Hll CHAPTER FOUR I

Formulation of the Finite
Element Method—
Linear Analysis in Solid
and Structural Mechanics

4.1 INTRODUCTION

A very important application area for finite element analysis is the linear analysis of solids
and structures. This is where the first practical finite element procedures were applied and
where the finite element method has obtained its primary impetus of development.

Today many types of linear analyses of structures can be performed in a routine
manner. Finite element discretization schemes are well established and are used in standard
computer programs. However, there are two areas in which effective finite elements have
been developed only recently, namely, the analysis of general plate and shell structures and

The standard formulation for the finite element solution of solids is the displacement
method, which is widely used and effective except in these two areas of analysis. For the
analysis of plate and shell structures and the solution of incompressible solids, mixed
formulations are preferable.

In this chapter we introduce the displacement-based method of analysis in detail. The
principle of virtual work is the basic relationship used for the finite element formulation. We
first establish the governing finite element equations and then discuss the convergence
properties of the method. Since the displacement-based solution is not effective for certain
applications, we then introduce the use of mixed formulations in which not only the displace-
ments are employed as unknown variables. The use of a mixed method, however, requires
a careful selection of appropriate interpolations, and we address this issue in the last part of
the chapter.

Various displacement-based and mixed formulations have been presented in the liter-
ature, and as pointed out before, our aim is not to survey all these formulations. Instead, we
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will concentrate in this chapter on some important useful principles of formulating finite
elements. Some efficient applications of the principles discussed in this chapter are then
presented in Chapter 5.

4.2 FORMULATION OF THE DISPLACEMENT-BASED FINITE
ELEMENT METHOD

The displacement-based finite element method can be regarded as an extension of the
displacement method of analysis of beam and truss structures, and it is therefore valuable
to review this analysis process. The basic steps in the analysis of a beam and truss structure
using the displacement method are the following.

1. Idealize the total structure as an assemblage of beam and truss elements that are
interconnected at structural joints.

2. Identify the unknown joint displacements that completely define the displacement
response of the structural idealization.

3. Formulate force balance equations corresponding to the unknown joint displacements
and solve these equations.

4. With the beam and truss element end displacements known, calculate the internal
element stress distributions.

5. Interpret, based on the assumptions used, the displacements and stresses predicted by
the solution of the structural idealization.

In practical analysis and design the most important steps of the complete analysis are
the proper idealization of the actual problem, as performed in step 1, and the correct
interpretation of the results, as in step 5. Depending on the complexity of the actual system
to be analyzed, considerable knowledge of the characteristics of the system and its mechan-
ical behavior may be required in order to establish an appropriate idealization, as briefly
discussed in Chapter 1.

These analysis steps have already been demonstrated to some degree in Chapter 3, but
it is instructive to consider another more complex example.

EXAMPLE 4.1: The piping system shown in Fig. E4.1(a) must be able to carry a large trans-
verse load P applied accidentally to the flange connecting the small- and large-diameter pipes.
“Analyze this problem.”

The study of this problem may require a number of analyses in which the local kinematic
behavior of the pipe intersection is properly modeled, the nonlinear material and geometric
behaviors are taken into account, the characteristics of the applied load are modeled accurately,
and so on. In such a study, it is usually most expedient to start with a simple analysis in which

gross assumptions are made and then work toward a more refined model as the need arises (see
Section 6.8.1).
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Figure E4.1 Piping system and idealization

Assume that in a first analysis we primarily want to calculate the transverse displacement
at the flange when the transverse load is applied slowly. In this case it is reasonable to model the
structure as an assemblage of beam, truss, and spring elements and perform a static analysis.

The model chosen is shown in Fig. E4.1(b). The structural idealization consists of two
beams, one truss, and a spring element. For the analysis of this idealization we first evaluate the
element stiffness matrices that correspond to the global structural degrees of freedom shown in
Fig. E4.1(c). For the beam, spring, and truss elements, respectively, we have in this case
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where the subscript on K¢ indicates the element number, and the global degrees of freedom that
correspond to the element stiffnesses are written next to the matrices. It should be noted that in
this example the element matrices are independent of direction cosines since the centerlines of
the elements are aligned with the global axes. If the local axis of an element is not in the direction
of a global axis, the local element stiffness matrix must be transformed to obtain the required
global element stiffness matrix (see Example 4.10).

The stiffness matrix of the complete element assemblage is effectively obtained from the
stiffness matrices of the individual elements using the direct stiffness method (see Examples 3.1
and 4.11). In this procedure the structure stiffness matrix K is calculated by direct addition of
the element stiffness matrices; i.e.,

K=2KS
i
where the summation includes all elements. To perform the summation, each element matrix K?
is written as a matrix K of the same order as the stiffness matrix K, where all entries in K®

are zero except those which correspond to an element degree of freedom. For example, for
element 4 we have
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Therefore, the stiffness matrix of the structure is
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and the equilibrium equations for the system are
KU =R

where U is a vector of the system global displacements and R is a vector of forces acting in the
direction of these displacements:

UT=[U1,...,U7]; RT=[R1,...,R7]

Before solving for the displacements of the structure, we need to impose the boundary
conditions that U; = 0 and U; = 0. This means that we may consider only five equations in five
unknown displacements; i.e.,

KU =R (a)
where K is obtained by eliminating from K the first and seventh rows and columns, and
ﬁT = [Uz U3 U4 Us Uﬁ}; ﬁT = [0 —P 0 0 0}

The solution of (a) gives the structure displacements and therefore the element nodal point
displacements. The element nodal forces are obtained by multiplying the element stiffness
matrices K7 by the element displacements. If the forces at any section of an element are required,
we can evaluate them from the element end forces by use of simple statics.

Considering the analysis results it should be recognized, however, that although the struc-
tural idealization in Fig. E4.1(b) was analyzed accurately, the displacements and stresses are only
a prediction of the response of the actual physical structure. Surely this prediction will be
accurate only if the model used was appropriate, and in practice a specific model is in general
adequate for predicting certain quantities but inadequate for predicting others. For instance, in
this analysis the required transverse displacement under the applied load is quite likely predicted
accurately using the idealization in Fig. E4.1(b) (provided the load is applied slowly enough, the
stresses are small enough not to cause yielding, and so on), but the stresses directly under the load
are probably predicted very inaccurately. Indeed, a different and more refined finite element
model would need to be used in order to accurately calculate the stresses (see Section 1.2).

This example demonstrates some important aspects of the displacement method of

analysis and the finite element method. As summarized previously, the basic process is that
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the complete structure is idealized as an assemblage of individual structural elements. The
element stiffness matrices corresponding to the global degrees of freedom of the structural
idealization are calculated, and the total stiffness matrix is formed by the addition of the
element stiffness matrices. The solution of the equilibrium equations of the assemblage of
elements yields the element displacements, which are then used to calculate the element
stresses. Finally, the element displacements and stresses must be interpreted as an estimate
of the actual structural behavior, taking into account that a truss and beam idealization was
solved.

Considering the analysis of truss and beam assemblages such as in Example 4.1,
originally these solutions were not called finite element analyses because there is one major
difference in these solutions when compared to a more general finite element analysis of a
two- or three-dimensional problem, namely, in the analysis performed in Example 4.1 the
exact element stiffness matrices (“exact” within beam theory) could be calculated. The
stiffness properties of a beam element are physically the element end forces that correspond
to unit element end displacements. These forces can be evaluated by solving the differential
equations of equilibrium of the element when it is subjected to the appropriate boundary
conditions. Since by virtue of the solution of the differential equations of equilibrium, all
three requirements of an exact solution—namely, the stress equilibrium, the compatibility,
and the constitutive requirements—throughout each element are fulfilled, the exact ele-
ment internal displacements and stiffness matrices are calculated. In an alternative ap-
proach, these element end forces could also be evaluated by performing a variational
solution based on the Ritz method or Galerkin method, as discussed in Section 3.3.4. Such
solutions would give the exact element stiffness coefficients if the exact element internal
displacements (as calculated in the solution of the differential equations of equilibrium) are
used as trial functions (see Examples 3.22 and 4.8). However, approximate stiffness
coefficients are obtained if other trial functions (which may be more suitable in practice) are
employed.

When considering more general two- and three-dimensional finite element analyses,
we use the variational approach with trial functions that approximate the actual displace-
ments because we do not know the exact displacement functions as in the case of truss and
beam elements. The result is that the differential equations of equilibrium are not satisfied
in general, but this error is reduced as the finite element idealization of the structure or the
continuum 1is refined.

The general formulation of the displacement-based finite element method is based on
the use of the principle of virtual displacements which, as discussed in Section 3.3.4, is
equivalent to the use of the Galerkin method, and also equivalent to the use of the Ritz
method to minimize the total potential of the system.

