4 in H.
Proof: Suppose thal there exist two solutions i, w2 € D4. Then
Amy=f and Aug=f — Al —uz)=0 inH
and
(Al —u) iy —u)p =0 = uy —uy =0 or uy =uy € Dy,
which was (o be proved.

Theorem 7.2 Let A be a positive operator in T4, f € H. Let Eq. (7.30) have a
solution 1o © Dy, Then the quadratic functional

1) = 3(Au, )y — (f, ) (7.36)
assumes its minimal value in D, for the clement ug, i.c.,

I(u) = Iug), and I{u) = I{uy) only for i = uyg.

Conversely, if 7(u) assumes its minimal value, among all « € D, for the element
tg, then wg is the solution of Eq. (7.30) (i.c., Aug = f).

Proof: First note that 7(x) is defined for all 1 € Dy. Let ug be the solution of

Eg. (7.30). Then [ == Aug. Substituting [or [ into Eq. {7.36), we oblain for u € Dy:
1) = WA\E_ w)g — (Auig, u) gy

WA, w) iy — (Auo, )y — (i, Aup) ]

[(Au, ) g — (Aug, 1)y — (Au, uo) ]

[(Au, ) g — (Aug, )y — (Au, ughy + (Aug, wo)y — (Aug, uy)yl

[(AG —up), 1 —ug)y ~ (Auy, uolul, (7.37)

bdl= BIl— FJe= b3



218 DIREGT VARIATIONAL METHGDS

where the linearity and symmetry of A, as well as the symmetry of the bilinear form,
are used in arriving at the last step. From Eq. (7.37) it follows that

T(ug) = —3(Auo, uo)n. (7.38)
Next, we use the strictly positive property of A to conclude that

I{w) = uy) foru e Da, and I{w) = 1(ug)

if and only if u = wug in D 4. Conscquently, if the equation Aug = [ is satisfied,
then the functional [ (i) assumes its minimal value in D4 precisely for the element
= g,
Now suppose that [ (i) assumes its minimal value in D4 for the clement uq. This
implies that
Iug +av) = Iug) fora e, ve Dy, (7.39)

Using again the symmetry of A and the symmetry of the inner product, one obtains

1(ug + av) = $(A(un +av), up + av)y — (fuo + «v)u
w [(Aug -+ aAv, ug +av)y = 20f, up)n ~ 2e(f, v)F]

= [ (Auo, up)r 1 @(Av, uo)yr + a(Aug, )n
+a*(Av, v)g — 20/, uo)n — 2a(f, V)]
= 1[(Aug, o) ir + 20(Auo, v)u + a*(Av, )y
= 2(f,uo)w — 2a(f, V). (7.40)

Since up € Dy and f € H are fixed elements, it is obvious that for arbitrarily fixed
v € Dy, the function (ug + «v) is a quadratic function in the variable . From
Eqg. (7.39) it follows that the function has a local minimum at ¢ = 0, which implies
that its first derivative is equal to zero at & = 0 [or, equivalently, the first variation
of I is zero: see Eq. (4.89)]:

d

— I {ug + ov) =0,
da a=0

or by Eq. (7.40) that
(Aug, Vg — (fFv)g =0 or (Aug— fiuv)y =0.

Since v < IT is arbitrary, by Lemma 7.1 it follows that Aug — f=0inH.
Example 7.4 Consider the differcntial equation
a(x) =0,

——talx)— ) = flx), D=<x<L, (7.41)

CONCEPTS FROM FUNCTIONAL ANALYSIS 219

subjected to the boundary conditions

w( =0, u(L) =0, (7.42)
which arisc in connection with the transverse deflection of cables. Here u(x) denotes
the deflection of a cable of original length L, tension @ = a(x), and subjected to
distributed transverse load f (x) (see Fig. 7.2). The boundary conditions in Eg. (7.42)
indicate that the cable is fixed at x = O and x = I..

Let us choose H = Lo(0, L), and define D, as the linear set of funclions that
are continuous with their derivatives up to the second order inclusive in the interval
10, ] and satisly the end conditions in (7.42). Define the operator 4 on D, by

1 d
An = —— (a2 ). (7.43)
dx dx

We now set out to prove that A js strictly positive on D 4. First, we note that 4 is
symmetric in D4: Forevery u € Dy and v € Dy, we have

L d e
(Au, v}y = \. “VNvax
0

T dx _QRH
_ du w.T.\,ﬁ dv { du d
ST, T ax \Yax )
E dv du
= —— 7.44
h at&&& &k\..n (7.44)
;@x Lp._ \.b d a.n.?u udx
B T P dx \ dx
L d o
|\ LAaZE Y wdx = @, Av)y, (7.45)
[} dx dx

where we have used the fact that u()=w(L)=v{(0)=v(L)=0. Thus, A is
symmetric on D4. From Eq. (7.44), it follows that

L d 2
c__aému\ ao) (34) ax
0 dx

forallu € Dy. (71.46)

Figure 7.2 Transverse deflection of a cable fixed at its ends.
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Due to the fact that a(x) = 0in [0, L], it follows from (7.46) that

(Au, udy =0 for every u € Dy,

Morcover, if (Au, 1)y = 0, it follows that

du

— =10 in [0, L].
dx

This in turn implies that
u(x)} = ¢, constant in [0, L].

Since u(0) = 0, it follows that ¢ = 0 or u(x) = 0 in [0, L], This proves that A is
strictly positive in Dy4.
The quadratic functional associated with Eqgs, (7.41) and (7.42) is given by

1 1t du\* L
Mu) = =(Au, )y — (frtdy = I-\ a(x)| — | dx — .\. fudx, (7.47)
2 2 Ju dx u

which represents the total potential energy of the cable, The first term is the elastic
strain energy and the second term is the potential energy of the external load f(x).
Let wi(x) be the solution of Egs. (7.41) and (7.42). Then /' = Aug and we have

IT{u) = _mfm:_ w)g — (Aug, 1) g
....“M;“hnmav HH mh?. .\c.h Imm aﬁuﬂ“ﬁnw wdx
- W\cang m uaal.\”n@%m&
uw\mfé oo JTKJS " Car. 049

Since a(x)(u’ — :mvu = (), it is clear from Eq. (7.48) that IT{x) is minimal in D4 if
and only if #” = ugin Dy. Thus, if up € Dy is the solution of Egs. (7.41) and (7.42),
then the functional T1(z) assumes its minimum for ug € Dy4.

Conversely, let vy € D, be the element minimizing the functional TT(x) in (7.47).
Let v € Dy be an arbitrary element from D, and let & be an arbitrary real number.
Then the minimum of TT(x) implies that (i = g + ov)

d .
0= —Mup + av)
da =0
d |1 L dir\? £
= —| = 1 — Iy — .u_
7o | 2 \.m alx) ) \c fudx

cr=()
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A . L
”y\. D.Au..w@mmo.\wunl\y W—ﬂﬁmh
[t

dx dx
..... -\.h o h u&tc d
"o dx \*% Ax fvds.
Since this result must hold for every v, it follows that
d {
S {a™ ) F=0 i H =L, L),
dx dx

The above arguments are equivalent to the principle of minimum total potential
energy discussed in Chapter 5.

Recall that the operator A : D4 — H is symmetric:
(Au, v}y = (u, Avdy foru,ve Dy
and positive definite on D, i.e., there exists a constanl C = 0 so (hat
(Au, i) = Cllul)®  holds for every u € T (7.49)
Hence, we can define a new inner product (i, v) 4 on D4 as follows:
(u, V)4 = (A, V) forall u, v ¢ Dy (7.50)

It can be casily verified that (4, v) 4 satisfies the axioms (1)-(3) in Eq. (7.21) of an
inner product. The linear set D4 with the inner product (7.50) constitutes a linear
vector space, called the energy space, and denoted by Hy4. The norm and natural
metric follow from the definition in (7.50):

lelly = Ge, 4, dGev) = u = vja. (7.51)

The energy space H4 can be shown to be complete with respect to the metric
defined in (7.51), and hence it is a Hilbert space. Moreover, it can be shown that the
funetional IT(u) can be extended (o all elements of F 4, that the functional assumes its
minimum at g € Ha, and that the element ug is uniquely determined by the element
f € H.These proofs are beyond the scope of the present study, and interested readers
may consult Refs. 4], and [12-15].

7.3 THE RITZ METHOD

7.3.1  Introduction

As discussed in Chapters 5 and 6, the principles of virtual displacements and forces as
applied to continuous systems can be used to determine the governing equations and
natural boundary conditions of the problem. The energy methods (e.g., unit-dummy-
force and unit-dummy-displacement methods and Castigliano’s Theorems T and 11)
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derived from these principles were used to determine deflections and forces at selected
points. Here we consider a powerful method of determining approximate solutions
to the governing equations of a problem by directly using the variational statements
(i.e., virlual work principles, the principle of total polential energy, or the principle of
complementary energy). The method bypasses the derivation of the Euler equations
and goes directly from a variational statement of the problem to the solution of the
Euler equations. One such direct method was proposed by German engineer W. Ritz
(1878-1909).

7.3.2 Description of the Method
Consider the linear operator equation
Au= f in €, (7.52)

where A is a strictly positive operator from Hy into H, and f € H. The solution ug
of Eq. (7.52) is the element 1y € H, that minimizes the quadratic functional

1) = 2w~ 1), (7.53)

where I(+) denotes a linear functional. In structural mechanics problems, the func-
tional I (1) represents the total potential encrgy and 87 (x) = 0 yields Eq. (7.52) as
the Euler equation.

We seek an approximation Uy (x) of ug(x), for a fixed and preselected N, in
the form

N
ug(x) A Uy (x) = ) cidi(x) + o (), (1.54)

i=1
where ¢; (x) are the elemenis of a hase in Ha, and ¢; are as yet unknown real con-
stants. These constants are determined hy the condition that 7 (Uy) is the minimum.
Since {¢y} is a basc in H,, the solution uy € Ha can be approximated to arbi-
trary accuracy by a suitable linear combination of its elements. Therefore, it can be
expected that the approximate solution Uy, with constants determined by minimizing
the functional 7 (U), will differ sufficiently slightly in H4 from the actual solution
ug if N is selected sufficiently large. This process of determining Uy is known as the

Ritz method.

To fully illustrate the basic idea of the Ritz method described above, we consider the
axial deformation of a nonuniform bar with an end spring. The governing equation is

{ . .

Eam®™) = fd,  0<x<lL, (7.552)
dx X
suhjected Lo the boundary conditions

d
u(0) =0, - mm@.uma_ thux)y| =P, (7.55b)
X

x=L
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where £ denotes Young's modulus, A = A(x) the area of cross section, L the length,
k the spring constant, J'(x) the distribnted axial load, and P the axial load at x = L
{(sce Fig. 7.3). The space Hy in this case is the completion of the sct D4 of functions
that are continuous with their derivatives up to the second order in [0, L].

As discussed earlier, the problem is equivalent to minimizing the total potential
energy {unctional [:

.hmmazm »
:.| ...i | . | m.r.u
{2) ,\c >y \is Sul|dxs+ 5 lu(L)] Pu(L). (7.56)

The necessary condition for the minimum of 11 is
0 = 8I1 = B(du, u) —I(du) or B(8u, u) = [(8u), (7.57a)

where B(-, -) is the bilinear form and I(-) is the lincar functional. Equation (7.57a)
is known as the variational problem associaled with Eq. (7.52). The inner product in
H is defined by

(#,v)4 = B(u, v). (7.57b)

For the specific case of IT{x) in Eq. (7.56), the bilinear and linear forms are

m.a:a.e n_
E:.EH A mhmﬁa..a._.w:_\,u.uihvv _RSH.\...H ?_ak+1xh$.3.m$

The Euler equations and natural boundary conditions associated with the minimization
of [1(u) in Eq. (7.56) arc

A (pae 0 in0<
Ix \FA —f= nb<x <L, (7.59a)
!
EA H.h bku—-P=0 atx=L. (7.59b)

The essential boundary condition of the problem is provided by the geometric
constraint

#(0) = 0. (7.59¢)

The exact solution u to the problem is onc that satisfies Eq. (7.59a) atevery x € (0, L)
and the boundary conditions in Eqs. (7.59b,c). Thus, the solution of Egs. {(7.59a ¢)

Figure 7.3 Axial deformation of a nanuniform bar with an end spring.
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is equivalent to minimizing TT(x) over a set of functions that satisfy the condition
in (7.59c).

In the Ritz method, we seek an approximate solution Uy (which may be exact if
we choose the right kind of approximate solution) to the problem as a finite linear
combination of the form (7.54). The reason for selecting the particular form of the
approximate solution will be apparent in the sequel. 1If we select ¢ and ¢ such that
Uy satisfies the specified essential boundary condition, #(0) = 0, and substitute Uy
into the total potential cnergy functional TT in Eq. (7.56), we obtain IT as a function
of the parameters ¢y, ¢, . .., ¢y (alter carrying out the indicated integration with
respect lo x):

M =TIt €3, ..., €N

Then ¢; are determined (or adjusted) such that 8TT = (; in other words, we minimize
TT with respectto¢;, i = 1,2, ..., N:

aTt art all L all
()= = — & —8cr By = —dc;.
L P ey N Wx_ ac;
Since the set {¢;} is linearly independent, it follows that
BHO fori=12,....N (7.60a)
mn__.
or
[Alfe} = {b). (7.60b)

Equations (7.60a,b) represents a set of N linear equations among ¢y, ¢z, ..., €N,
whose solution together with Eq. (7.54) yields the approximate solution I/ (x). This
completes the description of the Ritz method.

Since the natural boundary conditions of the problem are included in the varia-
tional statement, we require the approximate solution I/ to satisfy only the essential
boundary conditions. In order for Uy to satisfy the essential boundary conditions for
any ¢, it is convenient to choose the approximation in the form (7.54) and require
¢n(x) to satisly the specified esscntial boundary conditions. For instance, if u(x) is
specified Lo be i at x = 0, we require ¢n(x) be such that ¢ (0) = #i. Then

N N
Un(0) = " cithi(0) + o(0) = D cighs (0) + . (7.61a)
i=1 i=1 ;
Since Up(0) = i, it follows that
N
Me@:; =0 — ¢;(0) =0  foralli=1,2 ... N. (7.61h)

i—=1
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Thus, ¢;(x) must satisty the homogeneous form of specificd essential boundary
conditions.

Equation (7.54) can be viewed as a represcntation of u in a component form;
the paramcters ¢; are the components (or coordinales) and {¢;} are the coordinate
Junctions. Another interpretation of Eq. (7.54) is provided by the finite Fourier serics,
in which ¢; are known as the Fourier coefficients.

7.3.3 Properties of Approximation Functions

The approximation functions ¢q and ¢; should be such that the substitution of
Eq. (7.54) into 8TT or its equivalent resulls in N lincarly independent equations for
the parameters c; (j = 1,2, ..., &) so that the system has a solution. To ensure that
the algebraic equations resulting from the Ritz approximation have a solution, and the
approximate solution Uy (x) converges to the true solution u{x) of the problem as
the value of N is increased, ¢; (i = 1,2,..., N) and ¢hp must satisfy certain require-
ments. Before we list the requirements, it is informative to discuss the concepts of
completeness of 4 set of functions and convergence of a sequence of approximations.
To make the ideas presented simple (o understand, mathematical rigor is sacrificed.

Convergence A sequence {[/y} of functions is said to eenverge to u if for cach
€ = 0 there is a number M = 0, depending on €, such that
NN (x) — ux)|| <€ forall N = M,

where || - || denotes a norm of the enclosed quantity and « is called the limit of the
scquence. In the above statement, Uy represents the approximate solution and i the
true solution. The statement implies that the N-parameter solution 7y can be made
as close to u as we wish, say within €, by choosing N 10 be greater than M = M (€),
provided that the approximate solution is convergent. While there is no formula to
determine M, a series of trials will help delermine the value of N for which the
approximate solution U/ is within the tolerance.

Completeness  The concept of convergence of a sequence involves a limil of the
sequence. If the limit is not a part of the sequence {Un Y5> then there is no hope of
attaining convergence. For example, if the true solution to a certain problem is of the
form w(x) = ax? + bx* + cx”, where a, b, and ¢ are constants, then the sequence of
approximations

Up=cd, Us= e +epxt, L, Uy =c1x° +oxt+ - 4oyl

will not converge to the true solution because the sequence does not contain the x2
term. The sequence is said to be incomplete. As a rule, in selecting an approximate
solution one should include all terms up to the highest-order term. If a certain term is
not a part of the true solution, like the x* term, its coefficient will turn out to be zcro
by the time all terms of the true solution are included in the approximation.
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‘We now list the requirements of a convergent Ritz approximation (7.54);

1. ¢ must satisfy the specified essential boundary conditions. When the specified
essential houndary conditions are homogeneous, then ¢g(x) = 0.

2o¢y < Hy (1 — 1,2, ..., N) must satisfy the following three conditions:

(a) be continuous, as required by the variational statement being used;

(b) satisfy the homogeneous form of the specified essential boundary condi-
tions; and

(¢} the set {¢b;} must be linearly independent and complete. (7.62)

7.3.4 Ritz Equations for the Parameters

Returning to the problem of determining the approximate solution Uy {(x) of the bar
problem described by Egs. (7.59%a.b), we substitule Eq. (7.54) into the total potential
encrgy functional I:
N : N

dip a.ﬁc
Mun.__ .__+ -f Munh__ﬂq.m.%a dx

4
j=I

M(er,e2,...,en8)= \.