4.2.1 General Derivation of Finite Element Equilibrium
Equations

In this section we first state the general elasticity problem to be solved. We then discuss the
principle of virtual displacements, which is used as the basis of our finite element solution,
and we derive the finite element equations. Next we elaborate on some important consider-
ations regarding the satisfaction of stress equilibrium, and finally we discuss some details
of the process of assemblage of element matrices.



154 Formulation of the Finite Element Method  Chap. 4

..................................

Wy

Nodal point j

Finite element m

X U

Figure4.1 General three-dimensional body with an 8-node three- dimensional element

Problem Statement

Consider the equilibrium of a general three-dimensional body such as that shown in
Fig. 4.1. The body is located in the fixed (stationary) coordinate system X, ¥, Z. Considering
the body surface area, the body is supported on the area S, with prescribed displacements

U« and is subjected to surface tractions £ (forces per unit surface area) on the surface area
Sp.t!

' We may assume here, for simplicity, that all displacement components on S, are prescribed, in which case
S. U S = S and S. N S = 0. However, in practice, it may well be that at a surface point the displacement(s)
corresponding to some direction(s) is (are) imposed, while corresponding to the remaining direction(s) the force
component(s) is (are) prescribed. For example, a roller boundary condition on a three-dimensional body would
correspond to an imposed zero displacement only in the direction normal to the body surface, while tractions are
applied (which are frequently zero) in the remaining directions tangential to the body surface. In such cases, the
surface point would belong to S, and . However, later, in our finite element formulation, we shall first remove all
displacement constraints (support conditions) and assume that the reactions are known, and thus consider Sy = §
and S, = 0, and then, only after the derivation of the governing finite element equations, impose the displacement
constraints. Hence, the assumption that all displacement components on S, are prescribed may be used here for ease
of exposition and does not in any way restrict our formulation.
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In addition, the body is subjected to externally applied body forces £2 (forces per unit
volume) and concentrated loads R¢ (where i denotes the point of load application). We
introduce the forces Rt as separate quantities, although each such force could also be
considered surface tractions f% over a very small area (which would usually model the
actual physical situation more accurately). In general, the externally applied forces have
three components corresponding to the X, Y, Z coordinate axes:

Fid Y [ Rix |
=11 £r=|/1; R:=|Ry 4.1)
Fil [ | | REz |

where we note that the components of £2 and £°f vary as a function of X, ¥, Z (and for £%
the specific X, Y, Z coordinates of Sy are considered).

The displacements of the body from the unloaded configuration are measured in the
coordinate system X, Y, Z and are denoted by U, where

U
UX, Y,Z)=|V 4.2)
W.—

and U = U% on the surface area S,. The strains corresponding to U are

€ = [Exx €y €zz Yxyr Yrz ')‘ZY) (4.3)
where €xx = 2[—]; €yy = '(?"‘/; €zz = i‘f
0X aY 0Z
(4.4)
oU oV oV oW oW aU
WESY Tt ™MT ezt T ax Tz

The stresses corresponding to € are

7l = [Txx Tyy Tzz Txy Tyz sz} (4-5)

where T =Ce + 7 (4.6)

In (4.6), C is the stress-strain material matrix and the vector T’ denotes given initial stresses
[with components ordered as in (4.5)].

The analysis problem is now the following.
Given

the geometry of the body, the applied loads £, £, R¢, i = 1, 2, .. ., the support
conditions on S,, the material stress-strain law, and the initial stresses in the body.

Calculate

the displacements U of the body and the corresponding strains € and stresses 7.
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In the problem solution considered here, we assume linear analysis conditions, which
require that

The displacements be infinitesimally small so that (4.4) is valid and the equilibrium
of the body can be established (and is solved for) with respect to its unloaded
configuration.

The stress-strain material matrix can vary as a function of X, Y, Z but is constant
otherwise (e.g., C does not depend on the stress state).

We consider nonlinear analysis conditions in which one or more of these assumptions
are not satisfied in Chapters 6 and 7.

To calculate the response of the body, we could establish the governing differential
equations of equilibrium, which then would have to be solved subject to the boundary
conditions (see Section 3.3). However, closed-form analytical solutions are possible only
when relatively simple geometries are considered.

The Principle of Virtual Displacements

The basis of the displacement-based finite element solution is the principle of virtual
displacements (which we also call the principle of virtual work). This principle states that
the equilibrium of the body in Fig. 4.1 requires that for any compatible small® virtual
displacements (which are zero at and corresponding to the prescribed displacements)’
imposed on the body in its state of equilibrium, the total internal virtual work is equal to
the total external virtual work:

Internal virtual External virtual work R
work

f Erdv = f UTrBdv + f U 15 dS + 2, U R-
V A ){ v T Sf T ) T (4.7)

Stresses in equilibrium with applied loads _
Virtual strains corresponding to virtual displacements U

where the U are the virtual displacements and the € are the corresponding virtual strains
(the overbar denoting virtual quantities).

The adjective “virtual” denotes that the virtual displacements (and corresponding
virtual strains) are not “real” displacements which the body actually undergoes as a conse-
quence of the loading on the body. Instead, the virtual displacements are totally independent

2We stipulate here that the virtual displacements be “small” because the virtual strains corresponding to
these displacements are calculated using the small strain measure (see Example 4.2). Actually, provided this small
strain measure is used, the virtual displacements can be of any magnitude and indeed we later on choose convenient
magnitudes for solution.

>We use the wording “at and corresponding to the prescribed displacements” to mean “at the points and
surfaces and corresponding to the components of displacements that are prescribed at those points and surfaces.”
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from the actual displacements and are used by the analyst in a thought experiment to
establish the integral equilibrium equation in (4.7).
Let us emphasize that in (4.7),

The stresses 7 are assumed to be known quantities and are the unique stresses* that
exactly balance the applied loads.

The virtual strains € are calculated by the differentiations given in (4.4) from the
assumed virtual displacements U.

The virtual displacements U must represent a continuous virtual displacement field (to
be able to evaluate € ), with U equal to zero at and corresponding to the prescribed
displacements on S, ; also, the components in U are simply the virtual displacements
U evaluated on the surface ;.

All integrations are performed over the original volume and surface area of the body,
unaffected by the imposed virtual displacements.

To exemplify the use of the principle of virtual displacements, assume that we believe
(but are not sure) to have been given the exact solution displacement field of the body. This
given displacement field is continuous and satisfies the displacement boundary conditions
on S,. Then we can calculate € and 7 (corresponding to this displacement field). The vector
7 lists the correct stresses if and only if the equation (4.7) holds for any arbitrary virtual
displacements U that are continuous and zero at and corresponding to the prescribed
displacements on S,. In other words, if we can pick one virtual displacement field U for
which the relation in (4.7) is not satisfied, then this is proof that 7 is not the correct stress
vector (and hence the given displacement field is not the exact solution displacement field).

We derive and demonstrate the principle of virtual displacements in the following
examples.

EXAMPLE 4.2: Derive the principle of virtual displacements for the general three-
dimensional body in Fig. 4.1. _

To simplify the presentation we use indicial notation with the summation convention (see
Section 2.4), with x; denoting the ith coordinate axis (x; = X, x, = ¥, x3 = Z), ; denoting the
ith displacement component (u; = U, u, = V, u; = W), and a comma denoting differentiation.

The given displacement boundary conditions are 43« on §,, and let us assume that we have
no concentrated surface loads, that is, all surface loads are contained in the components f3.

The solution to the problem must satisfy the following differential equations (see, for
example, S. Timoshenko and J. N. Goodier [A]):

i, + ff =0  throughout the body (a)
with the natura] (force) boundary conditions
mn = ff  on§; (b)
and the essential (displacement) boundary conditions
Ui = uiu on S, ©

where S = S, U §;, S. N S, = 0, and the n, are the components of the unit normal vector to the
surface S of the body.

“For a proof that these stresses are unique, see Section 4.3.4.
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Consider now any arbitrarily chosen continuous displacements u; satisfying

l—l-,' = ( on Su (d)
Then (TUJ + f?)i, = 0
and therefore, ,[(TU' it fHu;dv =0 (e)
1%

We call the u; virtual displacements. Note that since the u; are arbitrary, (¢) can be satisfied if (and
only if) the quantity in the parentheses vanishes. Hence (¢) is equivalent to (a).
Using the mathematical identity (7,),; = 7y,;4: + T,l4;;, we obtain from (¢),

f [(rs@@)y — Totti; + ffw:]dV =0
1%

Next, using the identity [v (7)), dV = [s (ry)n; dS, which follows from the divergence
theorem® (see, for example, G. B. Thomas and R. L. Finney [A]), we have

f (— iy + fiw)dv + f (ry@)n; dS = 0 (f)

In light of (b) and (d), we obtain

[ nms + gy av + [ gravas = o ®

Also, because of the symmetry of the stress tensor (r; = 7;), we have
Tyl = Tyl3 0 + w)] = 7€

and hence we obtain from (g) the required result, (4.7),

f Ty€ AV = f ffudv + f Fyuy ds (h)
v v Sy

Note that in (h) we use the tensor notation for the strains; hence, the engineering shear strains
used in (4.7) are obtained by adding the appropriate tensor shear strain components, e.g.,
Yxr = &2 + &,. Also note that by using (b) [and (d)] in (f), we explicitly introduced the natural
boundary conditions into the principle of virtual displacements (h).

EXAMPLE 4.3: Consider the bar shown in Figure E4.3.

(a) Specialize the equation of the principle of virtual displacements (4.7) to this problem.
(b) Solve for the exact response of the mechanical model.

(¢) Show that for the exact displacement response the principle of virtual displacements is
satisfied with the displacement patterns (i) @ = ax and (ii) ¥ = ax?, where a is a constant,

(d) Assume that the stress solution is
F
3 Ao

Tex —

3 The divergence theorem states: Let F be a vector field in volume V; then

J‘Fi.idvzj‘F'ﬂdS
v b

where n is the unit outward normal on the surface S of V.
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% A= Ag(2 - x/L) l
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Figure E4.3 Bar subjected to concentrated load F

i.e., that 7., is the force F divided by the average cross-sectional area, and investigate
whether the principle of virtual displacements is satisfied for the displacement patterns
given in (¢).

The principle of virtual displacements (4.7) specialized to this bar problem gives

L
du du
A—dx=u | F a
0 dx E dx * “ =L ( )
The governing differential equations are obtained using integration by parts (see Exam-
ple 3.19):
dul* (“_d ( du)

uEA— | — | u—\EA——)dx=u | F b
uEAde Ludx dx x—u =L (b)

Since % |~ = O and # is arbitrary otherwise, we obtain from (b) (sge Example 3.18 for the
arguments used),

d d : : —_
—(EA _u) =0 differential equation of equilibrium ()
dx dx
du -
EA o = F  force or natural boundary condition (d)
x=L

Of course, in addition we have the displacement boundary condition u|.—o = 0. Integrating (c)
and using the boundary conditions, we obtain as the exact solution of the mathematical model,

“ T EA, \2 — x/L
Next, using (¢) and # = ax and # = ax? in equation (a), we obtain
L
F X
2 —2) dx = aLF
and
£ F x
Aol 2 — =} dx = al?*F
|, o mm {2 1) o e ®

Equations (f) and (g) show that for the exact displacement /stress response the principle of virtual
displacements is satisfied with the assumed virtual displacements.
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Now let us employ the principle of virtual displacements with 7., = 5 (F/A,) and use first
u = ax and then ¥ = ax?. We obtain with 7 = ax,

L
2 F X
2 Al2—-=)dx=aLF
foa3A0 °( L) ra

which shows that the principle of virtual displacements is satisfied with this virtual displacement
field. For # = ax?, we obtain

L
2 F X
2ax — — 2—=1d L*F
fo ax3A0A0( L) X F a

and this equation shows that 7, = £(F/Ao) is not the correct stress solution.

The principle of virtual displacements can be directly related to the principle that the

total potential I1 of the system must be stationary (see Sections 3.3.2 and 3.3.4). We study
this relationship in the following example.

EXAMPLE 4.4: Show how for a linear elastic continuum the principle of virtual displacements
relates to the principle of stationarity of the total potential.

Assuming a linear elastic continuum with zero initial stresses, the total potential of the
body in Fig. 4.1 is

Il = —f €'Ce dV — f Uf8 gv — f USHES dS — 2, U'RL (a)
2 v v Sf )

where the notation was defined earlier, and we have
T = Ce

with C the stress-strain matrix of the material.
Invoking the stationarity of I, i.e., evaluating 11 = 0 with respect to the displacements
(which now appear in the strains) and using the fact that C is symmetric, we obtain

f 8€’Ce dV = f SUF2 4V + f SUSES dS + 2, SU'RE (b)
1% 1% S¢ i

However, to evaluate Il in (a) the displacements must satisfy the displacement boundary condi-
tions. Hence in (b) we consider any variations on the displacements but with zero values at and
corresponding to the displacement boundary conditions, and the corresponding variations in
strains. It follows that invoking the stationarity of I is equivalent to using the principle of virtual
displacements, and indeed we may write

de =€ sU=0U;, &6U=0% o&oU=T
so that (b) reduces to (4.7).

It is important to realize that when the principle of virtual displacements (4.7) is

satisfied for all admissible virtual displacements with the stresses T “properly obtained”
from a continuous displacement field U that satisfies the displacement boundary conditions
on 3., all three fundamental requirements of mechanics are fulfilled:

1. Equilibrium holds because the principle of virtual displacements is an expression of

equilibrium as shown in Example 4.2.
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2. Compatibility holds because the displacement field U is continuous and satisfies the
displacement boundary conditions.

3. The stress-strain law holds because the stresses T have been calculated using the
constitutive relationships from the strains € (which have been evaluated from the
displacements U).

So far we have assumed that the body being considered is properly supported, i.e., that
there are sufficient support conditions for a unique displacement solution. However, the
principle of virtual displacements also holds when all displacement supports are removed
and the correct reactions (then assumed known) are applied instead. In this case the surface

area Sy on which known tractions are applied is equal to the complete surface area S of the
“body (and S, is zero)®. We use this basic observation in developing the governing finite
element equations. That is, it is conceptually expedient to first not consider any displace-
ment boundary conditions, develop the governing finite element equations accordingly, and
then prior to solving these equations impose all displacement boundary conditions.

Finite Element Equations

Let us now derive the governing finite element equations. We first consider the response of
the general three-dimensional body shown in Fig. 4.1 and later specialize this general
formulation to specific problems (see Section 4.2.3).

In the finite element analysis we approximate the body in Fig. 4.1 as an assemblage
of discrete finite elements interconnected at nodal points on the element boundaries. The
displacements measured in a local coordinate system x, y, z (to be chosen conveniently)
within each element are assumed to be a function of the displacements at the N finite
element nodal points. Therefore, for element m we have

u™(x, y, 2) = H™(x,3,2) U (4.8)

where H™ is the displacement interpolation matrix, the superscript m denotes element rm,
and U is a vector of the three global displacement components U;, Vi, and W; at all nodal

points, including those at the supports of the element assemblage; i.e., U is a vector of
dimension 3N,

U= [UViW, U,WW, ... UyVaWi] (4.9)
We may note here that more generally, we write
U'=[U, U, Uy ... U] (4.10)

where it is understood that U; may correspond to a displacement in any direction X, ¥, or
Z, or even 1n a direction not aligned with these coordinate axes (but aligned with the axes
of another local coordinate system), and may also signify a rotation when we consider
beams, plates, or shells (see Section 4.2.3). Since U includes the displacements (and rota-

S For this reason, and for ease of notation, we shall now mostly (i.c., until Section 4.4.2) no longer use the
superscripts Sy and S, but simply the superscript S on the surface tractions and displacements.
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tions) at the supports of the element assemblage, we need to impose, at a later time, the
known values of U prior to solving for the unknown nodal point displacements.

Figure 4.1 shows a typical finite element of the assemblage. This element has eight
nodal points, one at each of its corners, and can be thought of as a “brick” element. We
should imagine that the complete body is represented as an assemblage of such brick
elements put together so as to not leave any gaps between the element domains. We show
this element here merely as an example; in practice, elements of different geometries and
nodal points on faces and in the element interiors may be used.

The choice of element and the construction of the corresponding entries in H” (which
depend on the element geometry, the number of element nodes/degrees of freedom, and
convergence requirements) constitute the basic steps of a finite element solution and are
discussed in detail later. )

Although all nodal point displacements are listed in U, it should be realized that for
a given element only the displacements at the nodes of the element affect the displacement
and strain distributions within the element.

With the assumption on the displacements in (4.8) we can now evaluate the corre-
sponding element strains,

€™(x, y, 7) = B™(x, y, 2)U (4.11)

where B™ is the strain-displacement matrix; the rows of B™ are obtained by appropriately
differentiating and combining rows of the matrix H™,

The purpose of defining the element displacements and strains in terms of the com-
plete array of finite element assemblage nodal point displacements may not be obvious now.
However, we will see that by proceeding in this way, the use of (4.8) and (4.11) in the
principle of virtual displacements will automatically lead to an effective assemblage process
of all element matrices into the governing structure matrices. This assemblage process is
referred to as the direct stiffness method.