2

_wn N N
5 | 2oty | =P 3 esdi (M) tdo(T) |-

j=1 i=l

Now differentiating 11 with respect to ¢; (f = 1,2, . V), we obtain N linearly

independent equations {or the unknowns, ¢, €2, ..., cx. We have
o A \H. pad01 Mzu de;  dey p
de 0 dx ._l_f dx dx for | dx
N
+ kg (L) | D cidi(L) 4 do(L) | — Poi1(L), (Eq. 1)
j=1
o [t %ﬁ Y. d¢;  den
0=—= —|- 1
dea .\.c Mﬁ. dx dx for | dx
¥
N
+kpa(L) | Y eids(L) + go(L) | — Pa(L), (Fq.2)
j=1
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on L dgi (<~ dp; . déo .
olﬂ._...l.\: H\._a-._., m “Tﬂ Sy | dx
N
k(L) | 3 iy (L) + do(L) | — Pea(L), (Eq. i)
=1
an Ll dgy [ de; | deo
=dew "l |G\ ) T
N
oy (L) | 3 i (L) + dolL) | — Pow(L). (Eq. N)
Jj=

Note that Eq. 7 is the /th equation of the sct of N equations. The ith equation can be
written in the short form

N
0= Muﬁr.h._nu__. — b, (7.63a)

where the coefficients a;; and b; are defined hy

L
bi = |\ EALP09 ko)
0
+ -\- Séidx+ Pdi(L). (7.63b)
0

The N equations can be written in matrix form as
[Al{e} = {b). (7.64)

Equations (7.64) are called the equations for the Ritz parameters ¢;. Once ¢; (i =
1,2, ..., N)aredetermined from Eq. (7.64), the approximate solution of the problem
is given by Eq. (7.54). This displacement can be used to evaluate strains and stresses:

N

MU ¢ \.._,—“v__ nmn_‘.c

a.u

i=l
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Equations (7.63a,b) can also be arrived at by substituting the Ritz approximation
(7.54) and its variation

N
Su = 8UN =y Be;(x) (7.65)

i=1

in the variational statement 811 = (, instcad of substituting (7.54) in Il and then
taking the variation with respect o ;. This resulis in

l Ll ag (XL dé; deo
0=3 35 T EA— o v | dx
Wﬂ ¢ “.\‘: A dx WMD. dx * dx e v

N
Lk (L) | D ey (L) + o(L) | = Pi(L)

Jj=1

Since dc¢; are arbitrary, we obtain the result in Eq. (7.63a).

Next we discuss the task of sclecting the approximation functions ¢y and ¢;. The
properties listed in Eq. (7.62) provide guidelines for selecting the coordinate func-
tions ¢p{x) and ¢4 (x); they do not, however, give any formulae for generating the
functions. Thus, apart {rom the guidelines, the selection of the coordinate functions
is largely arbitrary. As a general rule, the coordinate functions ¢; should be selected
from an admissible set [i.e., those meeting the conditions in Eq. (7.62)], from the
lowest order to a desirable order, without missing any intermediate terms (ic., the
completeness property). Also, ¢y should be any lowest order (including zero) that sat-
isfied the specified essential boundary conditions of the problem: it has no continuity
(differentiability) requirement.

For the problem at hand, ¢ = 0 since the specilied essential boundary condition is
homogeneous. Next, we find ¢ (x )} such that ¢ (0} = 0 and difTerentiable ut least once
with respect to x hecause IT involves the first derivatives of u = {/y. It an algebraic
polynomial is to be selected, the lowesl-order polynomial that has a nonzero first
derivative is

$i{x) =a+bx,

where a and » are constants to be determined. The condition ¢ (0) =0 gives a = (.
Since b is arbitrary, we take it to be unity (any nonzero constant will be absorbed
into ¢;). When N = 1, property 2(c) in Eq. (7.62) requires that ¢;, i > 1, should be
sclected such that the set {¢; m,,.,,._ is linearly independent and makes the set complete.
In the present case, this is done by choosing ¢z to be X2, Clearly, ¢n(x) = x? meets
the conditions ¢, (0) = 0, linearly independent of ¢ (x) = x (i.e., ¢ is not a constant
multiple of ¢;), and the set {x, x2} is complete (i.c., no other admissible term up to
guadratic is omitled). In other words, in selecting coordinate functions of a given
degree, one should not omit any lower-order Lerms that are admissible. Otherwisc the
approximate solution will never converge to the exact solution, no matter how many

H
H

{
¢

i
|
f
i
:
i
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terms are used in the Ritz approximation, as the exact solution may have those lower-
order terms that were omitted in the approximate solution. Note that ¢ (x) = x + x2
is also an admissible function that meets all requircments. Then

Ua(x) = c1¢1 + 2y = Erx + &7, with ¢ =¢) +c2, &2 =c2,

which is equivalent to

Uz(x) = créh -+ cadhn.

Thus, one may select ¢; = Xoi=1,2,...,N.

If rigonometric functions are to be sclected, one may be templed to select ¢ =
sin(wx /L), which satisfics the condition ¢ (0) = 0. However, this choice also gives
Uy {L) = Osince ¢ (L) = 0. Abetler choice would be to select ¢by (x) — sin{mx/2L),
or for N = 1, select ¢ = sin[(2f — 1) x/2L]; this choice will yield a good solution.

For the choice of algebraic polynomials, the N-parameter Ritz approximation for
the bar problem is

N
Un(x) =) cidilx), dix) =x', (7.66)

i=1

and the coefficients a;; and b; for

EA=ay AM hv , f = fa (a constant), P =Py, (7.67)

L

are given by

I b ka...?.k@
9,,_ ...s& (1= 1) T+ ke (L)L)

h
Hac&_. ,\' ? I Wv .ﬂ~_+_~..rm&a._. nhsﬁ..r..._
0 L

j+i+j)

FIHD) il gyt 68s
(+j—Da+pn T 763

j_m_c

Jo

I
by = qdx + Py (L) =
%.\\ﬁhe.f (L) s

_ (LY + PyLy. (7.68b)

For one-term approximation (N = 1 and k = ), we have

3 1 5
ayp = Mach_ b = u..m.chx -4 Pyl
b 6 3., JoL +2P
cp=—= —fol.”+ PL | =
! an QapL n,.wc + 3an '
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and
L+42
Ui(x) = foL +2R
mac
For ¥ = 2 and & = 0, we have
3 4 . 5
ayy = muoh, app =) = wachh, agy = wacﬁu.
1 1
by = mbmw +PRL, b= w?i + L2
‘The Ritz equations can be written in matrix form as
. L2
agL ['9 xm.m o u.\.;o. |3 Pl 1 .
6 {8L 10L ) 6 2L L
whose solution by Cramer’s rule is
1 /7 6 3
e = - FooPy ez = —— (= fol + Po).
! ap \ 13 fo 13 Po 13apl.

Hence the two-parameter Ritz solution is

_ThRL A6y 3(Fo— fol) 4
c.u_\mhu = llm...“ﬂb { .—w&|ﬁ:«\ X,
The exact solution of Egs. (7.55a,b) with «(0) = 0,k =0, EA = ay[2 — (x/L)],
and f = fois

foL (fol. — Po)L X
= T log(1 — (7.692)
1{x) ™ X o mﬁ Nm.v
foL+ Py Po—foL 5,  Po— fol
. i 7.69b)
2y «t 8apL o 24aqL2 S (
Tahle 7.1 contains a comparison of the Ritz coefficients ¢; for N = 1,2,...,8

with the exact coefficients in Eq. (7.69b) for L = 10 ft, ap = 180 x 109 1h, foy =0,
and Py = 10 kip. Clearly the Rilz. coefficients ¢; converge to the exact ones as N
goes from 1 to 8.

7.3.5 General Features of the Method

Some general features of the Ritz method are listed below:

¥
1. Ifthcapproximate functions ¢; (x) are selected to satisfy Eq. (7.62), the assumed
approximation Uy (x) normally converges 1o the actual solution «(x) with an
increase in the number of parameters (i.e., N — oo0). A mathcmatical proof
of such an assertion is not given here, but interested readers may consult the
references at the end of the chapter.

i
H

i
f
§
i
1
{
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Table 7.1 The Ritz coefficients" for the axial deformation of an isotropic elastic bar
subjected to axial force

i ©1 (o] 3 c4 5 Cg [ (5]
I 37.037
2 25.641  12.821
3 28219 4400 4879
4 27.691 1.988 0.000 3029
5 27794 6701 3389 =1.040 1.664
[ 27.775 7.0049 1.904 2012 —1.142 0.952
7 27778 6929 2453 0.320 1.447 —~0.980 0.560
8 27778 6948 2272 1.094  —0.287 L136 —0769 0336
Exact 27.778 6944 2315 0.868 0.347 0.145 0.062 0.027
& =¢ % 1054
2. For increasing values of N, the previously computed cocfficients of the alge-

=

“

braic equations (7.60b) remain unchanged (provided the previously sclected
coordinate functions are not changed), and one must add newly computed
coefficients to the system of equations.

If the set of approximation functions {¢;} chosen is an orthogonal set in the
sense B{dy, ;) = ag;)d;; (no sum on / and j), then one need not invert the
system of equations, and the solution is obtained as ¢; = b; fa;.

The Ritz method applies to all problems, lincar or nonlinear, as long as the
variational problem

B(du, u) = [{8u) (7.70)

is equivalent to the governing equation and natural boundary conditions. In
general, B(8u, 1) is lincar in §u bul may be nonlinear in « (and thus B(., -)
may not be symmetric), and {($u) is a lincar functional,

If the variational problem used in the Ritz approximation is such that its bilinear
form is symmetric (in « and §u). the resulting algebraic equations are also
symmeiric and, thercfore, only elements ahove or below the main diagonal of
the cocfficient matrix need to be computed,

If 8IT (or B(du,u)) is nonlinear in u, the resulting algebraic equations
[A({{cHl{c} = {b} will also be nonlincar in the parameters ¢;. To solve such
nonlinear equations, a variety of numerical methods are available (e.g., the
Newton—Raphson method). Generally, there is more than one solution to the
set of nonlinear equations.

. Since the strains are computed from the approximate displacements, the strains

and stresses are generally less accurate than the displacements,

I'he governing equation and natural boundary conditions of the problem are
satisfied only in the variational sense, and not in the differential equation sense.
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Therefore, the displacements obtained from the Ritz approximation generally
do not satisfy the equations of equilibrivm pointwise.

9. Since a conlinuous system is approximated by a finite pumber of coordinates
(or degrees of freedom), the approximate system is less flexible than the actual
system (recall that IT(x) < IT({/) for any U that is not exact). Consequently,
the displacements oblained by the Ritz method using the principle of minimum
total potential energy converge to the exact displacement from below:

U <lUy e oo =sly <Up---=u, for m = n, (7.71)
where Uy denotes the M -parameter Ritz approximation of & obtained from the
principle of minimum total potential cnergy. The displacements obtained from
the Ritz approximations based on the total complementary cnergy principle
provide an upper bound for the cxact solution,

10. Although the discussion of the Ritz method in this section thus far is confined to
a linear solid mechanics problem, the method can be employed for any equation
that admits a variational formulation (in the sense discussed in Comment 4),
as will be illustrated through several examples shortly. However, the bounds
mentioned above do not hold unless the variational problem is based on a
minimum variational principle.

7.3.6 Examples

Tn this section we illustrate the application of the Ritz method to a variety of problems.
These include statie, eigenvalue, and transient problems. As will be shown in the
sequel, the Ritz method can also be applied to problems that either do not admit a
quadratic functional or where onc knows only the governing equations of the problem.
In the latter case, a way to develop the so-called weak form is discussed in Section 7.4.

Example 7.5 Consider a uniform cross-section bar of length 1., with the left end
fixed and the right end connected to a rigid support via a linear elastic spring (with
spring constant &), as shown in Fig. 7.4, We wish to determine the first two natural
axial [requencies of the bar using the Ritz method.

The kinetic energy K and the strain energy U associated with the axial motion of
the member are given by

ol 2 I 2
pA [ du cEA (O k 5
k=1 22(%Y) ax, wv=| (=) de+=[u,nP 072
2 L dx S (5) dx st am
E A k i
- L -
E——

Figure 7.4 Natural vibrations of a bar with an end spring.
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Substituting for K and U from Eq. (7.72), and V = 0 in Hamilton’s principle, we
obtain [§u(x, f1) = du(x, ) = 0and Su(0, 1) = 0]

2
94\ S(K — 1) dt
,ﬂ"

1 [ L au\’ au\?
LAY A=) —EA(S) |dx — ku(@, 0P
! \h \s pa(57) —EA(50) |dx k@ oPtar  (73)
nr ok dir ddu au ddu
— > |.||m. P - ]
\: \c P o T EAG S..v& e

e h mu: m:m&:
H Im|m!.ﬁ\,|a.ﬂl ..m. L . .
,\: % pAZ U Py e»i,sﬂm:mmlvﬂb G_q.ﬁ

We seel the periodic motion of the form

u(x, 1) = up(x)e’™, i = (7.75)

where w is the frequency of natural vibration, and #g(x) is the amplitude. Substituting
Eq. (7.75) into Eq. (7.74), we obtain

L 5 . dug déug
0= pAw updug — EA—- dx — kup(L)Sug(L), (7.76)
0 dx dx
where (iw)? = —o”, and ,\H“u ety being nonzero, is factored out. We use

Eq. (7.76) to determine the values of w. Note that the Rayleigh quotient for the
problem at hand is given by

Jo~ pAuodug dx

s Jy EAWuo/dx)(dSug/dx) dx + kug(L)suo(L.)

The Euler equation and natural boundary condition associated with Eq. (7.76)
are

_d (gt

2 —
i e pAw g =0,

Q<x <L, (7.77a)

du
EA%, ﬂa b g = 0 atx = L. (7.77h)

The essential boundary condition is ua(0) = 0.
A nondimensionalization of the variables is used for simplicity:

_ x _ U kL 2aL?
F=T. i=20 o a= 2P

L’ TEA E (7.78)
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Then Eq. (7.76) becomes

I dii dsii
- \ jiisu — =) dx — aii(1)su(1). (7.79)
0 p

The bar over the nondimensional variables will be omitted in the interest of brevity.
Further, in the following discussions, we shall assume that ¢ = 1.
Substituting an N -parameter Ritz approximation (obviously, we have ¢g = 0):

N
a(x) = Un(x) = ) cii(x)

i=1

inte Eq. (7.79), we obtain

S IO S Ldgy d;
0=3{y" ; b dx — \c%%&iﬁcaxc ¢; t8ci.

i=1 | j=1

Because of the independent nature of d¢;, we obtain

z_ _§_§
aum p\o Np_@_%: %mwﬂ&+§.:§5 :.G_%&

and in matrix form
([A] — A[MT) {c} = {0}, (7.80b)
where

tdgi do;

1
aij = | dx dx dx +agi (1) (1), mij U,\o digh; dx. (7.80¢)

Equation {7.80b) represents a matrix eigenvalue problem, and we obtain N eigen-
values, A;, i = 1,2,..., N. An analytical method for finding eigenvalues and
eigenvectors was discussed in Chapter 2 (see Section 2.3.4).

For the problem at hand, the approximation functions can be taken as

di(x) = x'. (7.812)
Substituting ¢; = x' into Fq. (7.80c), we oblain

i 1
- by — —,
mij s\_“ dich; P j+1

_%&? :.
dij I% Nﬂﬂaa._.%__ﬁve:”: = .&]._;j.z. (7.81b)

i
¢
{
t
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Since we wish to determine two eigenvalues, we take N = 2 and obtain
. 1 1
mip = 3, myz = g, my =4, an =12, app =12, an =1,

and the matrix eigenvalue problem (7.80b) becomes

2 2 LI (¢ 0
2 m —* w M er| T (0] (7.82)
: 5 -

For a nontrivial solution (i.e., ¢y # 0,2 # 0), the determinant of the coefficient
matrix in Eq. (7.82) is sel Lo zero;

=0

[ S
1
i L
LFUIE Y )
| e |

ar
1522 — G40 + 2400 = Q.

The quadratic equation has two roots:

—
2038 | F .
A = 4.1545, Az = 38512 > w) = =, wy = @ W
L Yp L 0
(7.83)

The eigenvectors are given by
QME - m,m;h +ﬁ.m:. m.
where n_ﬁn. and nm: are calculated from Eq. (7.82) for 2 = A;, i = 1,2 (see

Example 2.8).
The exact values of A arc the roots of the transcendental equation

Adtan A =10, (7.841)
whosc first two roots are (@w? == 3);
202875 [E 191318 [E
wy| = ——— —, wyp = ————0 | —. (7.83)
L < Fe. L p

Note that the first approximate frequency is closer to the cxact than the second.

I one selects ¢by and ¢; to satisfy the natural boundary condition also, the degree
of polynomials will inevitably go up. For example, the lowest-order function that
satisfics the homogeneous form (we still have ¢y = 0) of the natural boundary
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condition «’(1) + u(l) =0is
Py = 3x — 202 (7.86)

The one-parameter solution with the choice of ,__w_ in Eq. (7.84) gives &y = 50/12 =
4.1667, which is no better than the two-parameter solution computed using ¢ — x
and ¢2 = x2. Of course, solution ¢y m: would yield a more accurate value for A than
the solution ¢, Although 1 and ¢y + eadhy are of the same degree (polyno-
mials), the latter gives better accuracy for &) because the number of parameters is
ereater, which provides greater freedom Lo adjust the parameters.

Example 7.6 Consider a uniform cross-section bar of length L with the left end
fixed and the right end connected to a rigid support via a linear elastic spring with
spring constant k. Suppose that the bar is subjected to a body force f(x, ) (sce
Fig. 7.4). We wish to determine the transient response of the bar under the assumplion
that the motion starts from rest, 1.e., the initial conditions of the problem arc

wlx, 0y =0, iifx, 0) = 0. (7.87)

The kinctic and strain energies associated with the axial motion of the bar arc given
in Bq. (7.70). The potential cnergy due to f(x, £) is

ity ph
= - .\ ‘\ fudx.
i a

Then Eq. (7.73) becomes

) L m 88
0= \ \ b> m: ﬁh@.ln + fou ) dx —ku(L,)du(L,t) |dt.
n LJo dx dx
(7.88)

The Euler-Lagrange equations associated with Eqg. (7.88) are

f du 9 du

~EA—)=—=—|pA— )+ F=0, O=x<L; t=0 7.89a

ax By ) T \PAg ) (7:8%)
au

£EA— 5 + ke — 1, at x = L; t = 0. (7.89b)
ax

When one is interested in determining the time-dependent solution  (x, £) under
applied foad f(x, 1}, the Ritz solution is sought in the form

ux. )~y cjNG;(x), ¢ =x, (7.90)

i=1

T

m
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where ¢; arc now time-dependent parameters to be determined for all times ¢ > 0.
Substituting Eq. (7.90) into (7.88), we obtain

> Uiy de;
0=-— .\&?% %w+ %b@%%&:xﬁ: ¢;
J=!

dx dx
H -
+.\‘ ¢ fdx
0

|M i n:k +aije; | + bi (7.91a)

where x, ¢, f, and ¢ are nondimensionalized as

L P e
=7 aICﬁ:huxmB‘ f= 7 f= ST (7.91b)

fo being a constant, and

1
Hiij ”,\4 c‘&cfﬁmh.
0

.._%&?
aij Ia\c TIr dr &H*a_.:u%ﬁ:: Aq.ohov

1
b; H\ éi fx, 1) dx.
0

For N = 1and f = fj (or f = 1), we have

d%e 1 d?e 1
ar 4+ = M or . 5 20 =

The solution to the second-order differential equation is

myp——

c1(t) = Asin/6r + Beosv/61 + L.
Hence the onc-parameter Ritz solution is given by
Ui(x.t) = (Asin V6t + Beos/6r -+ 1)x,

where A and B are constants (o be determined using the initial conditions. For zero
initial conditions

w{x, ) =10, ax,0) =10, (7.92)
we can determine the constants as B = —1 /4 and A = 0. The solution becomes

Up(x, 1) = mﬁ_ — COSs a\m&.a
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q
N A

WL

L
- .