The stresses in a finite element are related to the element strains and the element initial
stresses using

M = Cimelm 4 pilm) (4.12)

where C™ is the elasticity matrix of element m and /™ are the given element initial
stresses. The material law specified in C™ for each element can be that for an isotropic or
an anisotropic material and can vary from element to element.

Using the assumption on the displacements within each*inite element, as expressed in
(4.8), we can now derive equilibrium equations that correspond to the nodal point displace-
ments of the assemblage of finite elements. First, we rewrite (4.7) as a sum of integrations
over the volume and areas of all finite elements:

E E(m)T ,.r(m) dV(m) — E ii‘(m)TfB(m) dV'(m)

m V(m) m V(m)

(4.13)
+ 2 TS gsm 1 D TTRE

m Js{m, ..., st
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where m = 1, 2, . .., k, where k = number of elements and S{™, . .., S denotes the
element surfaces that are part of the body surface S. For elements totally surrounded by
other elements no such surfaces exist, whereas for elements on the surface of the body one
or more such element surfaces are included in the surface force integral. Note that we
assume in (4.13) that nodal points have been placed at the points where concentrated loads
are applied, although a concentrated load can of course also be included in the surface force
integrals.

It is important to note that since the integrations in (4.13) are performed over the
element volumes and surfaces, for efficiency we may use a different and any convenient
coordinate system for each element in the calculations. After all, for a given virtual displace-
ment field, the internal virtual work 1s a number, as is the external virtual work, and this
number can be evaluated by integrations in any coordinate system. Of course, it is assumed
that for each integral in (4.13) only a single coordinate system for all variables is employed;
e.g., U™ is defined in the same coordinate system as £?™, The use of different coordinate
systems 1s in essence the reason why each of the integrals can be evaluated very effectively
in general element assemblages.

The relations in (4.8) and (4.11) have been given for the unknown (real) element
displacements and strains. In our use of the principle of virtual displacements we employ
the same assumptions for the virtual displacements and strains

a(x, y, 7) = H™(x, y, 2)U (4.14)

€™(x, y, 2) = B™(x, y, 2)U (4.15)

In this way the element stiffness (and mass) matrices will be symmetric matrices.
If we now substitute into (4.13), we obtain

ﬁf[E f BeTCB™ dV(”')]ﬁ = 67_{2 f HCT £50 de}
yim} n yim)

m m

{ w
A3 [ HSOTEsm gsmt  (4.16)
L m JS(I'"), e S J

— 42 r BT 1 (m) dV(M)} + Re
. m JV(M)

-

where the surface displacement interpolation matrices H*™ are obtained from the displace-
ment interpolation matrices H™ in (4.8) by substituting the appropriate element surface
coordinates (see Examples 4.7 and 5.12) and R is a vector of concentrated loads applied
to the nodes of the element assemblage.

We should note that the /th component in Rc is the concentrated nodal force that
corresponds to the ith displacement component in U. In (4.16) the nodal point displacement

vectors U and U of the element assemblage are independent of element m and are therefore
taken out of the summation signs.

To obtain from (4.16) the equations for the unknown nodal point displacements, we
apply the principle of virtual displacements n times by imposing unit virtual displacements
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in turn for all components of U. In the first application U = e,,” in the second application
U = e, and so on, until in the nth application U = e, so that the result is

KU = R (4.17)

where we do not show the identity matrices I due to the virtual displacements on each side
of the equation and

R=R;+R;— R, + R¢ (4.18)

and, as we shall do from now on, we denote the unknown nodal point displacements as U;
ie,U=U.
The matrix K is the stiffness matrix of the element assemblage,

K= BOTCmB™ Jyim
m  Jvim (4.19)

]
— K(rn)

The load vector R includes the effect of the element body forces,

Ry =2 | H™fEm gyt
m Jyim) I (4.20)

= Rg")

the effect of the element surface forces,

R = E HS(TES(m) (m)
m Sl(""),...,_.ss[") 1 (4.21)

l
= Ri!")

the effect of the element initial stresses,

R =2 | B™pm gym
e | (4.22)
= R?")

and the nodal concentrated loads Rc.

7 For the definition of the vector e;, see the text following (2.7).
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We note that the summation of the element volume integrals in (4.19) expresses the
direct addition of the element stiffness matrices K™ to obtain the stiffness matrix of the
total element assemblage. In the same way, the assemblage body force vector R is calcu-
lated by directly adding the element body force vectors R¥”; and Ry and R, are similarly
obtained. The process of assembling the element matrices by this direct addition is called
the direct stiffness method.

This elegant writing of the assemblage process hinges upon two main factors: first, the
dimensions of all matrices to be added are the same and, second, the element degrees of
freedom are equal to the global degrees of freedom. In practice of course only the nonzero
rows and columns of an element matrix K™ are calculated (corresponding to the actual
element nodal degrees of freedom), and then the assemblage is carried out using for each
element a connectivity array LM (see Example 4.11 and Chapter 12). Also, in practice, the
element stiffness matrix may first be calculated corresponding to element local degrees of
freedom not aligned with the global assemblage degrees of freedom, in which case a
transformation is necessary prior to the assemblage [see (4.41)].

Equation (4.17) is a statement of the static equilibrium of the element assemblage. In
these equilibrium considerations, the applied forces may vary with time, in which case the
displacements also vary with time and (4.17) is a statement of equilibrium for any specific
point in time. (In practice, the time-dependent application of loads can thus be used to
model multiple-load cases; see Example 4.5.) However, if in actuality the loads are applied
rapidly, measured on the natural frequencies of the system, inertia forces need to be
considered,; i.e., a truly dynamic problem needs to be solved. Using d’ Alembert’s principle,
we can simply include the element inertia forces as part of the body forces. Assuming that
the element accelerations are approximated in the same way as the element displacements
in (4.8), the contribution from the total body forces to the load vector R is (with the X, Y,
Z coordinate system stationary)

Ry =2 | HOT[fse — pmHm{] gy (4.23)

m yim)

where £7™ no longer includes inertia forces, U lists the nodal point accelerations (i.e., is the
second time derivative of U), and p™ is the mass density of element m. The equilibrium
equations are, in this case,

MU + KU = R (4.24)

where R and U are time-dependent. The matrix M is the mass matrix of the structure,

M=, p™WHTH™ gyim
m Jvie | (4.25)

= M(’")

In actually measured dynamic responses of structures it is observed that energy is
dissipated during vibration, which in vibration analysis is usually taken account of by
introducing velocity-dependent damping forces. Introducing the damping forces as addi-
tional contributions to the body forces, we obtain corresponding to (4.23),

R, = | HOM A — peHOU — k™H™U] dV™ (4.26)
m vim}
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In this case the vectors £ no longer include inertia and velocity-dependent damping
forces, U is a vector of the nodal point velocities (i.e., the first time derivative of U), and
k'™ is the damping property parameter of element m. The equilibrium equations are, in this
case,

MU + CU + KU = R 4.27)

where C is the damping matrix of the structure; 1.e., formally,

cC= KO H®TH™ gym (4.28)

vim)
|

e C(m)

In practice it is difficult, if not impossible, to determine for general finite element
assemblages the element damping parameters, in particular because the damping properties
are frequency dependent. For this reason, the matrix C is in general not assembled from
element damping matrices but is constructed using the mass matrix and stiffness matrix of
the complete element assemblage together with experimental results on the amount of
damping. Some formulations used to construct physically significant damping matrices are
described in Section 9.3.3.

A complete analysis, therefore, consists of calculating the matrix K (and the matrices
M and C in a dynamic analysis) and the load vector R, solving for the response U from
(4.17) [or U, U, U from (4.24) or (4.27)], and then evaluating the stresses using (4.12). We
should emphasize that the stresses are simply obtained using (4.12)—hence only from the
initial stresses and element displacements—and that these values are not corrected for
externally applied element pressures or body forces, as is common practice in the analysis
of frame structures with beam elements (see Example 4.5 and, for example, S. H. Crandall,
N. C. Dahl, and T. J. Lardner [A]). In the analysis of beam structures, each element
represents a one-dimensional stress situation, and the stress correction due to distributed
loading is performed by simple equilibrium considerations. In static analysis, relatively long
beam elements can therefore be employed, resulting in the use of only a few elements (and
degrees of freedom) to represent a frame structure. However, a similar scheme would
require, in general two- and three-dimensional finite element analysis, the solution of
boundary value problems for the (large) element domains used, and the use of fine meshes
for an accurate prediction of the displacements and strains is more effective. With such fine
discretizations, the benefits of even correcting approximately the stress predictions for the
effects of distributed element loadings are in general small, although for specific situations
of course the use of a rational scheme can result in notable improvements.

To illustrate the above derivation of the finite element equilibrium equations, we
consider the following examples.

EXAMPLE 4.5: Establish the finite element equilibrium equations of the bar structure shown
in Fig. E4.5. The mathematical model to be used is discussed in Examples 3.17 and 3.22. Use
the two-node bar element idealization given and consider the following two cases:

1. Assume that the loads are applied very slowly when measured on the time constants
(natural periods) of the structure.

2. Assume that the loads are applied rapidly. The structure is initially at rest.
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(e) Time variation of loads

Figure E4.5 Two-element bar assemblage
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In the formulation of the finite element equilibrinm equations we employ the general
equations (4.8) to (4.24) but use that the only nonzero stress is the longitudinal stress in the bar.
Furthermore, considering the complete bar as an assemblage of 2 two-node bar elements corre-
sponds to assuming a linear displacement variation between the nodal points of each element.

The first step is to construct the matrices H™ and B™ for m = 1, 2. We recall that
although the displacement at the left end of the structure is zero, we first include the displacement
at that surface in the construction of the finite element equilibrium equations.

Corresponding to the displacement vector UT = [U; U, U;), we have

o=|(,_*) *
o = | (1- ) 55 0

1 1
W= | — 0
8-~ 5 1w O

X X
H? = |0 (1~
! ( 80) 80]

B@ = |0 _1 1]

80 80

The matenal property matrices are
c® = E C® = E

where E is Young’s modulus for the material. For the volume integrations we need the
cross-sectional areas of the elements. We have

2
AD = 1 cm? A? = (1 + 4i0) cm?

When the loads are applied very slowly, a static analysis is required in which the stiffness
matrix K and load vector R must be calculated. The body forces and loads are given in Fig. E4.5.
We therefore have

19 1 ] ] 50 =\ 1 1 1
K (I)E_[, 100 [ 100 100 O] dx Efo (1 40) 80 [0 80 30] ax

0 I
L 80
g[ 1 -1 0] o 0 o
or K:ITOG -1 1 O -2-&-6 0 1 -1
0 0 0] 0 -1 1]
C 24 -24 0]
- Ll 24 154 -13 (a)
240

0 -13 13
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and also,
_ X - -~
1 — —
100 0
Ol x % 1 -=|/1
= — -|- S —
Rz {(I)J.0 100 (1) dx J; (1 + 40) 80 (lo)dx}fz(t)
0 x
o _ . 80
| 1507
='3- 186 fz(t) (b)
| 68_
- 0
Rc = 0 |A() (c)
LlOO_

To obtain the solution at a specific time ¢*, the vectors Ry and Rc must be evaluated correspond-
ing to t*, and the equation

KU |t=t"‘ = RB|t=t"' + RC|t=t* (d)

yields the displacements at t*. We should note that in this static analysis the displacements at time
t* depend only on the magnitude of the loads at that time and are independent of the loading
history.

Considering now the dynamic analysis, we also need to calculate the mass matrix. Using
the displacement interpolations and (4.25), we have

—

N
100 100 X
X
M=(1)pJ. x [(1“—) — O]dx
. ™ 100/ 100
. 0
-0 -
50 x x x x
+ ~ )1 - = - =) =
p_[, (1 + 40) 20 [0 (1 80) so] ax
x
80
7200 100 07
Hence M=-’é 100 584 336
|0 336 1024

Damping was not specified; thus, the equilibrium equations now to be solved are
MU(r) + KU() = Ry(f) + Rc{d) ©

where the stiffness matrix K and load vectors Rp and R¢ have already been given in (a) to (c).
Using the initial conditions

Ul =0; [.JI:=0 =0 (f)

these dynamic equilibrium equations must be integrated from time O to time ¢* in order to obtain
the solution at time ¢* (see Chapter 9).
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To actually solve for the response of the structure in Fig. E4.5(a), we need to impose
U, = 0 for all time ¢. Hence, the equations (d) and (e) must be amended by this condition (see
Section 4.2.2). The solution of (d) and (e) then yields U.(z), Us(z), and the stresses are obtained
using

™ = C™WB™U();, m=1,2 (2)

These stresses will be discontinuous between the elements because constant element strains are
assumed. Of course, in this example, since the exact solution to the mathematical model can be
computed, stresses more accurate than those given by (g) could be evaluated within each
element.

In static analysis, this increase in accuracy could simply be achieved, as in beam theory,
by adding a stress correction for the distributed element loading to the values given in (g).
However, such a stress correction is not straightforward in general dynamic analysis (and in any
two- and three-dimensional practical analysis), and if a large number of elements is used to
represent the structure, the stresses using (g) are sufficiently accurate (see Section 4.3.6).

EXAMPLE 4.6: Consider the analysis of the cantilever plate shown in Fig. E4.6. To illustrate
the analysis technique, use the coarse finite element idealization given in the figure (in a practical
analysis more finite elements must be employed (see Section 4.3). Establish the matrices H®,
B, and C®,

The cantilever plate is acting in plane stress conditions. For an isotropic linear elastic
material the stress-strain matrix is defined using Young’s modulus E and Poisson’s ratio v (see
Table 4.3),

— —

1 v 0
E v 1 0
@ =
C 1 — 2 0 0 1 —w
- 2—-

The displacement transformation matrix H® of element 2 relates the element internal
displacements to the nodal point displacements,

@)
I:u(xs' y)] _ H(Z)U (a)
o(x, y)
where U is a vector listing all nodal point displacements of the structure,
UT = [Ul U- U3 Us ... Un Uls] (b)

(As mentioned previously, in this phase of analysis we are considering the structural model
without displacement boundary conditions.) In considering element 2, we recognize that only the
displacements at nodes 6, 3, 2, and 5 affect the displacements in the element. For computational
purposes it is conventent to use a convention to number the element nodal points and correspond-
ing element degrees of freedom as shown in Fig E4.6(c). In the same figure the global structure
degrees of freedom of the vector U in (b) are also given.

To derive the matrix H® in (a) we recognize that there are four nodal point displacements
each for expressing u(x, y) and v(x, y). Hence, we can assume that the local element displace-
ments # and v are given in the following form of polynomials in the local coordinate variables
x and y:

u(x, y) = ay + axx + azy + auxy

v(x,y) = B1 + Bx + B3y + Baxy ©
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(c) Typical two-dimensional four-node element defined in local coordinate system

Figure E4.6 Finite element plane stress analysis

The unknown coefficients a1, . . . , B4, which are also called the generalized coordinates, will
be expressed in terms of the unknown element nodal point displacements u;, . . ., 4s and
v1, . . . , 04. Defining

0 =[ur uz us us { v1 V2 v3 V4] (d)

we can write (¢) in matrix form:

Lo ] = @ ©
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¢ 0]
P = : =
where [0 o b=1[1 x y xy]
and ol =[lay a» az as i B1 B Bs B
Equation (¢) must hold for all nodal points of the element; therfore, using (d), we have
i = Ao (f)
A
in which A= [0‘ 21]
11 1 1]
1 -1 1 -1
A, =
and Tl -1 -1 1
1 1 -1 -1

Solving from (f) for & and substituting into (), we obtain
H = ®A™' (8)

where the fact that no superscript is used on H indicates that the displacement interpolation
matrix is defined corresponding to the element nodal point displacements in (d),

q = 1[(1 +00+y A-01+y 1-0901-3 1+2(1-y)

4 0 0 0 0
0 0 0 0 ] (b)
I+x1+y A-010+y 1-1-y 1+x1-y

The displacement functions in H could also have been established by inspection. Let H;
be the (i, j)th element of H; then H,, corresponds to a function that varies linearly in x and y [as
required in (c)], is unity atx = 1,y = 1, and is zero at the other three element nodes. We discuss
the construction of the displacement functions in H based on these thoughts in Section 5.2.

With H given in (h) we have

Uz U3 U; U2 Uy U4
U U; i U, U, i Us Us i U, Us ': Uy Uy E
H? = [0 0 :' His Hy :' Hy; Hgs :' 0 0 E Hy, His E
0 0 \ Hs Hy \ Hyp Hx! 0 0 | Hu Hp |
u; v; <Element degrees of freedom (i)
Un Ui Us Uy Us<—Assemblage degrees
\ Hun His + 0 0%V ...zeros...O0 of freedom
i Hy  His i 0 0 E ...zeros...O]

The strain-displacement matrix can now directly be obtained from (g). In plane stress
conditions the element strains are

e = [Exx €y 'ny]

where . ou ov ou + ov
x = —_— € = —-—; . = —_— —_
Ty Ty e
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Using (g) and recognizing that the elements in A™' are independent of x and y, we obtain

B = EA™!
(01 0y 0 0 0 O]
where E=]10 0 0 0 0 0 1 x
001 x 01 0 y|
Hence, the strain-displacement matrix corresponding to the local element degrees of
freedom is
Ja+y ~+y -0-3» -y
B = 2 0 0 0 0
| (1 + x) 1-x) —(1—-x —(1+x
0 0 0 0 ]

(1 + x) 1-x —-(1-x) —-(1+1x ()
A+y —-Q+y -1-y -y
The matrix B could also have been calculated directly by operating on the rows of the matrix H

in (h).
Let B; be the (i, j)th element of B; then we now have

'—0 0 E 313 317 E Blz 316 E 0 0 E Bl4 BIS i Bll BIS E 0 0 E
B®=|0 O : Bys By | By Bys : 0 O ! By By ! Bu By | 0 0 :
_0 0 E Byi Bi; | Bs; B E 0 0 By B i By By 00 E
07
...zeroes...0
0—
where the element degrees of freedom and assemblage degrees of freedom are ordered as in (d)

and (b).