ZWn

Figure 7.5 A simply suppurled beam under uniform load.

For N = 2, the resulting system of differential equations in time, Eq. (7.91a), may
be solved for ¢;(¢) using the Laplace transform method or a numerical method, the
latter being more practical. In general, the initial conditions (7.92) cannot be satisfied
exactly, requiring approximation. Further, the numerical solution may be oblained
only for discrete values of time. For example, at time &y = sA¢ (Le., the total time
interval is divided into a finite number of time steps ol size Af), we would have

N
un(r.ts) = ) et (). (1.93)

i=1

For more details of the ideas discussed here, see Example 7.17.

Example 7.7 Consider a simply supported beam of length L. We wish to find
the transversc deflection of the beam under uniformly distributed transverse load
go (see Fig. 7.3) using the Euler Bernoulli beam theory. The principle of virtual
displacements for the problem becomes

El— — — Swygy | dx. {7.94a)

0 .\. L d2wg d2uyg
o dx?  dx?

The essential boundary conditions are
wp(0) = wo(L) = 0. (7.94b)
We choose a two-parameter approximation of the form
wy A Walx) = ¢y + cada + ¢n, W = feyy + Seagh, (7.95a)
where
dp =0, oL = x(L — x), ¢y = x2(L — x). (7.95b)

Substituting Eq. (7.95a) into Eq. (7.94a), we obtain

:_L
0= \ [E1(3c16] + c2¢3) (197 + cag)) — (5c1n + S22} qodx
0
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2
0= MUP.._?,.H. — b,
i=1

2
A
= M aijc; — by | dey or

where

i d2d: did; L
ajj H\.o ET- @JH&&. b; H.\, god; dx.
0

For the particular choice of ¢ in Eg. (7.95b), we have

4 2L fe] gL’ |2

EIL
2L 4L | e P A N
and the solution of these equations yields the result

_ qolL?
T 24EI

| ¢ = O,

50 that the two-parameter Ritz solution becomes

4 2
aqnl. X x
Waix) = - ——1.
20 = mi \I T 12 (7.96)
The exact solulion ol the problem is given by
4 7. 3 4
g™ fx x X
Wyl x) = — | = — i —_—. .
= I \L e T 7.9
The maximum deflections according to the exact and Ritz solutions are
L 5 golt qol* I 37 gol? qoLt
wo| = |==— =1.01302 - Wil = )=— =0.01042- .
'\2)7 384 EI El \2)7 352 k1 El
Thus the two-parameter Ritz approximation is about 20% in error.
The three-parameter Ritz approximation with ¢3 = x (L — x) viclds
4 2L 2027 (e a2
EIL| 2L 412 413 [{e4=72") ; | (7.98)
212 413 48L%| | 12 lose?
and we obtain
2
qol.”
cy=el = o3t e=
P 3 24ET

The three-parameter Ritz solution coincides with the exact solution in Eq. (7.97).
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Remark 1 1fthe beam is subjccted to a pointload Fyalx = L/2, instead of a uniform
load throughout the span of the beam (see Fig. 7.6), the exact solution will be in two
parts:
S . 3
Fol™ X &W . 0<x<
48EI\ L
wo =150 0 . , L (7.99)
fox .,WW|&|+®|.. Q ., Z<x<L.
481 [ L L3 L 2

Then it is clear thal we must seck the Ritz solution also in two parts.
Suppose that we use the virtual work statement (or 811 = 0)

_.,Am.f_:ce_mzi h
.| .Ill.b:...lﬁ?:l Q._oov
0 h El dx?  dx? R )

with the three-parameter approximation
Wa(x) = e1x(L — x) + cax (L — x) + eax (L — x), (7.101)

we obtain the same coefficient matrix as in Eq. (7.94), because the bilincar form did
not change but the lincar form changed, and the right-hand side is given by

!

L

Fol?

0 2

4 12

4

The solution for the Ritz cocfficients gives
Fol. R e 5

=R YT TnRED A=

The Ritz solution does not coincide with the exact solution. In particular, the maximum
deflection predicted by the three-parameter Ritz approximation (7.101} is

L 7 RL? Fol?
Wil o)== = -
2 384 EI 54.86E1
F,
v
a *

X
Z, Wy

Figure 7.6 A simply supported beam under center paint load.

R

i
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whereas the exact value from Eq. (7.99) is

1, FL?
U - | = .
“\2)” 4&8EI

(7.102)

The reason for the Ritz solution based on the variaticnal problem (7.100) not being
exact even for a point foad is that (7.100) does not account for the discontinuity in
the load. Note that the exact shear force, Q = m,:QmEm\ﬁ?.J« is discontinuous
al x = L/2, but the approximate one is continuous. Thus, we must modify the
variational problem, as discussed in Example 7.8.

Remark 2 One can also use trigonometric polynomials in place of algebraic poly-
nomials for the approximation functions ¢;. For instance, the deflection of a simply
supported beam subjected to continuous distributed load ¢ (x) can be represented by

. X . 3mx . X
wg A ¢y s — 4 £2 80 4oy sin(ZN — 1) —. (7.103)
L L L
The functions ¢; == sin{2{ — [){(zx /L) are lincarly independent, and are complete if
all lower lunctions upto sin(2V — 1) (7r.x /L) are included. When the load is sinusoidal,

. . mEX
g{x) = ggsin 7 {for fixed m), (7.104)
we obtain the exact solution (¢ =2 =+~ =¢y_) = ey = -+ = cy = 0
4
Lommx _ qgnl.
wil{x) = ¢ sin I O = FInind: (7.105)

This solution cannot be represented using a finite set of algehraic functions {¢;],
although the Ritz solution with a finitc number of terms may be very close to the
exact when evaluated at a point.

On the other hand, if the load is representable by an algebraic polynomial (c.g.,
¢ (x) is a constant, linear, or higher-order function of x), then the Ritz solution (7.103)
will not coincide with the exact solution (7.97) for any finite value of N, because the
sine-series representation of such a load is an infinite series. For example, when
q = gu, a constant, then

X

glx) =gy — MH

i=l3,..

(7.106)

However, the Ritz solution (7.103) converges rapidly, giving an accurate solution,
especially away from the ends, for a finite value of N,

Thus. in general, a judicious choice of approximation functions ¢; based on the
source term ¢ (x) will not only make the computational effort minimal, but also gives
an accurate solution,
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Example 7.8 Here we consider a beam with discontinuous loading. As an example,
consider the heam shown in Fig. 7.6. We divide the beam into as many parts as there
are regions with continuous loading. Consider the ith part, located between x = x;
and x = x;.;. Within each part of the beam, the differential equation for wo{x) is

d? 1%
L (e = g(x), X < X < Xigl, (7.107)
dx? dx?

where ¢ (x) is any distributed load in the part. We isolate the ith part and set up a free-
body diagram depicting the internal forces (@', Q) and moments (M{”, M5}, as
shown in Fig. 7.7. The total potential energy for the ith part is

2
il ET amEc W dig
I, (wy) = == - Ix M
1(wo) ,%. 2\ dx? Ehtl ! dx /.,
; dw i e
—mP ...Eﬂ_ — 0V watxi) — O wolxiz).  (7.108)

Yigl

where the left end is lahcled as 1 and the right end as 2.

To use the Ritz method, we must select approximation functions based on specified
boundary conditions. If we assume for the mowment that all of the boundary conditions
are of natural type, then the Ritz approximation over the ith part may be assumed in
the form (see Example 5.6):

. . w
wh(x) = ¢y + eax +c3x? + eax

= P uw + P 18" + ¢ wd’ + o’ (00, (7.109)

Figure 7.7 Boundary, continuity, and equilibrium conditions for the beam of Example 7.8.
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where (X = x — x; and Ly = x5 — x7)

-\ 2 o3 -
@) X 2 X (i) = *
=1-3{—) +2{—} . =—x|ll-—],
“ L; L; . ¥z L;
. | _ (7.110)
=82 =3 3 =2 ol
() a * ) | x
=3l=) -21=) . =—x - =
o3 L; L; ¥ L; L;

Substitution of Eq. (7.109) into 8T1; — 0 and carrying out the integration yields
the Ritz equations for the ith part:

{f) (i) (i}
6 —3L; -6 -3I; eﬁf J.U m_.w
260 | =3L; 207 3L L7 |60 fe | My .11
Ll =6 3L 6 3L | @[ 1,0 o [+
S [ VPR S YR 17 3 I o 2
Ak ‘i Rl ‘i mmc Qh: Eun.:
where
- " 1 . o
g |\ 4?0 () dx, (7.111b)
AHH

Here the superscript or subscript i on variables indicates that they belong 1o the ith
part. Note that the modulus of elasticity and moment of inertia arc assumed to be
constant within each part, while the load is arbitrary but continunons in each part. For

uniformly distributed load g ¥ (x) = aw: on part i, we have

0 :
(i) (i}

2| _q i f 1L

N ekl I (7.111¢)
3 1,

(i) i

44

Equations (7.111a) relate the four generalized displacements E._M:. m_E. .Em;_ m%_uv
to the four generalized [orces HQM:_ __imﬁ. DM..:, _a,._mm.__.uu, Obviously, four of the eight
variables should be known in order to solve the four equations. [ there arc n parts,
there will be a total of 4n equations in 8x variables. Hence the remaining 4. variables
should be climinated through known conditions (e.g., boundary conditions, continuity
conditions, and equilibrium conditions).

To illustrate the ideas, consider a simply supported beam with a point load Fp at
the center. Obviously, the beam needs to be divided into two parts, 0 = x = L/2 and
L/2 < x < L. The Ritz equations for the two parts are given below (Ey = E; = E,

h=h=ILi=L=LJ2 and g(x) =0).
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Part 1:
()
)
6 —I5L —6 -15L bms
16ET | =1.5L 0.5L? 1.5L 025L | My (7.1129)
| -6 I.5L 6  15L e s
151 025L 156 0512 o
ﬁ.u
Part 2:
(2) 2
6 150 6 —1sL " mvu
10E1 | —15L 05L% 1.5L 025L | |9 M, (7.112b)
L3 =6 15 6 1SL [ ),,@[ o[ :
2 2 -2
—1.5I. 025, 1.5 Q5L - sy
o M

There are a total of eight cquations in ] 6 variables. However, some of the variables
arc duplicative and others are related. In particular, we bhave the following eight
conditions (see Fig. 7.7):

Boundary Conditiuny

wi=0, w®=0 MY=0, M?=0 (7.113a)

Continuity Conditions

+

wi’ =i, A =0, (7.113h)

Equilibrium Conditions
0P+ 0P =k,  M"+uP =0 (7.113¢)

Imposition of conditions in Egs. (7.1134,b) is straightforward. However, to impose
the equilibrium conditions (7.113c), we must add the third equation in (7.112a) to the
first cquation in (7.112b) and then, using the first condition of Eq. (7.113¢) [conditions
in Egs. (7.113a.b) are also used], we obtain

me.ﬁ._ (L5LO; + 12Ws — 1.5L8)3) = Fy, (7.114a)

where Ew: = W, _ﬁn: = Hy, _cpM: = {9y, and m__mg = 3. mu,:__:m:,_w_ adding the
fourth equation in {7.112a) to the second equation in (7.112b) and then using the
second condilion in (7,113c¢), we obtain

16FE7T

qﬁo_umh@“ +L*Wa + 1.5L@3) = 0. (7.114b)
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Thus, we have a 1otal of six equations: first two equations of Eq. (7.112a), the last two
equations of Eq. (7.112b), and two equations in Eqgs, (7.114a,b}in six unknowns QM:‘
©1. Wa, ©2, 3, and 057 Solving the middle four equations for (O, Wa, ©5, ©-),
we ohtain

Fol.? Fol3 Ful?
) =———, Wy = ——, 9 = 0.0, B3=— (7.115)
I6ET 48ET 16E7

and .Qﬁ,: and .@.m& can he computed to be —0.5F from the first cquation of (7.112a)
and the last equation of (7.112b). The rotation 65 at the center of the beam is correctly
predicted 1o be zero (why?), The four-paramcter Ritz solution [but with the same
polynomial degree as in the two-parameter solution (7.95a,b)] becomes

Fald v ¥ 4 Fyl?

—_—da—

W6EI VL 127 f3 48K 1

FyL? Nt ] RL? #3? 3 I3
P12 +16{ = ; bl Zeyv<l,
48E1 r) PNT) 1t eE NT_ dlp) | gErsd

(7.116)

Wylx) =

where ¥ = x — L/2. Simplification of Eq. (7.116) gives the expression in Eq. (7.99);
thus, the Ritz solution matches with the exact solution.

The procedure described in this example closely resembles that of the finite element
method, which will be discussed in detail in Chapter 9. The procedure is valid for
all beam problems irrespective of the nature of the loading and boundary conditions.
In addition, the procedure gives exact values of the deflection wq(x) and rotation
—(dwy/dx) al the end points of cach part for all loads and boundary conditions,
provided that the flexural rigidity £7 is constant within each part.

7.4 GENERAL BOUNDARY-VALUE PROBLEMS

All the examples presented in Section 7.3.3 utilized the minimum total potential
energy principle or Hamilton’s principle. For problems outside the ficld of solid and
structural mechanics, the construction of an analog of the minimum total potential
energy principle is needed 1o derive the Ritz equations. Here the procedure for con-
structing weak forms from differential equations and use of these statements in the
Ritz approximation are studied,

7.4.1 Variational Formulations

The steps involved in the weak formulation of differential equations arc described
with the aid of three model equations: (1) a sccond-order equation in onc dimension,
(2 a fourth-order equation in one dimension, and (3) a second-order cquation in twe
dimensions. These equations are quite general and they arise in a number of ficlds in
engineering and applied sciences. Most of the ideas in developing a weak form are
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presented in connection with Model Equation 1. Model Equation 2 is used to illustrate
the weak form development for a higher-order equation, and Model Equation 3 is used
to extend the ideas to two dimcnsions.

Modef Equation 1 Consider the problem of finding the function u(x) that satisfies
the differential equation
d

m
e Y b eou—f=0  forO0<x <L, a,:qa
dx dx

and the boundary conditions

du

— P, 7.117b
a ( )

wi{()) = ug,
x=AL

where ¢ = a(x), ¢ = c(x), f = f(x), ug, and P are the data (i.c., known quantities)
of the problem. Equation (7.117a) arises in connection with the analytical description
of many physical processes. For cxample, conduction and convection heat transfer
in a plane wall or fin (1D heat transfer), flow through channels and pipes, (ransversc
deflection of cables, axial deformation of bars, and many others. Table 7.2 contains a
list of several field problems described by (7.1174) when ¢(x) = 0. The mathematical
structure common to different ficlds is brought out in this table, Thus, il we can develop
a numerical procedure by which Eq. (7.117a) can be solved for all physically possible
boundary conditions, the procedure can be used to solve all field problems lsted in
Table 7.2, as well as many others. This fact provides us with the motivation to use
Eq. (7.2) as a model second-order cquation in one dimension. The motivation for
the development of the weak form and a step-by-step procedure for the weak [orm
development are discussed next.

In the Ritz method, we seek an approximate solution to Eq. (7.1174) in the form

N
Un(xy =Y ;b (x) + dolx), (7.118)

=l

and determine the unknown parameters ¢; such that Eqs. (7.117a) and (7.117h)
are satisfied by the N-parameter approximate solution {/y. For example, suppose
that . = 1, @ = x,¢ = l,ug = 1, f = 0, and P = 0; then we could take
N = 2 and write the approximate solution of (7.117a) in the form (¢, = x2 - 2x,
dr=x7 3%, = 1):
e lly = n_m....m — M(.nulTG.ﬁhm —-3x)+1,

which satisfics the boundary conditions (7.117b) of the problem for any values of ¢
and ¢7. Then the constants ¢, and ¢z must be determined such thal the approximate
solution Uy satisfics Eq. (7.117a):

d du
X

B = ,
dx \ dx o @
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Table 7.2 Some examples of second-order equation (7.117a) in one dimension:
d du
- A:Jv..l% for() < x < L

dx \ dx
du
EBC:  u{0) = uyq; NBC: — =F
dx x=L
Primary Source Secondary
Variable Coefficient" Term Variable
Field i a f P
{. Cables Transverse T Distributed Axial load
deflection vertical force
2. Bars Longitudinal EA Distributed Axial load
displacement axial force

3. Heat Temperature k Internal heat Heat flux

transfer generation Heat

. . !
4. Pipe Hydrostatic 1280 Flow source Flow rate

fi

flows pressurc
5. Viscous Velocity 1 Pressure Stress

flows gradient
6. Sccpage Fluid head & Fluid flux Flow
7. Electrostatics Electrical € Charge Electric

density flux

AE = Young's modulus; A = area of cross section; D) = diameter of the pipe; & — thermal luctivity;

= viseosily: T = tension; £ = permeability; ¢ — dielectric cony

in some sense. If we require Uy to satisfy the above equation in the exact sense, we
obtain

dUy d*Uy )
s m e U = =26 — 1) = 3C2(3% — 1) — 201x — Geax”

+ ¢y Tm —2x)+ _n_w_“\.«w —3x)+1=0.

Since (his expression must be zero at all x, the coefficients of the various powers of
x must be zero:

1+ 2c; + 3¢ =0,
—(6c1 +362) = 0,
) — 9 =10,
cy =10,
The abuve relations are inconsistent; hence there is no solution Lo the equations. Tf

we were able 10 {ind a unique solution to these equations, then Uy = ¢ ?n —2x) 4
ca(x? — 3x) -+ 1 is the exact solution of the problem. It is not always possible for
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arbitrary data of the problem (o lind the ¢xact solution. An alternative is that we
may require the approximate solution Uy to satisfy the differential equation (a) in a
weighied-integral sense,

i
\. wix}Rdx =0, (b)
o

where R is the residual (i.e., error) in the differential equation,

dU 12t
=2 LUy 20,

and w(x) is a [unction, called the weight funciion, which is introduced to provide
as many independent relations among ¢; as there are unknown parameters ¢; (j =
1,2, ..., N). This is accomplished by selccting N independent functions for w(x).
For example, if we take the two choices w{x) = 1 and w(x) = x, which are linearly
independent, we ohtain

I .
0= \ 1+ Rdx — (1 + 2¢1 + 3¢2) + 2(—6¢1 — 3¢2) + Ser — 9¢2) + Lz,
{

1
0= \ x-Rdx = %C +2¢y + 3c2) + mmlmﬁ —3e2) + TE — Q) + “”:.‘.u‘
0 - ) :

or

w&;wmquﬂr w...,._l_.%nmr."w Anu
Thesc equations provide two linearly independent relations for ¢; and ¢ that can
be solved 1o obiain unique solution, ¢; = 222/23 and ¢; = —100/23, and the

approximate solution U3 (x) becomes
Us(x) =1 (33 —20) e (x® 30 1= 22 —20) - 3 -30+1. ()

Thus, intcgral statements ol the type in (b) provide means for obtaining as many
algebraic equations as there are unknown coefficients in the approximation, There
are several variational methods, in addition to the Ritz method, in which approxi-
mate solutions of the type 1t & 3" c;j¢; + ¢ arc sought, and the cocfficients c; are
determined, as shown above, using an integral statement. These methods differ from
each other in the choice of the weight [unction w(x) and the integral statement nsed,
which in turn dictates the choice of the approximation functions ¢; and ¢g. For the
moment we deal with the Ritz method of approximation.

As discussed above, the necessary and sufficicnt number of algebraic relations
among the ¢;’s can be oblained by recasting the differential equation (7.117) in a
weighted-integral form:

h aﬁ
od\ =_€|Iamm+§1.xg.f Q:s
Ju dx dx
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where w(x} denotes the weight function, which for the momenl is arbitrary, For
w(x) = Uy (x) and each independent choice of w(x), we obtain an independent alge-
braic equation relating all ¢;. A total of N independent equations are required to solve
for the N paramcters ¢;. When a weighted-integral statement like Eq. (7.119) is used
to oblain the N equations among ¢, the method is known as the weighted-residual
method, and it will be discussed in Section 7.5. Note that the use of Eq. (7.119) pre-
cludes that Uy (x) satisfies a!/ specified boundary conditions and is differentiable as
many times as required in the differential equation.

To weaken the continuity (i.e., dilfcrentiability) required of Uy (x) and therefore
of ¢;(x), we trade the differentiation in (7.119}) from i to w such that both i and
w are differcntiated equally—once each in the present case, The resulting integral
form is tcrmed the weak form of (7.117). This lorm is not only equivalent to (7.117)
but it also contains the natural boundary conditions of the problem, and therefore
Uy (x) need not satisfy the natural boundary conditions. The three-step procedure of
constructing the weak form of (7.117) is discussed nexit.

The first step is to multiply the governing differential equation with a weight
[unction w and integrate over domain (0, L), giving Eq. (7.119). The second step is
to trade differentiation from u to w, using integration by parts. This is achieved as
follows. Consider the identily

w d ﬁ& i d du _ dw du
—w]—tla— || =—— [ wa- a ,
dx \ dx dx dx dx dx

(7.120a)
which is simply the product rule of differentiation applicd to the product of two
functions, a(du/dx) and w. Integrating this idenlity over the domain, we obtain

.\,, L d du d \.r d du e+ L dw du ;
— wl|—[a— X = —_ i — | dx — —dx
o dx \ dx Jo dx e dx o o “ dx dx @

= — | wa- a——dx. (7.120b)

du _rm \,b dw du
dx Jy 0

Substituting (7.120b) into (7.119), we arrive at the result

-L
dw du !
0= \ a ‘ewu —wf jdx —jw- €u (7.121)
Jo

dx dx a% 0 )

The third and last step is to identify the primary and sccondary variables of the
variational (or weak) form, This requires us to classily the boundary conditions of
each differential equation into essential (or geometric) and natural (or force) boundary
conditions. The classification is made uniquely by examining the boundary term
appearing in the second step of the weak furm development, namely, Eq. (7.121):;

du*

Ww-a— .
dx |p
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As arule, the coefficient of the weight function in the boundary expression is called the
secondary variable, and its specification constitutes the narural or Newmann boundary
condition, The dependent unknown in the same form as the weight function in the
boundary expression is termed the primary variable, and its specification constitutes
the essential or Dirichlet boundary condition. For the mode] equation at hand, the
primary and secondary variables are

u and a—=0.

Next, we denote the secondary variables at the end points by some symbols:

dit e
-0 —=la—1]1|. O =la— = P. (7.122a)
QC dx o g ilx I

With the notation in (7.)22a), the variational form becomes

;.
cl ,\ m&|ﬁcah +__.4.EIE_H&HISASQQ.E?uumvh. Q.mmmg
] dx dx

Now is the time to discuss the conditions on the weight function w(x). Clearly,
it should be differentizble at least once (like u(x) is). The Ritz method uses the
wealk form, with w = ¢; to obtain the ith equation of the set of N rclations among
¢;’s. Thus, we require w(x) to salisly the homogeneous form of specified essential
boundary conditions (i.e., to belong 1o the sct of admissible variations). In the present
case, w{x) should be once differentiable and vanish at x = 0. Hence, the final weak
form is

h
ol.\ n&|€&|z.+nﬁx IE,....&,HIS”D»F ﬁ:m.‘s
0 dx dx
This completes the three-step procedure of constructing the weak form. The wealk
form in (7.123) contains two types of expressions: those containing both w and «; and
those containing only w. We group the former type into a single expression, called
the hilinear form:

H.ah.
m?:_zu m\, ahm +nS:kH. ﬁq.._m.auv
0 dx dx

We denote all terms containing only w (but not u) by /{(w), called the linear form:

L
I{w) = \, wfdx +w(L)P. (7.124b)
c 1
The statement (7.123) can now be expressed as onc of finding # from the set
of admissible functions (i.e., differentiable at least once and satisfying the essential
boundary conditions) such that the variational problem

B(w, u) = I(w) (7.125)
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is salisfied for all w from the set of admissible variations. As seen before, the bilinear
form results directly in the coefficient matrix, while the linear form gives rise to
the right-hand-side column vector of the Rilz equations. Since B(-, -) is symmetric,
the functional associated with the variational problem (7.125) is given hy Eq. (7.53)
(which represents the total potential encrgy in the case of bars or cables):

1
Tw) = mmﬁa. u) — 1)
Liag fde\® ¢ 2 L
|\m a\ar) T &Th wf dx — w(L)P. (7.126)

The weak form development up to Eq. (7.125) is valid even for the case in which
the coefficients @ and ¢ are functions of the dependent variable i, making the problem
nonlinear. In that case, B(w, u) will be no longer a bilinear form and the Tunctional
I (1) may not exist. However, to use the Ritz method onc needs only the variational
statement (7.125), which always exists.

Model Equation 2 Hcre we consider a fourth-order differential equation of
the form

— EH_,__‘,_ +elx)u = f, O0=<x<L, (7.127)

‘We will not be concerned with any specific boundary conditions, as the weak form
development naturally leads to the classification of the variables into primary and
secondary type, and their specification constitutes, respectively, the essential and the
natural type. This equation arises, [or example, in connection with the bending of
straight beams, where u(x) denotes the transverse deflection, b(x) = E{x)/(x) the
bending nigidily, ¢(x) = k the foundation modulus (if any), and f(x) the distribuicd
transverse load.

The first two steps in the development of the weak form of the equation are sum-
marized below. Nole that in this case we must transfer two derivatives to the weight
function so thal both w and u are required to have the same order of confinuity (or
differentiability).

Step 1:
L 72 2
d du
0= V5 b ; dx. 7.128
.\_% we) da? \ dx? bea —f|dx ( )
Step 2;
Lt dw d d?u d du £
_ —_—— | h— W — o — —
0 '\.c dx dx \"dx? Fewn—wf |dx+|w dx @ng.m o



252 DIRECT VARIATIONAL METHODS

——cwu—wf | | b— —|—h— .
dx? n_.nm._.}:: wf Jdxtw dx L__\?e.m 0 dx »%Hm 0

(7.129)

\.h d*w d?u d du
= b
1]

It is clear from the boundary expressions that the secondary variables are

d du d*u

4 (e pae 7.130a
dx \ dx? dx? ( )

In the case of beams they represent the shear foree and bending moment in the beam.
‘I'he primary variables are [w — u and (dw/dx) — (du/dx)]

du

(7.130b)

i, —.
dx
Step 3: Denoting the shear forces and bending moments at the two ends of the beam
as (proper signs arc inserted to make all of the O7s and M’s have the negative sign in
the weak form; this also happens to be the correct definition of the bending moments
and shear forces on the left and right ends of the beam):

2 Q.m
!m _w\.mm.lﬁu.m. = QG» Mu|~“ = Eﬁ.
de \ dx?]]._g dx? | g
, L (7.131)
d d*u d=u
—— | bh— = {J;, —b = Mj.
dx uahmv o Q. dx? ] g !
Then Eq. (7.129) takes the final form
L 2 2
T*w d
oﬂ,\. vmly.c..l.h.foéxla.wv&a. ~w{ Qg — w(L)OpL
0 dx? dx?
e dw Mo - I«__.E M. (7.132)
dx /|, dx /1,
The bilinear form, lincar [orm, and functional for the problem arc
A nmm Qm
B(w, u) = \c b _\_G.H % +cwn Jdx,
L dw dw
I(w) = ,\ wfdy +wQp+wl)Qr+{—— || Mo+ |—— 1] Ms,
0 dx /g dx J|;
LIy ra2u\* ¢ 2
I = \.c s\ - .Nt — fu|dx _
du | |
— () Qo — u(L)Qr — (=5 )| Mo— (55 )| M. (7.133)
dx J dx J|,

Tn the case of beam bending, T (1) is nothing but the total potential energy IT{(u).
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The weight function w(.x) is required to be twice differentiable and to vanish at
the points where u and Lo du/dx are specified. Equation (7.132) can be specialized
to any beam with specific boundary conditions and loading.

Model Equation 3 Lastly, we consider the problem of determinin g the solution
u(x, ¥) to the partial differential equation

A du ] A
—a—_)_
ax \'ax) ey \ oy

+ g = f in R (7.134)

in a two-dimensional domain R. Here ag, ay, a3, and [ are known functions of posi-
tion (x, y) in R. The function « is required to satisfy, in addition to the differential
equation (7.134), certain boundary conditions on the boundary § of R. The vari-
ational formulation to be presented tells us the precise form of the essential and
natural boundary conditions of the equation. Equation (7.134) arises in many ficlds
of engineering, including in 2D heat transfer, stream function or velocity potential
formulation of inviscid flows, transverse deflections of a membrane, and torsion of a
cylindrical member,

The three-step procedure applied to Eq. (7.134) results in the following equations:

Step 1.
0- .\ w ki a dur d du .
A ar \M5s ay Smﬂ +agu — f |dxdy. (7.135)
Step 2:

.\, m___:m: + :Em:
== £y - —_ . _ "
p Var g T 3y Fagwi —wf Jdxdy

,wm m: ma __.
| Ehﬁlm. .|‘I_ ...
g 135 :+a~ 2y ny | ds, (7.136)
where we used integration by parts [or the Green—Gauss thcorem, Eq. (2.89)] to

transfer differcntiation to w so that both # and w have the same order derivatives.
The boundary term shows that « is the primary variable while

dit , du
dy—ny +az —n
ax mmu, ¥

is the secondary variable.

Step 3: The last step in the procedure is to impose the specilicd boundary condi-
tions. Suppose that u is specified on portion Sy and the natural boundary condition is
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specified on the remaining portion S of the boundary:

dn du N .

w=1ii ondy, aj .ml;». +apny =g onS. (7.137)
ax dy

Then w is arbitrary on Sy and equal to zero on ;. Consequently, Eq. (7.136) simpli-

lies Lo

QH\ SmE ma 1 aumﬁm‘:r_.a:rc:l&% ac&wl\. Ema..,..mqpuwu
IR dx dx dy ay S

The bilinear form, lincar form, and functionals are

dw du dw du
= - - —— 4 agwu | dxdy, (7.139a)
B(w. u) \x asoos +az ay By 0 )
H{w) = \ wf dxdy - \ w§ ds, (7.139b)
R &
a8 2 2
1 du du 3
= 2l — ) +a dxdy
_.._Tau M«\_,w [<3 ax o .._.wu“ i ¥
\ x%&aa..el\, guds. (7.139¢)
o R 5

Once again, /(i) represents he total potential energy in the case of a membrane
problem.

7.4.2 Ritz Approximations

The Ritz method can be applied directly to the weak forms (7.124), (7.132), and
(7.138)—or into the variational problem

B(w, u) = {(w). (7.1400)

Here we consider the case in which B(-, -) is a bilincar form. Substituting
N
umUy=) cij tdo.  w=di (7.141)
i=l
inlo Eq. (7.140) to obtain the ith equation

j=12...N, (7.142a)

where

aij = B(i, 9;). bi = l{¢i) — Blgo, di). (7.142b)

i
i
H
1
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The specific expressions of A;; and b; of each model equation can be written using
the respective bilinear and linear forms. For example, for the third model equation,
we have

I m?m? mﬁ,m@__. .
a: |\m Eﬂﬂ +S;®m|u_ +apgid; | dxdy,

A 9 8¢, 8 X
bi = \ &if Eﬁl&. : 3%@ - :%..@:v dxdy+ | ¢igdS.
R dx dx dy dy 5
(7.143)

Once ¢; and ¢y are selected, subject fo the conditions stated in Section 7.2, the
cocfficients of matrix [A] and column vector {6} can be computed, and the linear
algebraic equations in Hq. (7.142a) can be solved for the Ritz coefficients. We consider
specific examples next.

Example 7.9 We wish to solve the partial differential equation (Laplace’s equation)

8 + u -0
ax? " ayr)

in0< {x,y) <1, (7.144a)
subject to the boundary conditions (see Fig. 7.8):

u=20 onx=0,1 andy =0,
(7.144h)

u=sinmgx ony=1.

The weak form of the equation can be obtained as a special case from Eq. (7.138)
byseting f =0, ey =ax =1, ag=0,and $3 = 0 (5, = 5):

_ _ - " "
déu du  ddu du
'\q,u h dx ix * dy ay e ( )

= sin we

= =0
1.0

x

i u=1{- &v_

L0

Figure 7.8 Domain and boundary conditions of the problem in Example 7.9.
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The Ritz equations are given by Eq. (7.142a) with a;; and b; given by
Uorl sag; dgp;  dy d¢
o Joo \ dx dx dy dy

ﬁﬁ%;?%;&
x.HI |.. .‘T&. q._ﬁm
4 \ﬁ,v ,\m dx odx : dy dy x4y { )

Next we select ¢y and ¢ for the problem. The function ¢y is required to satisfy
the boundary conditions in Eq. (7.144b) because all of them are of the essential type.
The following choice for ¢y mects the conditions:

ty = ysinmx. (7.147a)

The functions ¢;(i = 1, 2,...,nr) arc required to satisfy the homogenous form of
Eq. (7.144b) and to be linearly independent. We chonse

¢ = sinmTxsinmy, 7 — sinmwx sin 2n y, ¢y = sin2wxsinmy, cic.

(7.147h)
From Eqg. (7.146) we obtain
2
x? o
aj =17 _T 7 (ic., [A]is diagonal),
0, ifi #J
(7.147¢)
_z ifi=1
by — o il ,
0, HE Al
Hence, the Ritz solution becomes {¢; = —1/7 and all other ¢; = O):
Uilx, y) = cigi(x, y) + dolx, ¥)
| |
= ysinmx — —singxsingy = sinwx [y — —sinzy |. (7.148a)
T s
The exact solution ol Eq. (7.144a) is given by
) sinwxsinhmy
ulx, y) = ———— (7.148b)

sinh

ixample 7.10  Consider the following pair of coupled differential equations, which
arise in conncction with the Timoshenko beam theory (see Exercise 6.13):

3 P
s (T )| +g= (7.149)
dx dx

2 [ db, 3

L (PN WY (L (7.150)

dr \ dx oy
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where § is the shear stiffness (5 = K GA; K, is the shear correction coefficient,
(G the shear modulus, and A the area of cross section), D the bending stiffness, wa
the transverse deflection, ¢, the rotation, ¢ the distributed transverse load, and [y
and [> are mass incriias. Assume that D, 8, fy, and /- arc constants. The “specificd”
boundary conditions are ol the form (as will be clear from the third step of the weak
form)

Oey Dipy
_ c%ﬁ — My PM; — My,  (1.151a)
ux J o X Jx=L
L dwg duy
—s(04e) =0 S(S20 4 ) =0 (151D)
dx x=0 dx r=L

We wish to derive the Ritz equations of the problem,

First we develop the wealk form of the equations using the three-step procedure.
Multiply the first equation with weight function vy and the second one with weight
function v and integrate over the length of the beam to obtain

. 2
a dwn -
0= g2 1 d>
.\c U ax ax o) Tl ar? t
£ duy f dwg 92 wy
- —_ R — ] .H_ -
Jo " ax \ax +§v Fug = loviTgg pay
m L
1S m_—lu + ﬁu.ﬂ m
dx 0
1. . . 2
dvy { dug a- g
= —5 . / d.
,\._c — ax \ ar Py | 1 wg — Tow o x
+ Qv (0) 4 Qovi (L), (7.152a)
L 3 g, D P
0 iy ] i
0= — | D— =5 — e | — la—= 2 dx
.\m " ax ix ax +é 27 | ¢
L. . , 2
din g, dng gy
- —D - 4 — Dy tdx
&,,.v pie Svz| ==+ W73 dax
, I
1eh
+ %%,
dx 0
L . . . 2
duy d d
H\ _poni Pr Sus wo b wmxum b dx
0 Ax dx dx ar?
+ My (Q) + Mawa(L). (7.152h)

Note that integration by parts was used such that the expression wg,y +¢y is preserved,
as it enters the houndary term representing the shear force. Such considerations can
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only be used by knowing the mechanics of the problem at hand. Also, notc that the pair
of weight functions (v, v2) (from a product space of admissible variations) satisfy
the homogeneous form of specified essential boundary conditions on the pair (wg, ¢x)
(with the correspondence v) ~ wg and v ~ ¢,). Writing the bilincar form for the
problem is a little involved; one may treat # = (wy, ¢, ) and v = (v, v2) as vectors
(from a vector space} and then write the bilinear form B (v, #).