EXAMPLE 4.7: A linearly varying surface pressure distribution as shown in Fig. E4.7 is
applied to element (m) of an element assemblage. Evaluate the vector R¢” for this element.

The first step in the calculation of R{ is the evaluation of the matrix H™. This matrix
can be established using the same approach as in Example 4.6. For the surface displacements we
assume

u® = a; + ax + azx?
p3 = B1 + Bzx + B3x2

where (as in Example 4.6) the unknown coefficients a;, . . . , B3 are evaluated using the nodal
point displacements. We thus obtain
[us(x)] - ¥

(a)

0°(x)
W =l w us ' v vy 03]
and
mz[hﬂ+ﬂ ~ix1-x (1-x) 0 0 0 ]
0 0 0 Ix(1 +x) —3x(1 —x) (1 — x?
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Thickness = 0.5 cm

Element m

(a) Element layout

vi = Uy

uy = Uy,

(b) Local-global degrees of freedom

Figure E4.7 Pressure loading on element (m)

The vector of surface loads is (with p; and p, positive)

£ = [ 1+ 0py +31 — x)p‘z‘]
-3l + x)pt = (1 — x)p}

To obtain R{ we first evaluate
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[ pt
Pz
2(pt + p%)

—Pi

—P3

—2(pt + p3)]

U |

to obtain Rs

Thus, corresponding to the global degrees of freedom given in Fig. E4.7, we have

Uo Un Uiz Uis Ui Uis
ROT=4H0 ... 0 i pt —p3 ; 0 0 : 2(pt+p9 —2pi+ps) i 0
Uz U,3+< Assemblage degrees of freedom
0: pt -pi: 0 ... 0]

The Assumption About Stress Equilibrium

We noted earlier that the analyses of truss and beam assemblages were originally not
considered to be finite element analysis because the “exact” element stiffness matrices can
be employed in the analyses. These stiffness matrices are obtained in the application of the
principle of virtual displacements if the assumed displacement interpolations are in fact the
exact displacements that the element undergoes when subjected to the unit nodal point
displacements. Here the word “exact” refers to the fact that by imposing these displacements
on the element, all pertinent differential equations of equilibrium and compatibility and the
constitutive requirements (and also the boundary conditions) are fully satisfied in static
analysis.

In considering the analysis of the truss assemblage in Example 4.5, we obtained the
exact stiffness matrix of element 1. However, for element 2 an approximate stiffness matrix
was calculated as shown in the next example.

EXAMPLE 4.8: Calculate for element 2 in Example 4.5 the exact element internal displace-
ments that correspond to a unit element end displacement u, and evaluate the corresponding
stiffness matrix. Also, show that using the element displacement assumption in Example 4.5,
internal element equilibrium is not satisfied.

Consider element 2 with a unit displacement imposed at its right end as shown in Fig. E4.8.
The element displacements are calculated by solving the differential equation (see Exam-

ple 3.22),
d{( du
E—A—)=0

dx( dx) (@)

subject to the boundary conditions #|,-o = 0 and u|,-s = 1.0. Substituting for the area A and
integrating the relation in (a), we obtain

3, 1
“_5(1 1+x/40) (b)
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1 T 2 |
}
i
i
|
‘l
_____
X
- 80 crm ——> F"igum E4.8 Element 2 of bar analyzed
in Example 4.5

These are the exact element internal displacements. The element end forces required to subject
the bar to these displacements are

du
12 dx |
(©)
kzz = EA é'l—‘
dx x=L
Substituting from (b) into (¢) we have
3E 3E
2= 30 N 80
Hence we have, using the symmetry of the element matrix and equilibrium to establish k;; and
ki1,
3 1 -1
= —FE
K 80 [-—1 1] @

The same result is of course obtained using the principle of virtual displacements with the
displacement (b).

We note that the stiffness coefficient in (d) is smaller than the corresponding value
obtained in Example 4.5 (3E/80 instead of 13 E/240). The finite element solution in Example 4.5
overestimates the stiffness of the structure because the assumed displacements artificially con-
strain the motion of the material particles (see Section 4.3.4). To check that the internal equi-
librium is indeed not satisfied, we substitute the finite element solution (given by the displacement
assumption in Example 4.5) into (a) and obtain

d x\ 1
— + =) —
e (1 36) &) #

The solution of truss and beam structures, using the exact displacements correspond-
ing to unit nodal point displacements and rotations to evaluate the stiffness matrices, gives
analysis results that for the selected mathematical model satisfy all three requirements of
mechanics exactly: differential equilibrium for every point of the structure (including nodal
point equilibrium), compatibility, and the stress-strain relationships. Hence, the exact
(unique) solution for the selected mathematical model is obtained.

We may note that such an exact solution is usually pursued in static analysis, in which
the exact stiffness relationships are obtained as described in Example 4.8, but an exact
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solution is much more difficult to reach in dynamic analysis because in

177

this case the

distributed mass and damping effects must be included (see, for example, R. W. Clough and

J. Penzien [A]).

However, although in a general (static or dynamic) finite element analysis, differential
equilibrium is not exactly satisfied at all points of the continuum considered, two important
properties are always satisfied by the finite element solution using a coarse or a fine mesh.

These properties are (see Fig. 4.2)

1. Nodal point equilibrium
2. Element equilibrium.

m-1 Element
m

> -9 o ®
q-1 | ___ l q
) 2 o
’ {\
7 \
¢ £ J-L-- -.JL‘\ s
! - my,
i ,"”r -‘""\.\
Sum of forces F™ equilibrate > { /} j *\\
externally applied loads \ 4 ! \
\\\ ’I // \
e A
Seed !
m-1 : m 1
' :"
\\ /
o ® \ma— & =,

e
"“h-._-—-"'-

Figure 4.2 Nodal point and element equilibrium in a finite element analysis

Forces F'™ are
in equilibrium
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Namely, consider that a finite element analysis has been performed and that we calculate
for each finite element m the element nodal point force vectors

Fm = f BMTpim) gy/m) (4.29)
vim)

where 7™ = C™e™, Then we observe that according to property 1,

At any node, the sum of the element nodal point forces is in equilibrium with the
externally applied nodal loads (which include all effects due to body forces, surface
tractions, initial stresses, concentrated loads, inertia and damping forces, and reac-
tions).

And according to property 2,

Each element m is in equilibrium under its forces F™,

Property 1 follows simply because (4.27) expresses the nodal point equilibrium
and we have

> F™ = KU (4.30)

The element equilibrium stated in property 2 is satisfied provided the finite element
displacement interpolations in H™ satisfy the basic convergence requirements, which in-
clude the condition that the element must be able to represent the rigid body motions (see
Section 4.3). Namely, let us consider element m subjected to the nodal point forces F™ and
impose virtual nodal point displacements corresponding to the rigid body motions. Then for
each virtual element rigid body motion with nodal point displacements @, we have

i - |

(B™&) ™ dVm = f €™ gy =
vim)

V(M)
because here € ™ = 0. Using all applicable rigid body motions we therefore find that the
forces F™ are in equilibrium.

Hence, a finite element analysis can be interpreted as a process in which

1. The structure or continuum is idealized as an assemblage of discrete elements con-
nected at nodes pertaining to the elements.

2. The externally applied forces (body forces, surface tractions, initial stresses, concen-
trated loads, inertia and damping forces, and reactions) are lumped to these nodes
using the virtual work principle to obtain equivalent externally applied nodal point
forces.

3. The equivalent externally applied nodal point forces (calculated in 2) are equilibrated
by the element nodal point forces that are equivalent (in the virtual work sense) to the
element internal stresses; i1.e., we have

2 F™ = R

4. Compatibility and the stress-strain material relationship are satisfied exactly, but
instead of equilibrium on the differential level, only global equilibrium for the com-
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plete structure, at the nodes, and of each element m under its nodal point forces F™
is satisfied.