We assume Ritz approximations of the form

M N
wolx, ) % 3 diOY; () + Yol ¢elr.) =Y cp(08;(x) +bo(x),
J= =1
! (7.153)

and derive the ordinary differential equations involving the time derivatives of d; and
¢;. From weal forms (7.152a,b) it is clear that all of the specified boundary conditions
are of the natural type. Hence yo(x) = 0 and dp(x) =0

Next we substitute the approximations into the weak forms for wo(x) and ¢, (x),
and v (x) = ¥ (x) and va(x) = 0;(x), and obtain

L dlr; vy 2 d*d;
OH.\,C —5— M”LnbufM”ﬁ;mk_ + g — lowy M 7 __5 dx

dx
j=1 -__

+ Qi (0) + Qo (L)

m "

|MU\¢:..__“&_ Mmc_nu MEC
i=1

@.N + F!, (7.154)

I i m i
: do; di; dyr; "
0= _p== S S6: . o
[P (G| -0 | o5y + o,

j=l i= j=
" —uﬂm.ﬁ\
— bt T L0, | | dx+ M6,0) + Ma0,(L)
J=
" , NF—I 5
2 Cijd; - M‘,bc: Muac — + R, (7.155)
j=1
where
L
dv; vy -
Ap=] s= gy, By=| sy,
U= )y “ax ax T % Sz Y dx

F <L
,H‘\o Tyridry dx, Fl= | igdx + Q19 (0) + Q2 (L),

0
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L dir; L dO; d6;
= | so;—Ld Dij = D L4 80,0, Ydx. (7.156
.\c "dx o M ,\ﬁ.u dx dx el Al .A )
12
ih. = % b8 dx, F? = M 8;(0) + Ma0; (L).

Tn matrix form, we can write this as

F_E_L oy M| @ T wEn (7.157a)

or
(KA} + [M]{A) = {F). (7.157b)

In closing this section, we make a couple of additional comments on the Ritz
method. In developing the weak form, one should bear in mind that the boundary
terms obtained [rom the integration by parts should be physically meaningful. The
variational form used for the Ritz method does not have to be a quadratic functional,
but it should be a form that includes the natural boundary conditions of the problem.
Therefore, the Ritz method can be applied even Lo nonlinear problems. Of course, the
resulting simultancous algebraic equations are nonlinear and there can be more than
onc solution to the equations (see Example 7.20). The selection of approximation
functions becomes increasingly difficult with the dimension and shape of the domain,

7.5 WEIGHTED-RESIDUAL METHODS

7.5.1 Introduction

As discussed earlier, weighted-residual methods are those in which we seck approxi-
mate solutions using a weighted-integral statement of the equation(s). To fix the ideas,
consider a boundary-valuc problem described by the operator equation

Ay = f inf2, (7.158a)
subjected to boundary conditions
Bi(uy—i on I'p, Ba(u) =g on Ty, {7.158b)

where A is a linear or nonlinear differential operator, i is the dependent variable, [ is
a given force term in the dormain §2, 8, and B are boundary operators associated with
essential and natural boundary conditions of the operator A, and i and § are specificd
values on the portions I"y and-1" of the boundary T' of the domain. An example of
Egs. (7.159a) and (7.159b) is given by

d du du
Af) == QMHI. , Bi{u) = u, wwwm:w\an:ﬁ
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1"y is the point x = 0, and T’ is the point x — .. The weighted-integral statement of
Eq. (7.159a) is

0= ,\. wix) [Au) — fldx. (7.159)
o

We seek a solution Uy that satisfies the specified boundary conditions (7.158h) such
that the above equation is also satisfied. A complete discussion of the procedure will
be given shortly, ) .

The weak form of the operator equation (7.158a) can be constructed whenever the
operator A permits the use of integration by parts [or gradient/divergence theorems
in Eqgs. (2.89a,b)] to transfcr part of the differentiation from the dependent variable
u to the weight function w and incorporate the natural boundary conditions of the
problem. In general, the weak form can be constructed il the operator A is expressible
as a product of two operators:

A= T*aT) (7.160a)

where operator T is called the adjoinr of T and is related to T" by

,\.q,::: dx = \,:H*n:w dx .*G%bﬁu?u&h (7.160b)
2 Ja r

for all i and v. Here $2 is domain with boundary I". The boundary operators Cy and Cy
depend on the operator A, For example, when A = —(d/dx)|a{du/dx)], operators
T, T* Cy, and C; are given by

d d
T="\, T'=-2\ =1 =1l
dx dx ! 2
A= -VI= V. V, then we have [« must be a scalar and v a vector function of

position in Fq. (7.160b)]:
T =V (grad), T = -V . (div), Ci=1, Co =i .

The weak forn of Eq. (7.158a,b), with A given by Eq. (7.160a), can be derived as
{ollows:

0= \, wiA(u) — fldx
I

I

.\, w T.*?_ﬁﬂ:uv - H,_ dx
o

\ [T{uw)(aT (u)) — wildx - *. Bi(w)Ba(u) ds,
S8 JT _
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where C) — By and By = Ca(aT (). Since By (w) — (}on portion I'y (where By (i)
is specified), and Bz(n) = g on Ty, with ") + T’ = T, we have

0= [aT(u)T(u) — wfldx — Bi(w)g dS,
JE2 2
which is the weak form we set to derive.
Returning to the weighted-residual methods, we seek an approximate solution of
u in the form(as in the Ritz method)

N
Un(x) = cjdi(x) + golx). (7.161)

=1

where the paramcters ¢ are determined by requiring that the residual in the governing
equation due to the approximation

N
Ry=A{D cjpj+do]|—f#0 (7.162)

=t

be orthogonal to a set of N lincarly independent weight functions 1 (x), which in
general are differcnt {rom the approximation functions ¢ :

%fsxz? leh ) Frdx =0,  (i=1,2,...,N). (7.163)
i

Equation (7.163) is the same as that obtaincd by substituting approximation (7.161)
into the weighted-residual statement (7, 159). Tt provides N lincarly independent equa-
tions for the determination of the parameters ¢;. If A is a nonlinear operator, the
resulting algebraic equations will be nonlinear.

The approximation functions (¢a, ¢b) and weight functions +; in a weighted-
residual method must satisfy the following conditions:

1. ¢;(j = 1,2,..., N)should satisfy three conditions:

(a} Each ¢; is continuous as required in the weighted-residual statement; i.e.,
¢ should be such that Uy yiclds a nonzero value of A(Uy).

(b} Each ¢; satisfies the homogeneous form of all specified (i.e., essential as
well as natural} boundary conditions.

(¢) The set [¢;] is linearly independent and complere.

2. ¢ has the main purpose of satisfying afl specilied boundary conditions asso-
ciated with the equation. It is necessarily zero when the specified boundary
conditions are homogeneous.

3. The sct {y} should be linearly independent. (7.164)
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There are two main differences between the approximation functions used in the
Ritz method and those used in weighted-residual methods:

1. Continuity. The approximation functions used in the weighted-residual meth-
ads arc required to have the same differentiability as in the differential equation,
whereas those used in the Ritz method must be differentiable as required by
the weak form.

2. Boundary conditions. The approximation functions used in the weighted-
residual method must satisfy the homogeneous form of both geometric and
force boundary conditions, whereas those used in the Ritz method must satisfy
the homogeneous form of only the essential boundary conditions, since the
natural boundary conditions are already included in the weak form,

Both of these differences require ¢; to he of a higher order than those used in the
Ritz method. ’

Various special cases of the weighted-residual method differ from each other due to
the choice of the weight function, ¥;. The most commonly used weight functions are:

The Petrov—Galerkin method: Wi 7 ;.

Galerkin's method: i = .

(7.165)
Least-squares method: W = Algi).
Collacation method: W = a(x — x;).

Here &(-) denotes the Dirac delta function, Although the least-squares method is listed
as a special case of the weighted-residual method here, it is based on the concept of
minimizing an integral statement. In general, the least-squares method is rot a special
case of the weighted-residual method. These remarks will be discussed in more detail
below. In addition to the methods listed above, there are other variational methods
(methods in which the unknown parameters ¢; are adjusted such that the governing
equations are salisfied in a certain sense). These include the subdomain method and
Trefftz method. These methods will also be discussed brielly in this chapler.

7.5.2 Galerkin's Method

The Galerkin method is a special case of the Petrov-Galerkin method in which the
approximation functions and the weighted funclions are the same (¢; = ;). Hence,
the Galerkin integral is given by

. Ry (x, {c} {¢), dx=0, (i=12,...,N) (7.166)
2

If the Galerkin method is used for second-order or higher-order equations, it would

involve the use of higher-order coordinate functions and the solution of nonsymmetric

equations.
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The Ritz and Galerkin methods yield the same set of algebraic equations for the
following two cases:

1. The specified boundary conditions of the problem are all of the essential type,
and therctore the requirements on ¢ and ¢ in both methods are the same.

2. The problem has both essential and natural boundary conditions, but the
coordinate {unctions used in the Galerkin method are also used in the Ritz
method.

7.5.3 Leasi-Squares Method
The least-squares method is based on the idea of minimizing the integral of the square
of the residuai:
minimize I (cy, c2,...,en) = \y .Nw_.@, {c), (@), f)dx. (7.167a)
o
We obtain (from 81 = 0)
" AR
0= [ 2N Ray(x, tel 1), ) dx, (7.167b)
Jg OCE

which, when A is a linear operator, becomes
0= V\ Al YRy (x, {ch {0} ) dx. (7.167¢)
Q

Clearly, Bq. (7.167¢) is a special case of Eq. (7.163) with ¢ = A{¢). The least-
squares method is more suitable for first-order equations. For cigenvalue problems
and time-dependent problems it 1s not suitable, as shown below. On the other hand,
the least-squares method is the only other method, in addition to the Ritz method, that
is based on the minimization ol a functional. The least-squares mcthod also results in
a positive-definite coefficient matrix.

7.5.4 Collocation Method

In the collocation method we require the residual to vanish at a selected number of
points x' in the domain:
Ry {c} o). =0, (=12...N), (7.168a)

which can be written, with the .:n:g of the Dirac delta function, as

\ S(x—XRy(x, (¢} (@), Hdx=0, (G=12....N).  (7.168b)
£
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Thus, the collocation method is a special case of the weighted-residual method (7.163)
with yr; (x) = §(x — x'). In the collocation method. one must choose as many collo-
cation points as there are undetermined parameters. In gencral, these points should
be distributed uniformly in the domain. Otherwise, ill-conditioned equations among
¢; may result.

7.5.5 Eigenvalue and Time-Dependent Problems

Tt should be noted that if the probiem at hand is an eigenvalue problem or a time-
dependent problem, the operator cquation (7.158a) takes the following alternative
forms:

Eigenvalue Problem
A() = 1C ) = 0. (7.169)
Time-Dependent Problem
Acu) +AQ@) = flx, 0. (7.170)

In Eq. (7.169), A is the cigenvalue, which is to be determined along with the
eigenvector u(x), and A and € are spatial differential operators. An example of the
equation is provided by the buckling of a beam column

d? d’u d*u
L ey pSt
&.—.m A?u + scﬂm

where u denotes the lateral deflection and P is the axial compressive load. The
problem involves determining the value of P and mode shape u(x) such that the
governing equation and certain end conditions of the beam are satisfied. The minimum
value of P is called the critical buckling foad. Comparing the above eguation with
Eq. (7.169), we sce that

) oJ? d*u d’u
A =—= | EI , A= P, C - ——.
@) dx? dx? @) dx?

InEq. (7.170), A is a spatial diffcrential operator and A, is a temporal differential
operator. Examples of Eq. (7.170) are provided by the equations of heat transfer in a
plane wall and axial motion of a bar, respectively:

du d it
v —— |k = flx,7),
reogr ~ iy Koy ) = F00
R d du
—_— EA = fix, 1)
P ax \FMgy ) =10
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In the Orst equation, i denotes lemperalure, o the density, e, specific heat at constant
volume, k the conductivity, and [ is internal heat generation, Clearly, we have

it d du
A} = poy—, Alu) = k
) = pey o (1) ax e
In the second equation, i denotes the axial displacement, p the density, £ Young’s
modulus, Aq area ol cross section, and f body force per unit length. In this case,
we have

mm . .
A) = — u d .9:

—_— Aly) = — EA
12 W0 =4 Yax

Application of the weighted-residual method te Egs. (7.169) and (7.170} follows
the same idea, i.e., Eq. (7.163) holds, However, two comments arc _.: order.

1. In the case of time-dependent problems, the integral in Eq. (7.163) is still
over the spatial domain and the weight (unction v is a function of the spa-
tial coordinate only. Thus, Eq. (7.163) leads to a set of ordinary differential
equations in time among ¢;(7). These need to be further approximated using
time-approximation schemes.

2. In the case of the leasl-squares method, the question arises as to what should
be the weight function ;. Let us examine the least-squares method first for the
linear eigenvalue problem (i.e., A and C are linear operators). We have

0= &.\ R dx, Ry = A(Un) — AC(Up)
£

= m\ [A(g) —AC() Ry dx, (i =1,2,...,N)
Fhe]

N
=22, ,%Ea__u|i.,§:?€_h.wL,Dﬁ..;% ¢,

=1

Clearly, the eigenvalue problem becomes quadratic in A, which is not desirable
froin a computational viewpoint.
In the case of time-dependent problems, we have

0 um,\ R, dx, Ry = A(Un) + A(Uy)
2

N .
a
n% iﬁ_,:M??,;;Qv Ry dx, (i=1,2,....N).

k=1 t

which is also complicaled. Thus, the least-squares method Ieads to complicated
systems of cquations for eigenvalue or time-dependent problems. An allernative
is to use ¥ = A{¢h; ) in all cases. This avoids the problems seen above.
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It is possible to develop the so-called space-time approximations, i.¢., to usc the
variational methods, treating time as an additional coordinate. It is found that such
approaches are complicated, and they are not used in practice. Therefore, we will not
consider the space-time approximations in the present study.

7.5.6 Equations for Undetermined Parameters

Here we develop the discrete equations for the equilibrium, eigenvalue, and time-
dependent problems under the assumption that A is a lincar operator, as is the case
with most problems considered in this study. The equations arc valid for all special
cases of the weighted-residual method except for the least-squares method. They are
also valid for the least-squares method if one accepts the use of A(g;) for v, which
is certainly true for equilibrium problems. For eigenvalue problems we assume that
all boundary conditions are homogencous and therefore ¢g = 0.

Equifibrium Problems We have

N N
AD cipi+do| =D ciAl@) + Aldo), (7.171)

J=1 j=l

and Fq. (7.163) for the equilibrium cquation (7.158a) becomes

N
> %%E&:ﬁ ci— | wilS — Algo)ldx =0
e £

or
N
Sae;—bi=0 G =1,2,....N),  [Al{c) = b}, (7.1722)
J=1
wherc
aij H\ i Al;) dx, by = | yilf — Algo)l dx. (7.172b)
2 ]

Note that a;; is not symmetric in general, even when ¥ = ¢; (Galerkin’s method).
It is symmetric in the least-squares method because ¥y = A(¢y). Also, if (a) A is an
operator of the form in Eq. (7.160a), (b) ¥; — ¢, and (¢) ¢; satisly the homogencous
form of specified essential and natural boundary conditions, il can be shown that

s,_ﬁ,u\aqa%ﬂ@b%. sn\sﬁ%%+ g Gigds. (7.172¢)
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Eigenvalue Problems Torlinear eigenvalue problem of the form in Eq. (7.16Y),
we have

N .
M .\m YrilA{d;) — AC(¢)dxjc; =0
=

or
N
2 (i 2gi)ej=0(=12...N),  (AI-AIGD{ch=(0},  (7.1733)
1
where a;; are defined by Eq. (7.172b) and
m&lhﬂmﬁabnﬁ. (7.173b)

Note that using Eqs. (7.173a,b) for the least-squares method amounts to using ; =
A(hi)s ajj is symmetric but g; is unsymmetric,

Time-Dependent Problems For linear time-dependent problem of the form in
Eq. (7.170), we have

z
> \n%_m@:fé;_@_% |%§T§a§uc

i=t
or
__fa
MEQ& +mpAe)) =0 (0 =1,2,...,N), LAlle} + AIM A ()} = {0},
j=1
(7.174a)
where a;; are defined by Eq. (7.172b) and
miiAe;) = ,N‘.m Y Alej) dx. (7.174b)

Again recall that using Egs. (7.174a,b) for the least-squarcs method amounts to using

Y = Adgy).