Consider the following example.

EXAMPLE 4.9: The finite element solution to the problem in Fig. E4.6, with P = 100, E =
2.7 X 10% v = 0.30, ¢+ = 0.1, is given in Fig. E4.9. Clearly, the stresses are not continuous
between elements, and equilibrium on the differential level is not satisfied. However,

1. Show that £_F"™ = R and calculate the reactions.
2. Show that the element forces F for element 4 are in equilibrium.

The fact that 2 F™ = R follows from the solution of (4.17), and R consists of the sum
of all nodal point forces. Hence, this relation can also be used to evaluate the reactions.
Referring to the nodal point numbering in Fig. E4.6(b), we find

for node 1:
reactions R, = 100.15
R, = 41.36
for node 2:
reactions R, = 2.58 — 2.88 = —0.30
R, = 16.79 + 5.96 = 22.74 (because of rounding)
for node 3:
reactions R, = —99.85
R, = 35.90
for node 4:
horizontal force equilibrium: —42.01 + 42.01 = 0
vertical force equilibrium: —22.90 + 2290 = 0
for node 5:

horizontal force equilibrium: —60.72 — 12.04 + 44.73 + 28.03 =0
vertical force equilibrium: —35.24 — 35.04 + 19.10 + 51.18 = 0O
for node 6:
horizontal force equilibrium: 57.99 — 57.99 = 0
vertical force equilibrium: —6.81 + 6.81 = 0

And for nodes 7, 8, and 9, force equilibrium is obviously also satisfied, where at node 9 the
element nodal force balances the applied load P = 100.

Finally, let us check the overall force equilibrium of the model:
horizontal equilibrium:

100.15 — 0.30 — 99.85 = 0

vertical equilibrium:

41.36 + 22.74 + 35.90 ~ 100 = 0O
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Figure E4.9 Solution results for problem considered in Example 4.6 (rounded to digits shown)
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Figure E4.9 (continued)

181



182 Formulation of the Finite Element Method  Chap. 4

moment equilibrium (about node 2):
~100 X 4 + 100.15 X2 +9985 X2 =0

It is important to realize that this force equilibrium will hold for any finite element mesh, however

coarse the mesh may be, provided properly formulated elements are used (see Section 4.3).
Now consider element 4:

horizontal equilibrium:

0 — 57.99 + 28.03 + 29.97 = 0 (because of rounding)
vertical equilibrium:
~100 + 6.81 + 51.18 + 42.01 = 0
moment equilibrium (about its local node 3):

—100 X 2 + 5799 X2 + 4201 X2=0

Hence the element nodal forces are in equilibrium.
Element Local and Structure Global Degrees of Freedom

The derivations of the element matrices in Example 4.6 and 4.7 show that it is expedient to
first establish the matrices corresponding to the local element degrees of freedom. The
construction of the finite element matrices, which correspond to the global assemblage
degrees of freedom [used in (4.19) to (4.25)] can then be directly achieved by identifying
the global degrees of freedom that correspond to the local element degrees of freedom.
However, considering the matrices H™, B™, K™, and so on, corresponding to the global
assemblage degrees of freedom, only those rows and columns that correspond to element
degrees of freedom have nonzero entries, and the main objective in defining these specific
matrices was to be able to express the assemblage process of the element matrices in a
theoretically elegant manner. In the practical implementation of the finite element method,
this elegance is also present, but all element matrices are calculated corresponding only to
the element degrees of freedom and are then directly assembled using the correspondence
between the local element and global assemblage degrees of freedom. Thus, with only the
element local nodal point degrees of freedom listed in @, we now write (as in Example 4.6)

u = Hi (4.31)

where the entries in the vector u are the element displacements measured in any convenient
local coordinate system. We then also have

€ = Bu (4.32)

Considering the relations in (4.31) and (4.32), the fact that no superscript is used on
the interpolation matrices indicates that the matrices are defined with respect to the local
element degrees of freedom. Using the relations for the element stiffness matrix, mass
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matrix, and load vector calculations as before, we obtain

K = L B’CB 4V (4.33)
M = fv pHTH 4V (4.34)
Rp = L Hf? 4V (4.35)
Rs = L HY'£5 dS (4.36)
R, = fv B7r! dV (4.37)

where all variables are defined as in (4.19) to (4.25), but corresponding to the local element
degrees of freedom. In the derivations and discussions to follow, we shall refer extensively
to the relations in (4.33) to (4.37). Once the matrices given in (4.33) to (4.37) have been
calculated, they can be assembled directly using the procedures described in Example 4.11
and Chapter 12.

In this assemblage process it is assumed that the directions of the element nodal point
displacements 1 in (4.31) are the same as the directions of the global nodal point displace-
ments U. However, 1n some analyses it is convenient to start the derivation with element
nodal point degrees of freedom u that are not aligned with the global assemblage degrees
of freedom. In this case we have

u = Hia (4.38)
and

i = Té (4.39)

where the matrix T transforms the degrees of freedom 1 to the degrees of freedom @ and
(4.39) corresponds to a first-order tensor transformation (see Section 2.4); the entries in
column j of the matrix T are the direction cosines of a unit vector corresponding to the jth
degree of freedom in 4 when measured in the directions of the @ degrees of freedom.
Substituting (4.39) into (4.38), we obtain

H = HT (4.40)
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Thus, identifying all finite element matrices corresponding to the degrees of freedom & with
a curl placed over them, we obtain from (4.40) and (4.33) to (4.37),

K=TKTI; M =TMT
Rz = Trﬁs; Rs = Trﬁs;

(4.41)

R{ = TTRI
We note that such transformations are also used when boundary displacements must
be imposed that do not correspond to the global assemblage degrees of freedom (see

Section 4.2.2). Table 4.1 summarizes some of the notation that we have employed.
We demonstrate the presented concepts in the following examples.

TABLE 4.1 Summary of some notation used

@ u™ =H™Uoru™ = H™ U
where n™ = displacements within element m as a function of the element coordinates
U = nodal point displacements of the total element assemblage [from equation (4.17)
onward we simply use U].

u = Hi
where u = u™ and it is implied that a specific element is considered

i = nodal point displacements of the element under consideration; the entries of # are

those displacements in U that belong to the element.

(b)

u = Ha
where i = nodal point displacements of an element in a coordinate system other than the
global system (in which U is defined).

(©)

EXAMPLE 4.10: Establish the matrix H for the truss element shown in Fig. E4.10. The
directions of local and global degrees of freedom are shown in the figure.
Here we have

L) e ) o
- — 0 — + .
[u(x)] if\2 7 (2 x) 0 &) .
= — ~ a
v(x) L L L Uz
0 (2 x) 0 (2 + x) :2_
] [ cosa sina 0 0 [
and 01 _ —sin @ CoS « 0 0 01
I 0 0 cosa sihall i
| §2 | 0 0 —sin @ cos aj| vz}
Thus, we have
-1 - .
(__ _ x) 0 (_l_; + x) c?s a sin o 0 0
H = 1 2 2 —sin @ cos & 0 0
L (L ) (L ) 0 0 cos @ Ssina
0 - — X 0 -+ x .
2 2 11 O 0 —sin @ cos a |

It should be noted that for the construction of the strain-displacement matrix B (in linear
analysis), only the first row of H is required because only the normal strain €. = du/dx is
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—
X  Figure E4.10 Truss element

considered in the derivation of the stiffness matrix. In practice, it is effective to use only the first
row of the matrix H in (a) and then transform the matrix K as given in (4.41).

EXAMPLE 4.11: Assume that the element stiffness matrices corresponding to the element
displacements shown in Fig. E4.11 have been calculated and denote the elements as shown (),
®), (©), and (D). Assemble these element matrices directly into the global structure stiffness
matrix with the displacement boundary conditions shown in Fig. E4.11(a). Also, give the con-
nectivity arrays LM for the elements.

In this analysis all element stiffness matrices have already been established corresponding
to the degrees of freedom aligned with the global directions. Therefore, no transformation as
given in (4.41) is required, and we can directly assemble the complete stiffness matrix.

Since the displacements at the supports are zero, we need only assemble the structure
stiffness matrix corresponding to the unknown displacement components in U. The connectivity
array (LM array) for each element lists the global structure degrees of freedom in the order of
the element local degrees of freedom, with a zero signifying that the corresponding column and
row of the element stiffness matrix are not assembled (the column and row correspond to a zero
structure degree of freedom) (see also Chapter 12).