7.5.7 Examples

A number of examples are considered here to illustrate the usc of various weighted-
residual methods. Equilibrium, eigenvalue, and Ume-dependent problems are
considered.
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Example 7,11 Consider the eigenvalue problem of Example 7.5 in a nondimen-
sional form [see Egs. (7.77a,b)]:

i d
Iﬁlwz"c, u(0) =0, |c.+ni..n. alx = 1.
dx
In the weighted-residual method, ¢ must satisly not only the condition ¢;(0) = 0
but also the condition %h (1) + (1) = 0. The lowest-order [unction that satisfies the
two conditions is

d1(x) = 30 — 22, (7.175)

‘The one-parameter Galerkin’s solution for the natural frequency (see Example 7.5)
can be computed using

(a)

dx? 3

] 12 10
0=rcy .\, o] ¢ + Adn dx or <
1]

which gives (for nonzero ¢} & = 50/12 = 4.167. If the same function is used for ¢
in the one-parameter Ritz solution, we abtain, as discussed in Example 7.5, the same
result as in the one-parameter Galerkin solution.

If we use the one-parameter collocalion method with the collocation point at x =
0.5, we obtain [¢(0.5) = 1.0 and amﬂ_\maﬁ = 4.0

2 1
0= e (0.5) A v ﬁ + X1 (0.5) or (=4+1e1 =0,

dx* /o5

which gives A = 4.
‘The one-parameter least-squares approximation with i = A(¢)) gives

_m u
a?m? , .... I
D”n“-\_w nhkn mN.Ilf\.—eﬁ_ mw\a Qn A hﬂ._ ov..wh._ D

which gives A = 4.8. If we use yr; = A(¢1) — A¢by, we oblain

1 &m mh_u.
0= | \\, |..ﬂ: i w(.v_ Q-|Wﬁm_ + .u..q: elx
0 N x

= (12— 4+ 16)cy, (b)

whose rools are i

rMa2=2 +1J/A45 >y — 7.6825, Ao = (L6308. (©)

Neither rool is closer to the exact value of 4.116. This indicates that the least-squares
method with ¥; = A(g;) is perhaps more suitable than ¥ = A(¢) — AC(¢i).
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Let us consider a two-parameter weighted-residual solution to the problem
Usz(x) = cir(x) + eagpa(x), (d)

where ¢ (x) is given by Eq. (7.175). To determine ¢h3(x ), we begin with a polynomial
that is one degree higher than that used for ¢;:

2 (x) = a + bx + ex” + dx?,
and obtain
() =0 — a— 0 Qm.mﬁ:._.ﬁmns =0— 264+3c+4d =Dord = w—_viwn

We can arbitrarily pick the values of & and ¢, except that they are not both equal to
zero (for obvious reasons). Thus we have an infinite number of possibilities. If we
pick b = 0 and ¢ = 4, we have d = —3, and ¢, becomes

Pa(x) = a + bx + ex? 4+ dx’ = 4x? — 3.7, (7.176a)
On the other hand, if we choose b = 1 and ¢ = 2, we have d = —2, and ¢ becomes
) =a+br+ex’+dd =x+ 22 23 = walx). (7.176h)

The sct {¢, ¢2} is equivalent to the set {¢, @2 }. Note that

Us(x) = cr1hi (%) + cagha(x)
cr1(3x — 2x%) + a4 = 3%

= 3cpx -+ (=2¢; + 4ep)x? — 3eax?,
c1h1(x) + cagn(x)
E1(3x — 2x%) + o (x + 22— 227

2(x)

Is

= (38 + E2) X - (28] + 282) x% — 2igx0.
Comparing the two relations, we can show that
¢ = ¢y —0.5¢7, 2 = 1.5¢9.
Hence, cither set will yield the same final solution for Uz (x) or A.

Using ¢ and ¢ [from Eq. (7.176a)], we compute the residual of the approxima-
tion as

d*Uy : A, &4
R=- i Ay = —¢y del -2 dx? —A(eyhy + caghn)
d*¢, A2y
ey [ == A _ - )
“ dx? ¢ )+ A dx? A2 @
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For the Galerkin method, we set the integral of the weighted residual to zero and
ohtain

d’¢r d*s

1 I
0= 1, ¢ (x)Rdx Hh x)| o T o2 T A(cidr + cag) | dx
= Kyei + Kizes — A (Myep -+ Myaes) ,
_ ! 12 ¢
:H.\ ¢2(0Rdx H\ $2(x) | =1 P.ﬁ_ -2 NM = Alcidy +eag2) | dx
o [} dx” dx

= Kaic1 + Koy — A (Marep + Maca) .
In matrix form, we have
LK l{e} — A[M {et = {0},

where

1 &uﬂ.. : .
K= I.\c i scﬂm dx, My; I% $idjdax.

First, for the choice of functions in Egs. (7.1762) and (7.176b), we have

Ed__, Ty g
dx? dx?

Evaluating the integrals, we oblain

i 2 1 10
Ki = |\ a_.a @ dx u\ Bx — 2B dx = —,
0 dx* 0 3
1 mmua_mm \r._ 2 .w
=- {x = 3x — 238§ 18x)dx = -,
K h =il A 3
- ! .:...wﬁ_ t 2 3 _ M
Ky = - \ﬁ,u 23] I dx H,\A.u (4x* —3x)Mydx = 7
1 2 1 18
Koy = l% @_NA ﬁw Iy = \. (4x* — 3-8+ 18x)dx = —,
0 dx* 0 15
N ! 2 2 4
My = \ P dx = .\. (3x — 2x)(3x — 2x7)dx = o
Jo 0 3
ﬁ _ 20,2 3 3
My = \. dpadx = \ (Bx — 229"~ 3x7)dx = £ = M,
i Jo 5
: . 2 EN T
My = \c drgprdx = .\.3 (@x? — 3P x? — 3P dx = 5
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and

1 150 35 L 28 21 1 0

15135 38 35121 17 ¢ 0

For nontrivial solution, ¢; # 0 and ¢2 # 0, we set the determinant of the cocfficicnt
malrix to zero to obtain the characteristic polynomial
1332 315 ,

675 — —— A+ —2" =0 or

— 148 +5)2 =
5 D 525 + 0, ()

which gives

Al =4.121, Ay = 25479 (&

Clearly, the value of A; has improved over that computed using the one-parameter
approximation. The exact value of the second eigenvalue is 24,139,

If we were 1o use the collocation method, we may select v = 1/3 and x = 2/3
as the collocation points, among other choices, We leave this as an cxercise to the
reader.

Example 7.12  Next we consider the transient response of the problem discussed in
Example 7.6. The governing equations are

#u 3w au .
- i ar? =1, w0, ) =0, mwl.+:Hc alx = Lforalls > 0,
i

ax?
with zero initial conditions. We use the one-parameter approximation u(x, ) ==
1 ()¢ (x) with ¢ (x) defined in Eq. (7.175).

For the Galerkin method, we obtain
d’y  d*en 4d%; 10 5

1
Ol.\c g__. Q—mﬂ____.u.w + TS ﬁ_ —1)dx or =

whose (exact) solution is (/50712 22 2.0412):
() = Asin2.04r + Beos2.04r 4 ._u

For zero initial conditions, u(x, ) = #(x, 0) = 0 [or ¢) (0) = 0 and &;(0) = 0], the

total solution becomes (A = Qand B = —1/4):
wp(x, 1) = 11 — cos2.040) (3x — 2x2). (b)
For the one-parameter collocation method with the collocation point at x = (.5,
we obtain
Qm
0=¢:05 |- (2] 4 0.5 1 or =1,
ds? Jl,s  de?
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so that
- i
ci{ty = Asin2t  Beos2t + g,
and the one-parameter collocation solution becomes

wyx, 1) = »C InomN:AwaIMp.J. (d)

Example 7.13  Consider the simply supported beam problem of Example 1____.4 . mm:.no
all specified boundary conditions are homogeneous, again we have ¢y = 0. In the
Galerkin method, ¢; must satisly the homogeneous form of all specified boundary
conditions (wg = My, = 0atx =0, Ly
d*¢;

=0, H=0 @
For the choice of algebraic polynomials, we assume a five-parameter polynomial
hecause there are four conditions in Eq. (a):

$(x) =a+bx +ex? 1 dx® text
Using the houndary conditions, we find that
a=c=0, bLtdli+el*=0  6dL+ 1212 =0.

Thus we have b = eL? and d = —2¢L. The function ¢ is given by (taking eL* = 1)

2 3
X x x

=4+ b

e\t ) ®)

Substituting the onc-parameter Galerkin approximation Wy = e¢¢; into the

residual,

d*w 24ET

R=EI L go= S — ao. (©

dxt Iz

Since the residual is already a constant (which implics that the solution is exact), there
is no need to integrate the weighted residual over the domain, By setting R. to zero
we obtain ¢ = @hn J(24E ), and the solution becomes

=S5 2 () + ()]

which coincides with the exact solution, Note that the solution obtgined is independent
of the particular weighted residual method. 1t can be shown that a onc-parameter Ritz
solution with ¢ given by Eqg. (b) also yields the same exact solution (d).

Note that the solution to this problem is symmetric about x = L /2. Hence, we
can use a half-beam model to solve the problem. In using a hall beam, we must
address the boundary conditions at x = L/2. The boundary conditions at this point
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are that the slope is zero, (dwg/dx) = 0, and shear force is zero, Hence, for this
case, the approximation functions ¢ in the weighted-residual method must satisty
the conditions
d*g; L dey; de;
alx =0 ¢ =0, — =0, andat x = =0, =0.
éi dx? “ 2 dx dx3

Obviously, the function ¢ (x) of Eq. (b} satisfics the above conditions. Another choice
of ¢; is provided by

(2 — Drx
T

Example 7.14 Another weighted-residual method that has not been introduced
formally in this study is the subdomain method. In the subdomain mcthod, we
divide the domain of the problem into as many subdomains as there are undeter-
mined parameters, ¢;, and then on cach subdomain we require the integral of the
residual Ry Lo be zero; i

¢i(x) = sin

Ry (s, {ch (@) f)dx =0, =12, N) (7.1772)
Jo;
where §; is the ith subdomain. The method ean be viewed as a piecewise application
of the weighted residual method with 4y = 1

I, ifxeq,
Vi = ifx €< (7.177b)

Q, otherwise.

Obviously, in this method, negative errors can cancel positive errors to give zero
net error (unless Ry is a positive function in £2;), although the sum of the absolute
values of the errors may be very large. The finite volume method that is popular in
fluid dynamics is based on ideas similar to the subdomain method.

As an example, we consider the beam problem of Example 7.13 (sec Fig. 7.5).
Using the half-beam model with the following two-parameter approximation:

3mx
I

. (a)

Walx) = ¢ sin W + 2 8in

we determine approximate solutions using both the collocation method and the
subdomain method.

Collocalion Method  Using collocation points atx — 7./4 and x = L /2, we obtain

4

AT 4 37 . 3w
Elfc AMV sin’ 4 + 2 - ) sin 1 go =0,
4 -
AR 3 .3
El|c Aﬂv sin = + ¢ W sin % — g0 =0,
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which yield
4 .
Emau 1/52 814421 e 1

T 1 81 || TN
or
NI 1 gLt N2 =1 gLt
] = — . 3= ————
2nt  EI 162x% EI
The two-parameter collocation solution becomes
4
qol. . omx o 3mx
Wale) = ———— 195.55s8in — + 0.414sin b
") = L L ®)

The maximum deflection, Wa(L/2) = 1.205(qoL*/E1x") = (qoL*/30.8TED), is
5% in crror compared to the exact value (gol 4 JT6.8ET).

Subdomain Method We consider two subdomains, £2; = (0, L/4) and §2p = (L /4,
1./2), in the first balf of the beam. For the same choice of coordinate functions as in
the collocation method, we obtain

4

L 4 X 37 3mx
,\H,u 1 EI H ﬂ:Hw+S.m.~ w sin 7 —qp | dx =10,
La at 4 . omx KT AN . 3mx
aEl| — ] sin e BT | — ) sin— qo | dx = 0,
h..____& h H\ . n-L
or
ol ma% (! b ma% Ly 1Y gl
AL m )\.MD L} 3= wnm!&,
AN L1 3\ L 1 oL
mh.vl|. Er{ ) 2 (——)e="1"
Ar 50T L) 5)%T 4
The solution of these equations is
z\MuTmQ:m\.u V21 Qch#
0] = ———s—r, 0y = ———= ,
SRR 108v2r° El
and the solution W3 becomes
LA . X Srx
Wo(x) = —20% (65.184sin—— 1 0.414sin —— |. ()
1082E 173 L L

The center deflection obtained in the subdomain method, Wa(L/2)— (goL*/
73.12E1), is —5% in crror compared to the exact value.
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(1O},

x

Figure 7.9 A triangular membrane.

Example 7,15 Consider the equation

AW =Viu+i=0 in®, #—0 onl, (a)
where €2 is the triangular domain shown in Fig. 7.9 and T is its boundary. Equation (a)
deseribes a nondimensional form of the equation governing the natural vibration of
a triangular membrane of side a, mass density o, and tension T (A = pa’w? /T, w
the frequency of vibration). We wish 1o determine the fundamental frequency (i.c.,
determine 1) of vibration by using a one-parameter Galerkin approximation of the
problem.
The Galerkin method is based on the weighted-integral statement

%ﬁ%@
ol \w E P ﬂuv.ml r_yu.a._q:a.a&u. _m_uu

The function ¢ (x, y) must vanish on the boundary I'. Thus, we have
ér(x,0) =0,

(0, y) =0, di(x,y)=0onthelinex+y— 1 =0. (¢

Hence the choice for ¢ (x, v} is

P PP

X, v} =1(x — 0y —O)x -1
PO = GO0 -0ty =D, TH TS

=2(x+y). (D)
Hence we have

I I—y
U0=¢ % h 2ix +3) + Axyx +y — Dixyve + vy — Ddxdy

or

»H s 36. €
h cn Y a2y x4y — 1)2dxdy v
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Example 7.16 Consider the differential equation (Poisson’s equation)

2y
gx2  ay?

= fu in —g=<x,y<a

A = -
() (7.178)

=20 on the boundary

in a square region. The origin of the coordinate system is taken at the center ol the
domain, as shown in Fig. 7.10. The equation arises, among others, in connection
with (1) the transverse deflection of a membrane fixed on all sides and subjected to
uniform pressure fo, (2) the study of the torsion of a square cross-section prismatic
bar with f = 2G#6, wherc G denoles the shear modulus and ¢ is the angle of twist
per unit length, and (3) conduction heat transfer in a square region with internal heat
gencration of fp unit area. The function # denotes the deflection « in the case of a
membrane, the Prandil stress function @ in the case of the lorsion problem, and the
temperature T in the case of conduction heat transfer.
The quadratic functional associated with Eq. (7.178} is given by

2

é.:_ ,w m m
::T\ \ EEON 1 (2% — 2 fou | dxdy, 3,33
. _a 2\ dx dy

Qo
which represents the total potential encrgy [unctional for the membrane problem
and the total complementary energy functional for the torsion problem. For the heal
conduction problem, I (i) does not have a physical meaning. The functional 1 {x)
can be derived by the weak form procedure outlined in Section 7.4.1. The boundary
condition in Eq. (7.178) is of the essential type. The natural boundary condition for
the equation involves the specification of du/#n, which is not the specified boundary
condition of the problem, unless a quadrant is used.

For the Galerkin method, we assume (¢g = 0}

N
Un(x,y) = D cjti(x, ) (7.180)

j=1

:_N: ¥
u=0
7|
u=0 ux... \
=0
2a Y_

Figure 7.10 The square domain of Example 7.16.
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where

dr= (" =x)a® Y, b=+ Y, (7.181)

G_nmlur ¢; are twice differentiable with respect to & and y and satisfy the boundary
conditions. From Eg. (7.172b), we have .

a a ol ¢ [
aij = \. \ @i A(g;) dxdy, b = \ \. ¢i fodxdy. (7.182)
S S Jog d—q
For & = 1, we have
256 16 f
5T 9

and the one-parameter solution is given by

5 fua? x2 2
[ == Flu_|m . (7.183a)

t AH. “_.Q - ._O a2
i

For the two-parameter approximation, we have

1024 2 16
8 S5 ¢ ¢ 6l T
a 264 a [ 1o = S04 W o (@)
475 asd
whose solution yields
1295 525 fo
€= =, €2 = ——— . (b)
44324 8864a*

The two-parameter Galerkin solution of Eq. (7.178) is given by

foa® 2, _ _:
Ua(x, y) = %ﬁ.ﬁ%f. 525(8% 4 B0 — 2H(1 = 75, (7.183b)
where ¥ = x/g and § = y/a.
For the Ritz method, the same approximation functions as uscd in the Galerkin
method must be used (why?), and we obtain

jj H.\a .\z me_, m&u.,. @@ dxd
—ad_g\ Ox Ox dy dy J

a ra
by = \ \ Jooi dxdy.
L 14 Lt

O.En:_m:czz will show that a;; and b; are the same as those in Eq. (a). Therefore, the
Ritz and Galerkin solutions coincide.

(7.184)
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The exzct solution to Eq. (7.178) can be obtained using the separation of variables
method, and it is given by

) 16 fou® i 1 (-1 cosh{nmy/2a) RITX
ulx, y) = 73 .,lm..u n? =D : cosh(nm/2) cos 2a
_ (7.185)

The exacl solutiun at the center of the region is
uo(0, 0) = 0.2942 foa?,

whereas the two-parameter Galerkin/Rilz solutionis{1.2922 f va®, whichis only 0.68%
in error.

Examples 7.17 and 7.18 prescnted below illustrate the use of variational methods
for the solution of problems in two dimensions and time-dependent problems. The
approximation is scleeted such that the parameters ¢; are functions of one coordinate
(say, time) and ¢ arc functions of the remaining (say, spatial) coordinates, The pro-
cedure used in Examples 7.17 and 7.18 to obtain ordinary differential equations from
partial differential equation(s) is termed the semidiscretizafion meithod or Kantorovich
method. The Lévy method of solution to be discussed in Chapter 8 is also similar to
these methods, and all of them are based on the separation of variables concept.

Example 7.17 Consider the following nondimensionalized partial differential
equation (such as the one arising in transient heat transfer):

du 8%u
——— =0, =<y <2
3 ax2 =
w0, ) =u2,=0 forr = (),
ulx,y =10 for < x < 2,

Owing to the symmetry about x = 1, we solve the following equivalent problem:

du 9%u

—_ - =0, 0=x <1, 7.186:
ot ax? = ( 2)
it .
u(0,1) =0, .W|A—.3 =0 fort > 0, (7.186b)
dx
a(x, 0 = 1.0 forQ = x < 1. ! (7.187)

Let us consider the following form of a one-parameter Galerkin approximation:

Uy e, 1) = e1(Dy (x) = e1 (D Q2x — x%). (7.188)
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‘.M_S function ¢ (x), which is a function of x only, satisfies the boundary conditions
in Eq. (7.186b). We should determine ¢ (r) such that the initial condition (7.187) is
satisfied. This requires that

er(() = 1. (7.189)

m_s_u@_::;msm Eq. (7.188) into Eq. (7.186a) and sctting up the Galerkin integral, we
obtain o

.1 . 2
duy A%

0= —_ = .

.\: it HE prdx

;Rn \
|\c 5_ @2x — ¥ =1 (=2) [ (2x — xY) dx

el 1 (7.190)
‘The solution of Eg. (7.190) is given by
c{f) = Ae O ) =1 > A=1,
and the one-parameter Galerkin solution becomes
Uy(x, ) = e 2% 2x — x%). (7.191)

The exact solution of Eqs, (7.186)—(7.187) is given hy

oo h PU: Lﬂ?» AN..T :

z... ﬁ

un =23 ———e = (7.192)
____Hc "

For a two-parameler Ritz approximation, we seek the solution in the form
u(x, 1) = Up(x, 1) = o (D1 {x) + e2 (2 (x), (7.193)
where ¢ salisly only the essential boundary condition, ¢; (0) == 0. Thus the functions

hrx) =x,  dpx) =¥ (7.194)

are admissible, .
We use the weak form (for the Ritz approximation)

_ ‘m
m:mx ._ m&fw.a
D”«\A .|.|.| ._.ml.\ . a____.__._n
A it red Lol A Uit oo £22 (7.195)
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Substituting Eqs. (7.193) and (7.194) into Eq. (7.195) and carrying out the integration,
we obtain

ldep  ldea .
Fei+er=0, (7.196a)
3a aa ¢
ldey  dder +|£|o (7.196b)
4 dt 5 dt

which must be solved subject Lo the initial condition in Eq. (7.187). It is clear that
there is no way in which the initial condition will be satisficd exactly by the mo_ooﬂ,on
approximation (7.193), Therefore, we satisfy the inifial condition in the Galerkin-

intcgral sense:
-1
\ ler(x, 0) — L dx = 0, i=1,2, (7.197a)
Jo

which gives

Ley) + fea) = ler(0) + e2(0) = 1. (7.197b)

Now we use the Laplace transform method to solve Egs. (7.196a,b) and (7.1976).
Let & () denote the Laplace transform of ¢;(4):

o
= Llci(t)l = \ ci(tye S dr. (7.198)
The Laplace transform of the derivative of ¢; {1} is given by
L9 2 sie) — o). (7.199)
dt .

Using Eq. (7.199), Egs. (7.196a,b) can be transformed to
(s + 1)@ + (35 + 1)z = a1 (0) + jea (), (7.200a)
(s + )&+ (Ls + Der = o1 (0) + 3¢2(0). (7.200b)

The right-hand side can be substituted from Eq. (7.197h), and the resulting equations
can be solved for ¢y (s) and & (s):

125 4240

_ .W..mm _ - ’ (7.201a)
€1() 24 104s - 240°
(35 +3)(38 1
&) {35 +1) - MQM F1) W4 120 o
R 27 32 542407
(e D0+ = (e v1) 37108

The inverse transform of Eqs. (7.201a,b) can be obtained by using the identity

i s+ ol | @ - b —br (7.202)

=—"2e¢ —¢

L m..,.,..._.ax..,i.s h—a a—Db
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Hence we have

e {t) = 1.6408e™
e(t) = —(2.265¢ 32T 4 pege=2150r), (7.203b)

HISOTE 0 359286 (7.203a)

Equations (7.193) and (7.203a,b) together give the two-parameter Rilz solution.
The two variational solutions in Eqs. (7.191) and (7,193} ar¢ compared, for various
values of (x. 1), with the serics solution (7.192) in Table 7.3. The two-parameter Ritz

Table 7.3 Comparison of the variational solutions with the series solution of a parabolic
equation with Initial oozn_zos u(x,0) = 1 [see Eqs. (7.186)~(7.187)]

Series Solution Variational vo_::c:

t x Eqg. (7.192) Eq. (7.191) mc, (7.193)
0.05 0.2 0.4727 0.3177 0.4265
0.4 0.7938 0.5648 0.7413
0.6 0.9418 0.7413 0.9143
0.8 09880 0.8472 1.0357
1.0 0.9965 0.8825 1.0154
0.25 02 0.2135 0.1927 0.2306
0.4 0.4052 0.3426 0.4152
0.6 (.5360 0.4496 0.5538
0.8 0.6520 .5139 0.6466
1.0 0.6848 0.5353 0.6934
0.50 0.2 0.1145 0.1031 0.1238
0.4 0.2177 0.1834 0.2230
0.6 0.2996 0.2407 0.2975
0.8 0.3522 0.2751 0.3173
L0 0.3703 0.2865 0.3725
0.75 02 0.061°7 0.05352 0.06653
0.4 0.1174 0.0981 0.119%
0.6 0.1616 0.1288 0.1600
0.8 0.1900 0.1472 0.1866
1.0 0.1997 0.1534 0.2001
1.0 0.2 0.0333 0.0296 0.0357
0.4 0.0633 0.0525 0.0643
0.6 0.0872 0.0690 0.0858
0.8 0.1025 0.0788 0.1002
1.0 0.14077 0.0821 0.1075
1.50 0.2 0.0097 0.0085 0.0103
0.4 0.0184 0.0151 0.0186
0.6 (1.0254 (L0193 0.0248
0.8 0.0298 0.0226 (L0280
1.0 0.0313 0.0235 0.0310
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solution is more accurate than the one-paramecter Galerkin solution and agrees more
closely with the scries solution for large values of time.

Example 7.18 Consider the membrane/torsion problem considered in Example
7.16. Here we seek a one-parameter approximation of the [orm

Uilx, y) = e1(x)é1 () = 1 () (3 — a®). (7.204a)

Since ¥ = 0 on x = #a and on y — ka, it follows that we must determine ¢ (x)
such that it satisfies the conditions

e1(—a) = ci(a) = 0. (7.204b)

Substituting Fq. (7.204a) into the Galerkin integral (2 = Uy),

: n_ mmc_ mmq_ ‘
0= \.y: ,\..: “\ 5,2 %v I_ﬁzﬁ:th«___w, Q.momzv

we obtain

a pd 12 d2
0 H\ \ - —e a”_ Jo |1 dxdy
—aJoa\ dx? dy*
e

¢ d*ey 2 2
|.\. \ (y2 —a?) =y +2c1 4+ fo |y —a*)dyt dx. (7.205h)

a d

Performing the integration with respect Lo y and dividing throughout by the coefficient
of d%cy /dx?, we obtain

0= < e — 220 ax. (7.2068)

o \dx? 247

An examination of the integrand in (7.206a) shows that | (x) is nota periodic function,
Hence, the integral vanishes only if the integrand is identically zero:

dey 5 5fo

dx? [MMD T da?

0. (7.206b)
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This completes the application of the Galerkin method, We can solve the ordinary
differential equation (7.206) either exactly or by an approximate method, such as the
Ritz or Galerkin method. We consider the exact solution of Eq. (7.206) subjected to
the houndary conditions in Eq. (7.204h).

The exact solution of Eq, (7.206) is given by

1 /5
cy{x) — Acoshkx | Bsinhkx — @_ k= < —_— (7.207)
2 2a?
Using the condifions in Eq. (7.204b), the constants of integration, A and B, are
evaluated to be

Jo
A= B =0.
2cosh ka’
‘The solution in Eq. (7.204a) becomes
,muam u_m cosh kx
Uie,y)=—I1-=5 1|l - —F 7.208
1) 2 a? cosh ka ( )
A two-parameter approximation of the form
Uz(x, y) = (¥ — a®)ler () + e2(x)y*] (7.209)
gives the differential cquations
8 mamn_+ B 4d%; (4 4 5, \ 2
5 Tt e T \3e e =30
(7.210)
8 ,d% L8 ¢d*cy  [4a® LW 2 fod?
1057 @2 T35 a5 Tt ) T s
with the boundary conditions
ci(—a) = e1(a) = ca{—a) = cala) = 0. (7.211)

‘The simultancous differcntial equations in Eq. (7.210) can be solved as follows:
let D = d/dx, D*> = d?/dx?, and so on. Then we can write Fiq. (7.210) in the
operator form

iz 4 gt o 4d?

5Py P05 | fa HW&Q 5 (7.212)
8l p2 4t St sdt | e 1577 et '
105 15 315 105

Using Cramer’s rule, but keeping in mind that D)’s operate on the quantities in front
of them, we obtain

2p o 2 4a®
L(cy) = Nw._wsq mnl__cm r,E|n,~
S feat 5D
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2 8 4a\ 2
_{8 6p? _ wmav m%o = atpt - — ,Hn;.:m.

= \a15” 105 105 515
381 4 (7.213a)
= 157500
8a? fo L m%:
v=| 15 3 301 o, (7.213b)
L{ca) W 2.2
%:abm _nul 13 Jou”

where L(-) is the determinant of the operator matrix in Eq. (7.212),

H]
L2560 (e 2810, 63Y (7.214)
33075 a? a

The general solutions of Eqs. (7.213a,b) are

o) = Ib +Ech_:_:k+mmz:ﬂ:f.ﬁ+>moo..w.7§».+a»ﬂ=:5a_
2
e2(x) = By coshkjx + Bzsinh kx 4+ By coshkax + By sinh kyx, (7.215)

. v) 2
where A; and B;(i = 1, 2, 3, 4) are constants to be determined, and .f and ﬁnm are the
roots of the quadratic equation

28 63
ATy =0,
- a? , at
214 -4133, K =144 V133 (7.216)

Substituting Eq. (7.215) into the first equation in (7.213a), we obtain the relationships

2 2
8a »m\mv}i fa 8 B, =12,

1
y . s (7.217)
m.u. 4 , a
_Wm -3 = Tm - _wu_a;& B, i=34

Use of the boundary conditions in Eq. (7.211) gives Ay = Ay = By = By = 0, and

Ay coshkya + Az coshloa =05 o, (7.218)

B coshkja + Bscoshkaa =0,

which can be solved along with Eq. (7.217) for Ay, By, A3, and By, and we have

) Ccoshfyx cosh kazx
1) = 05 /o + 0516 fo g t= — 00156 fo 4,
- (7.219)
sh kyx . cosh kax
o) = —0.1138 o 0,138 fo——

cosh kya cosh kaa
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Table 7.4 Comparison of the solution d(x,¢) of Eq. (7.178) obtained by the Galerkin/Ritz
and semidiscretization methods with the series solution®

Ritz—Galerkin Solution® Semidiscretization
Eqgs. (7.183a,h) Eq. (7.209}

x/a Series Selution  ~ Onc Two ~ One Two
(yv=0) Eq. {7.185) Parameter Parameter Parameter Parameter
0.0 (1.29445 0.31250 0.20219 0.30261 0.29473
0.1 0.29194 0.30937 0.28986 0.30014 0.29222
0.2 0.28437 0.30000 (.28278 (1.29266 028462
0.3 (L27158 0.28437 0.27075 0.27999 027177
0.4 0.25328 0.26250 0.25340 0.206180 0.25339
0.5 0.22909 0.23437 0.23025 0.23765 0.22909
.o 0.19854 0.20000 0.20065 0.20693 0.198309
0.7 0.16104 0.15937 0.16382 0.16886 0.16072
0.8 0.11591 0.,11250 (0.11884 0.12250 0.11546
0.9 0.05937 0.06463 0.06667 0.06203
1.0 —(L00038 0.00000 0.00000 —0.00447 0.00000

Shear stress, Gyz(a,0)

1.0 0.67500 0.62300 0.70284 0.72636 0.66416

2,
fa=ufyga”; Oy = ay:/foa.
YThe Ritz and Galerkin solutions are the same for the same coordinate funetions.

Equations (7.219) and (7.208a) together define the two-parameter solution of the
torsion problem.

A comparison of the solutions obtained using the Galerkin method and the semi-
discretization method (with one and two parameters) with the series solution of the
torsion problem is presented in Table 7.4. The table also includes the shearing stress,
oy = —(Aufdx), at x = ¢ and y = 0, It is clear from the results that the two-
parameter solutions arc more accurale than the one-parameter solutions,

Example 7.19 (The Trefftz method) In all the variational methods discussed in this
chapler, the coordinate functions were selected such that they satisfied the boundary
conditions of the problem, and the unknown parameters were determined using a
variational procedure, such as the minimization of a quadratic functional or selting the
weighted residual to zero. An alternative approach that is complementary to the above
approach is to select the approximation functions to satisty the governing differential
equation and determine the unknown parameters such that the boundary conditions are
salistied in a variational/integral scnse. This method is known as the Trefftz method,
and its application is illustrated via the torsion problem of Example 7.16.

The torsion of cylindrical mernbers can be formulated alternatively in terms of the
conjugate function W, which is related to the Prandtl stress function &:

Jo

Q= MQN +v ing, (7.220)
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where fo = 2G#, as in Example 7.16. Consequently, W is governed by the Laplace
equation

VW -0  inQ={y):—a<xy<al, (7.221)

subjected o the boundary condition

W= % 2+ on I (7.222)

Note that a nonhomogeneous equation (i.e., Poisson’s equation) with homogencous
boundary conditions is transformed to a homogeneous equation {1.e., Laplace’s equa-
tion) with nonhomogeneous boundary conditions. For the square domain of Example
7.16, we wish (o determine an approximate solution of Eqgs. (7.221) and (7.222) using
the Trelflz method.

We select an N-parameter approximation of the form

N
WA Wy =y il ), (7.223)
j=1

where ¢b; are selected such that Wy satisfies the governing equation Viuy =0
(i.c., ¢; should be harmonic functions). The parameters ¢; arc determined by the
requirement {hat the boundary condition (7.222) is satislied in an intcgral sense:

. 36,
ojﬂ ezl%am B8 86 4s
JI

dan
N .
. fo, o o] 8
= .ﬂwm. Mn.ﬁ.mf — Hn« F¥9) ﬂn?
M”
N
= (7.224)
where
ai fo, 2 5 00
=P —¢; b= ¢ —(x"+ s (7.225)
1j ,*ﬁ n $; ds, j .3 (x4 p umx_ §
As a specific example, we choose a one-parameter approximation with
1 = xt —6x2y? 4y, (7.226)
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which satisfies the equation qnﬁ 1 = 00, We have

o
hy =4 \ (a” — ax®)(a* — a2 + Hdx = _|m.u.mauq

e 35 _
« 64 (7.227)
bi=— | fo(~12x%a +4a*)(x* + a®ydx = |ﬂa§r
— :
and the solution is given hy
T 4 2 4
v S (x" — + ). 22
1 laaZ & T ey + YY) (7.228)
The Prandil stress function ¢ becomes
Jo, 2 2 o4 22, a4 Foa
D= — (x = — ; — S {x* 4yt 22
2 (x"+ ) _ﬁamﬁ Ox"y 4y aﬁ +y7). (7229

The maximum shear stress oy, is

e 5
Oyela, 0) = — |m._.ﬂ_ o < foa = 0.833 foa.

The maximum shear stress is about 23,4% greater than the exact solution.

The Trefftz method has limited use, because it can only be utilized for Dirichlel-
type boundary-value problems (i.e., boundary-value problems in which the function is
specified on the boundary). Furthermore, it is not easy to find approximation functions

that satisfy the governing differential equations. Some of the hybrid finite element
models are based on ideas similar to the Trefftz method.

Kxample 7.20  Consider the nonlincar differential cquation

IQ dit 1=0 0<y <1 .
P __EQH + 1 =1, <x =<1, (7.23(0a)

subject to the boundary conditions

d
(1) = /2, et —0. (7.230b)
dx/|._g

We wish to determine a one-parameter Ritz solution to the problem.
The weak form of Eq. (7.230a) is given by

m \,_ &ER: + _&
...I... hml|| . -.
Jo dx dx bt t

The boundary term is zero because w(l) = 0 and (du/dx)(0) = 0.
Let

== Uy =iy + ¢y, with ﬂdﬂz\m ¢ =1—ux.
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Substituting into the weak form, we obtain
!
0= .\, ::a — )+ V2] (=D=en) + (1~ 5_ dx
0

= T__W.TQNHTW

(er2=—V2E/2 1=—2£1.

Thus, there are fwo approximate solutions to the nonlinear problem. We must
choose one value of ¢; using some meaningful criterion. We shall take the value of
¢| that yields the smallest integral of the residual in the differential equation:

1
\ (Y 1 e = (2 4 1),
]

nm._ ua\wn_ +1=0,

dx dx

Clearly, the smaller (in absolute value) root gives the smaller value of the residual.
Hence, we choose {¢1)) = — /2 - 1. The solution becomes

Up=(1-v2)(1 - ) ++2=1+ (V2 1)x.

The exact solution is u(x) = +/1 4+ x2, At x = 0 the approximate solution matches
with the cxact.

7.6 SUMMARY

Tn this chapter. the Ritz and weighted-residual (c.g., Galerkin, least-sqnares, and
collocation) methods were presented and their application to simple problems was
illustrated, The Ritz method makes use of the weak form provided by the principle
of virtual displacements, the principles of minimum total potential energy, or the
one developed [rom the governing equations of the problem as discussed in Sections
7.4.] and 7.5.1. The key feature of the weak form is that it includes the govern-
ing equation(s) as well as the natural boundary condition(s) ol the problem. _._Hm.._;cn_
the Ritz approximation is not required to satisfy the natural boundary conditions.
All weighted-residual methods, except the least-squares method, are based on an
weighted-integral statement of the governing equation(s), whereas the leasi-squares
method is based on the minimization of the square of the governing equation(s).
Thus, the integral statements used in all weighted-residual methods do not include
any boundary conditions as a part of the statements. Hence, the approximations chosen
for the weighted-residual methods are required to satisfy afl {both natural and essen-
tial) specified boundary conditions of the problem. Conscquently, the approximation
functions are of higher order than those used in the Ritz method. The Ritz as well as
the weighted-residual methods may be used for lincar and nonlinear differential equa-
tions. However, in the case of the least-squares method, there arc some limitations, as
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discussed in Section 7.5.5. Although the least-squares method can be interpreted as
a special case of the weighted-residual methods for lincar static problems, it is based
on an integral statement whosc Euler cquations, il derived, are nor the same as the
governing equations. Thus, the least-squares method is quite different from the other
weighted-residual methods. Overall, the Ritz method is the most efficient method,
especially for solid and structural mechanics problems.

The single most difficult step in using the variational methods presented in this
chapter is the selection of the approximation funclions. The requirements (7.62) and
(7.164) on the approximation functions mercly provide the guidelines for their sclec-
tion. The selection of the approximation functions becomes even more difficult for
problems with irregular domains (i.e., noncirenlar and nonrectangular) or discontinu-
ous data (loading as well as geomeltry). Further, the generation of coefficicnt matrices
for the resulting algebraic equations cannot be automated for a class of problems that
differ from cach other only in the geometry of the domain, boundary conditions, or
loading. These limitations of the classical variational methods can be overcome by
rcpresenting a given domain as a collection of geomeltrically simple subdomains for
which we can systemalically generate the approximation functions (sce Exampic 7.8).
One such technigue, namely, the finite element method, is discussed in Chapter 9. The
finite element method is based on ideas similar to the classical variational methods,
especially in developing the system of algebraic equations for the unknown coeffi
cients, but the method views a given domain as a collection of conveniently chosen
subdomains that allow a systematic generation of the approximation functions.

EXERCISES

7.1 Let P be the vector space of all polynomials with real coefficients, Determine
which of the following subscts of 77 are subspaces:
@ S = (p@): p(1) =0},
(by 82 = {p(x): degrecof p(x) =3}.
(c) 83 = {pix): degreeof p(x) < 3}.
(d) S4 = {pi{x): conslant term is zero},

7.2 Determine which of the following sets of vectors in St are lincarly independent
over the real number field Hi:

(a) {(—=1, 1,00, (=1, 1. 1), (=2, -1, 1), (L, 1, D)} .
(by {(1,0,0), (1, 1,00, (1,1, I)}.

(c) {(1, [, D, (1,2,3), (2, =1, )}.
7.3 Determine if the following sets of functions are linearly independent.
{a) ??.Q.G;.xhvﬁu_. 0<x<L.
) U —x)) g 0=x <]

@ {I+x+a% 1+2x0+302,2-3x+ 23, 0<x <1,
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74

7.5

7.6

7.7

7.8

7.9

7.10
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Compute the Lz norm and the sup-norm of the following functions in the
interval indicated:

(a) u(x) =singx —x,on0 <x <1,
(b) ulx) = x13 on0 < x < 1.
() u(x) =cosmx+2x—l,on0<=x < 1.

(d) u(x) = VIFxZon0<x<l1.
100sin 1007x, 0 <x =<<0.01
0, 001 =x < 1.

(e) ulx) =

Prove the following relations in a real inner product space:

(a) Parallelogram law: |l + v|? + Jlu — v 2=20ul? + ).
(b) G, v) = L{llu +vll> — flu - v]?].
() Hlull = full} < Jju — vl

Let u = u(x) and v = v(x) be two vector functions of x. Which one of the
following products qualifies as an inner product?

(a) (. v) = .\_:h u-vdx.

(b) (u.v) = [ w(l —x) - v(x)dx.

Compute the inner product of the following pairs of functions on the interval
indicated. Usc the Ly-inner product and the H '-inner product.

(@) u=x—x% v=sinmx,on0<x <1,

My uw=0_0+x)v=3x*—-l,on—1 <x <1

(¢) u=sinmx,v=cosmx,on0=x =<1,

(d) u =sinmx,v=a- bx+ex?on0<x <1

(e) u=sinmxsinmwy, v=(1 —x?=yH,m0=<x,y=<l.

) u=02 aHy: b, 0<x<gand0 <y <h.

Find the distance betwecn the following pair of functions using the inner
product in Eq. (7.23a): u = ¥} —3x4+2andv = (x — N 0<x <1
Check whether the following pair of functions are orthogonal in the L2 (0, 1)-
space: #(x) = 24 3x% — y and v(x) = m +3x — 552,

Check whether the pair of functions in Exercise 7.9 arc orthogonal in the
HY(0, 1)-space.

Determine the constants a and b such that w(x) = a + bx .Fu.gm is orthogonal
in La(0, 1) to bath u(x) and »(x) of Exercise 7.9.

Determine ¢ if the indicated pairs of vectors are orthogonal in %it:

(@ (1,C—1,2,140), (2C.4,C, 1).
® (2,1 -C,4,3C),(C. 1+ C,3C, -T7).

713

7.14

7.16

717

7.18

7.19

7.20
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Determine a vector in the space P of polynomials of degree 2 such that the
veelor is orthogonal to the polynomials pq = 1+ x — 2x% and p; = 24
dx 4+ x%in Ly (1,0).

Which of the following operators qualify as linear operators?

Al) = o du
(@ A = dx m__.o__‘n

() T(u) = Viu+1.
" du
() 1) = f5 K(x)—dx — u(0).

dx

If 7} and 75 are linear operators defined on o9 by T1(x) = (0, x; — x3,02 +
x3), Ta(x) = (xz — x4, 2x) — X7, x1), delerming:

(a) 1 + 1.

(h) 73

(©) ToTi.

Find the matrix representing the linear transformation from M@ into M3 with
respect Lo the standard bascs of %1% and 2™

T(xy1, x2, %3, X4) = (x1 + 2x2, 2a2 + x3, 83+ xp).

Identity the linear and bilinear functionals:

(a) {(u,v)= .\& Viu - Vudxdy.

a7 die dy
(b) :E.EH.\L A@MH..MMMM,T%c dx.

Determine which of the following operators represent bilinear forms:

() B: R2x N>R, Bxy) =+ y)? - — )2
() B: M2 x M >N, B, v)=x1 - X2y

Consider the functional
Blu,v) = Nu:___g + :_#m — fju— vl®)

on an inner product space. Show that:

(a) B(-,-)is bilinear in & and v.

(b) For fixed u, fi,(v) = B(u, v) is a (bounded) linear functional.
(c) B(u.v) satisfies the axioms of an inner product.

If {{u) is a quadratic functional, show that (a) its first variation is a bilinear
functional of ¢ and §u, and (b) its first variation is a linear functional of &u.

Give admissible approximation functions, either algebraic or trigonometric, for a
two-parameter Ritz approximation of problems in Exercises 7.21-7.27. Assume
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that the lotal polential energy principle or weak Torm is used 1o construct the Ritz

approximaltion.

7.21 A cable suspended between points A : (0, 0) and B : (L, &) and subjected to
uniformly distributed transverse load of intensity fi.

7.22 A cantilever beam subjected o unilormly distributed loud of intensity go.

7.23 The symmetric half of the simply supported beam problem considered in
Example 7.7 (0 < x < Lj2).

7.24 A beam clamped at the left end and simply supported at the right end, and
subjected to point load Fgatx = L/2.

7.25 A simply supported beam with a spring support at x = L/2, and subjected to
uniformly distributed load of intensity gp.

7.26 A square clastic membrane fixed on all its sides and subjected to a uniformly
distributed load of intensity fo.

7.27 Aquadrant model (because of the biaxial symmetry) of the membrane problem

of Exercise 7.26.

7.28-7.34 Find the two-parameter Ritz approximation using algebraic polynomials
of the problems in Exercises 7.21-7.27 and compare the solutions with the cxact
solutions when possible.

7.35

7.36

7.37

7.38

7.39

Find the first two natural frequencies of a cantilever beam, Take ET = (a +
FDJ_ where ¢ and & are constants,

Find a two-parameter Ritz approximation of the transversc deflection of a
simply supported beam on an clastic foundation that is subjected to uni-
formly distributed load. Use (a) algebraic polynomials and (b) trigonometric
polynomials.

Derive the matrix equations corresponding lo the N-parameter Ritz
approximation

.u.m ce ﬁ.__z_u..__a__+u

Wy = n_HM I e
ol a cantilever beam with a uniformly distributed load, gy. Compute a;; and
?g, in explicit form in terms of i, j. L, E1, and gp.
Use a two-parameter Rilz approximation with trigonometric functions to
determine the critical buckling load P of a simply supported beam.
Consider the buckling of a uniform beam according to the Timoshenko beam
theory. The tolal polential energy functional for the problem can be wrillen as

2

2

1 rF do \* dwy dwq
I1 L) == D - S| — v — N
(wa, ] 2 -\,n_ dx * dx + ¢ "\ dx

dx,

where wy(x) is the transverse deflection, ¢, is the rotation, D is the fexural
stiffness, S is the shear stiffness, and N is the axial compressive load, We wish
to determine the critical buckling load N, of a simply supported beam using

7.40

7.41

7.42

7.43

7.44

745
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the Ritz method. Assume a onc-parameler approximation of wy and ¢, and
determine the critical buckling load.

Determine the N-parameter Ritz solution for the lransient responsc of a simply
supported beam under step loading g (x. 1) = gy H (f —1y), where H (1} denotes
the Heaviside step function. Use trigonometric functions for ¢ (x).

Show that the two-parameter Ritz solution for the transient response of the bar
considered in Example 7.6 yiclds the equations

al_ 1E 3
Y “ . (a)

&y 2
& + 2

- L3
L= du|—
[FEIE I )

Usc the Laplace transform method to determine the solution of these equations.
Derive the weak forms of the following nonlinear equations:

dNy
_GNex F{x), 0=x=<1L, ()
dx
d M.Mu:c ﬁ.__umx.»
SN, ) - e o el
dx \ dx 2 —4dW.  O=x<l, ()
where
a|duo L (dwn i d*uy
Ny =EA|— + - — L
" dx * 2\ dx ’ My El 7

Consider a uniform beam fixed at one end and supported by an clastic spring
(spring conslanl &) in the vertical direction. Assume that the beam is loaded
by a uniformly distributed load go. Determine the one-parameter Ritz solution
using algebraic functions.

Consider the problem of finding the fundamental frequency ol a circular mem-
brane of radius a, fixed at its edge. The governing cquation for axisymmelric
vibration is

1d { du
Iljhﬁ[ —au =0, O=r=a,
where A is the frequency parameter and « is the deflection of the membrane.
(a) Construct the weak form, (b) use one-parameter Rilz approximation to
determine A, and (c) use two-parameter Ritz approximation to determine A.
Select trigonometric functions for ¢; (r).

Consider the problem of finding the solution of the equation

d%u
n?.u._.a.Tp.I:. Q<x<|;

w0} =u(l) =0.
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7.46

7.47

7.48
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(a) Develop the weak form, (b) assume N-parameter Ritz approximation ol
the form

Un(x) = x(1 =x)(ep +eax 1 -+ 1t ewx™ )

and obtain the Ritz equations for the unknown coefficients, and (¢) determine
the two-parameler solution and compare it with the exact solution

sinx
uix) = — —X
sin 1
Consider the Bessel equation
Ma.ut N du EC 2 1 0 1 < 9
L — b (x*=1u=0, T X
* dx? A&h

subject to the boundary conditions {1} = 1 and #(2) = 2. Assume n — w+x
and reduce the equation to

d { dw\ x*>-1 5
—— Mﬂ. e —
dx dx x

subject to the boundary conditions w (1) = w(2) = (. Delerminc a one-
parameter Rilz approximation of the problem and compare it with the analytical
solution

w(x) = 3.6072J(x) +0.75195Y (x}.

where J; and ¥ are Bessel functions of the first and second kind, respectively.
Derive the weak form and obtain a one-parameter Ritz solution of the problem

P 1 |mm= =1 in aunit square
ax? - fy? - 9 ’
u(l, ¥y =ulx,1) =0,
] a
200 =5 (r,0) =0,
dx ay

The origin of the coordinate system is taken at the lower left corner of the unit
square.

Determine the two-parameter Petrov—Galerkin solution (with ¥y = 1 and
1z = x) of the following differcatial equation and compare, if possible, with
the exact solution:

d*u 1

w1 0) = /(1) = 0.
dx?  14x u(0) = ')

7.49

7.50

7.51

7.52

7.54
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Determine the two-parameter Petrov—Galerkin solution (with ¥ry = | and
yra = x) of the following differential equation:

d

1+x?
2o 4T

d
4 4u=sinTx+3x—1, O<x<l; iou”a:ﬂ:Hc.
X

d

Determine the one-parameter Galerkin solution of the equation

d? x d*wg x
e ﬁw + ) a2 + kwg = m.:.ﬂ

that governs a cantilever beam on an elastic foundation and subjected to linearly
varying load (from zero at the free end to gp at the fixed end). Take £ — L — 1
and gp = 3, and use algebraic polynomials.

yrs = xy) of the problem

~Vi =0 in0-<=(x,y) <1,
H=sinmTx ony =10,
i =0 on all other sides.
Solve the nonlinear differential cquation
L L B O<x<1
dx \ dx - e
u(l) = /2, w' (0 = 0.

Use a one-parameter Petrov—Galerkin approximation with (a) ¥r; = 1 and
(b) ¥; = x. Compare the results with the exact solution, u(x) = +/1 +x”.
Sce Example 7.20.

Find the first two eigenvalues associated with the differential equation

d*u
——— = Al J<x <,
dx
u(0) =0, u(h) +u'(H=0.
Use the least-squares method, Use the operator definition A — —(d?/dx?) 1o

avoid increasing the degree of the characteristic polynomial for 4.
Solve the Poisson equation

Vi = fa

u=0 on the boundary.

in a unit square,
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7.67
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using the following N -parameter Galerkin approximation:

N
Uy = M cij sin iy sin fwy.
ij=I

Solve the nonlinear equation in Excreise 7.52 by the Galerkin method.

Find a two-parameter Galerkin solution of a clamped (at both ends) beam
under uniformly distributed load.

Solve the equation in Excreise 7.49 using the least-squares method.

Solve the problem of Excrcise 7.52 using the least-squares method.,

Solve the equation in Exercise 7.53 using the least-squares method.

Solve the cquation in Exercise 7.54 using the least-squares method,
Consider a cantilever beam of variable flexural rigidity, ET = agf2 — (x /L)1,
and carrying a distributed load, ¢ = go[! — (x/L)]. Find a three-parameler
solution using the collocation method.

Repeat Exercise 7.52 using the collocation method.

Solve the differential equation in Exercise 7.53 by the collocation method.
Solve the problem in Exercise 7.54 using the one-point collocation method.

Consider the Laplace equation

Vin =0, 0<x <1, 0<y
u(O, )y =u(l,y) =0 for y =0,
wix, ) = x(1 —x), wu{x, o) =0, 0=x=<1

Assuming an approximation of the form
#(x, y) =c1(mx( —x),

find the differential equation for ¢ (y) and solve it exactly,

Use the semidiscretization method to find a two-parameter approximation of

the form

TX 3wy
wlx, y) = c(y)cos —— 4+ ea{y) cos o .
2u 2u

t
to determine an approximate solution of the torsion problem in Example 7.16.

Use the semidiscretization method to find a two-parameter approximation of

the form

wix, 1) =c ({1 —cos2mx),
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to determine an approximate solution of the equation

Pw Pu_ o gexel 0
dx4 aiz s £ =5
dw
w=— =1 atx =0, land 1 = 0,
ax
. du
E”ﬁ_._mﬂk.lwm.,.‘clp.v* 2 ”Om:.”_u, 0 <x =1,
i3

Use the Galerkin method to satisfy the initial conditions.
7.68 Consider the problem of finding the eigenvalues associated with the equation

Vi3 +iu=0 inQ; #w=0 on T,

where £2 is a reetangle, —a < x <aand b < y < b, and T is its boundary
(see Example 7,18). Assuming approximation of the form

Ui = el () = e ()02 — 2),

determine the first cigenvalue A,.
7.69 Repeat Exercise 7.68 with a tlwo-parameter approximation of the form

Us = e (x)di(y) + c2(x)da () = ler(x) + e2(x)y? 1(y? — 7).

7.70 Solve the problem in Example 7.19 using a two-parameter approximation of
the form (which is more complete than the one-parameter approximation used
in Example 7.19, although it has no effect on the derivative of the solution)

Wy = ey + ealxt — 6x2y? + wi.
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THEORY AND ANALYSIS OF
PLATES

8.1 INTRODUCTION

8.1.1 General Commenis

In this chapter we study bending, buckling, and natural vibration of plate structures.
A plate is a flat structural element with planform dimensions much larger than its
thickness and is subjected 1o loads that cause bending deformation in addition to
stretching (see Fig. 8.1). Street manhole covers, table tops, side panels and roofs of
buildings and transportation vehicles, glass window panels, turbine disks, bulkheads,
and tank bottoms provide familiar examples of plate structures. A shell is initially a
curved structural element with thickness much smaller than the other dimensions. Like
a plaic, a shell is subjected to loads that cause stretching and bending deformations.
Examples of shell structures are provided by pressure vesscls, pipes, curved panels of
a variety of structures including automobiles and acrospace vehicles, tires, and roof
domes and sheds.

In most cases, the thickness of plate and shell structures is about one-tenth or
less of the smallest in-plane (i.e., within the plane) dimension. When the thickness
is onc-twentieth of an in-plane dimcnsion or less, they arc termed rhin; otherwise
they are said to be thick. Because of the smallness of the thickness dimension, it is
often not necessary to model plate and shell structures using 3D elasticity equations,
Simple 2D theories that arc based on some kinematic assumptions can be developed
to study deformation, siresses, natural frequencies, and global buckling loads of plate
and shell structures, In the present study, the governing cquations of the 2D theories
are derived using the principle of virtual displacements for circular plates in cylin-
drical coordinates and lor noncircular plates in rectangular Cartesian coordinates.
Bending, buckling, and vibration solutions are obtained for particular cases of
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