U, U, U Uy Us Global displacements
up v U2 V2 us v3 us ve—Local displacements
a1 A1z voe e ai a7 aig] w U»
a dan ct ax»x A7 d»g Uy U3
Uz
U2
KA =
U
ds1 de2 Tt des dA67 des vy U
an an ¢ A Qamnr  Qrg ug U,
| d31  As2 ase as7 ass| vs Us
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Quadrilateral
plane
stress
element

Beam
element

(a) Structural assemblage and degrees of freedom

(b) Individual elements

Figure E4.11

A simple element assemblage

6,

daa
d54

das dyg
dss dse
des d66 |

6, 6,
U, U, U,

1 U» ()]

Ciz2 Ci3 Ciq u, Us
€ €3 Cyu| v U,
Cya €3 C | U U,
Ca2 Ca3 Cau | V2 U
U,

Ui

6,

U» Uc,

U2 U-;

6 Us
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and the equation K = 2 K™ gives

U, U, Us; Us Us Us U, Us

[des sl 177} as7 dss Zeros 10U
A an t € a2t € ap as C31 Cx U,
ax a2 + Cays ax + Cas ax azs C41 Ca2 Us
d an an a7 + bz aw + by by b3, Us
K =las as as2 ag; + bas ass + bas  ba baz Us
] o Cia bia bis by + cii b2 + iz das Us

+ das + dss
€23 C24 b2 b4 by + car bn + 02 dss Us

+ ds4 + dss
I symmetric about diagonal l dea des des d Us

The LM arrays for the elements are

for element A: IM=[2 3 0 0 0 1 4 5]
for element B: IM=[6 7 4 5]

for element C: IM=[6 7 2 3]

for element D: IM=[0 0 0 6 7 8]

We note that if the element stiffness matrices and LM arrays are known, the total structure
stiffness matrix can be obtained directly in an automated manner (see also Chapter 12).

4.2.2 Imposition of Displacement Boundary Conditions

We discussed in Section 3.3.2 that in the analysis of a continuum we have displacement (also
called essential) boundary conditions and force (also called natural) boundary conditions.
Using the displacement-based finite element method, the force boundary conditions are
taken into account in evaluating the externally applied nodal point force vector. The vector
R assembles the concentrated loads including the reactions, and the vector Ry contains the
effect of the distributed surface loads and distributed reactions.

Assume that the equilibrium equations of a finite element system without the imposi-
tion of the displacement boundary conditions as derived in Section 4.2.1 are, neglecting

damping,
Maa Mab I.ja Kaa Kab ] [Ua ] [Ra ]
< |+ = 4.42
[Mba Mbb][Ub] [Kba Koo | Us R, (4.42)
where the U, are the unknown displacements and the U, are the known, or prescribed,
displacements. Solving for U,, we obtain

M..U, + K..U, = R, — Ko,U, — ML, U, (4.43)

Hence, in this solution for U,, only the stiffness and mass matrices of the complete assem-
blage corresponding to the unknown degrees of freedom U, need to be assembled (see
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Example 4.11), but the load vector R, must be modified to include the effect of imposed
nonzero displacements. Once the displacements U, have been evaluated from (4.43), the
reactions can be calculated by first writing [(using (4.18)]

R, =R+ Rf—- R+ R%Z+ R, (4.44)

where R%, R%, R?, and R?Z are the known externally applied nodal point loads not including
the reactions and R, denotes the unknown reactions. The superscript b indicates that of R;,
Rs, R,, and R¢ in (4.17) only the components corresponding to the U, degrees of freedom
are used in the force vectors. Note that the vector R, may be thought of as an unknown
correction to the concentrated loads. Using (4.44) and the second set of equations in (4.42),
we thus obtain

R, = M,,U, + M,,U, + K,.U. + K»»U, — R5 — R2 + R? — R% (4.45)

Here, the last four terms are a correction due to known internal and surface element loading
and any concentrated loading, all directly applied to the supports.
We demonstrate these relations in the following example.

EXAMPLE 4.12: Consider the structure shown in Fig. E4.12. Solve for the displacement
response and calculate the reactions.
P p (force/length) v
| 7 17 7 v
%
/ z
4 A
El 7 7
I‘ 2E1 Z
o
L et Jowr
L
El= 10’
L =100
p =0.01
P=10
(a} Cantilever beam
Uy Us Us
U, Uy Us
kElement 1 Element 2
(b} Discretization
Figure E4.12 Analysis of cantilever beam
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We consider the cantilever beam as an assemblage of two beam elements. The governing
equations of equilibrium (4.42) are (using the matrices in Example 4.1)

[ -

12 6 12

6 AR ]
L* L L[* L Ui P
6 6
e - 2
7 4 -7 U, 0
_12o 6 3% 6 24 12f |, _el
EIl L L L* L L* L i 2
L] 6 6 12 B pL?
7 2 5 12 -— 4 U, =
24 12 24 12 pL
o T || | T R
12 12 pL?
= 4 -= 38 £~ LR
| L L i LU6_‘ i 12 K UG__

Here U] = [Us Us)and U, = 0. Using (4.43), we obtain, for the case of EI = 107, L = 100,
p =001, P = 10,

Ul =([—165 1.33 —479 0.83] x 10°*
and then using (4.45), we have
2
R, =
[—-250]

In using (4.42) we assume that the displacement components employed in Sec-
tion 4.2.1 actually contain all prescribed displacements [denoted as U, in (4.42)]. If this is
not the case, we need to identify all prescribed displacements that do not correspond to
defined assemblage degrees of freedom and transform the finite element equilibrium equa-
tions to correspond to the prescribed displacements. Thus, we write

U=TU (4.46)

where U is the vector of nodal point degrees of freedom in the required directions. The
transformation matrix T is an identity matrix that has been altered by the direction cosines

of the components in U measured in the original displacement directions [see (2.58)]. Using
(4.46) in (4.42), we obtain

MU + KU=R (4.47)
where M = T"MT,; K = T’KT; R = T'R (4.48)
We should note that the matrix multiplications in (4.48) involve changes only in those
columns and rows of M, K, and R that are actually affected and that this transformation
1s equivalent to the calculations performed in (4.41) on a single element matrix. In practice,
the transformation is carried out effectively on the element level just prior to adding the
element matrices to the matrices of the total assemblage. Figure 4.3 gives the transforma-
tion matrices T for a typical nodal point in two- and three-dimensional analysis when
displacements are constrained in skew directions. The unknown displacements can now be
calculated from (4.47) using the procedure in (4.42) and (4.43).
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Figure 4.3 Transformation to skew boundary conditions

In an alternative approach, the required displacements can also be imposed by adding
to the finite element equilibrium equations (4.47) the constraint equations that express the
prescribed displacement conditions. Assume that the displacement is to be specified at
degree of freedom i, say U; = b; then the constraint equation

kU; = kb (4.49)

is added to the equilibrium equations (4.47), where k > k;;. Therefore, the solution of the
modified equilibrium equations must now give U; = b, and we note that because (4.47) was
used, only the diagonal element in the stiffness matrix was affected, resulting in a numeri-
cally stable solution (see Section 8.2.6). Physically, this procedure can be interpreted as
adding at the degree of freedom i a spring of large stiffness £ and specifying a load which,
because of the relatively flexible element assemblage, produces at this degree of freedom the
required displacement b (see Fig. 4.4). Mathematically, the procedure corresponds to an
application of the penalty method discussed in Section 3.4.

In addition to specified nodal point displacement conditions, some nodal point dis-
placements may also be subjected to constraint conditions. Considering (4.24), a typical
constraint equation would be

U =2 a,U, (4.50)
j=1
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where the U, is a dependent nodal point displacement and the U,; are r; independent nodal
point displacements. Using all constraint equations of the form (4.50) and recognizing that
these constraints must hold in the application of the principle of virtual work for the actual
nodal point displacements as well as for the virtual displacements, the imposition of the
constraints corresponds to a transformation of the form (4.46) and (4.47), in which T is now
a rectangular matrix and U contains all independent degrees of freedom. This transforma-
tion corresponds to adding a,, times the ith columns and rows to the g;th columns and rows,
forj = 1,..., r.and all i considered. In the actual implementation the transformation is
performed effectively on the element level during the assemblage process.

Finally, it should be noted that combinations of the above displacement boundary
conditions are possible, where, for example, in (4.50) an independent displacement compo-
nent may correspond to a skew boundary condition with a specified displacement. We
demonstrate the imposition of displacement constraints in the following examples.

EXAMPLE 4.13: Consider the truss assemblage shown in Fig. E4.13. Establish the stiffness
matrix of the structure that contains the constraint conditions given.

The independent degrees of freedom in this analysis are U,, Uz, and U,. The element
stiffness matrices are given in Fig. E4.13, and we recognize that corresponding to (4.50), we

EA; EA, EA
o - - It
R ’ -

Displacement conditions: u; = 2u,
U= )

Figure E4.13 Truss assemblage



192

Formulation of the Finite Element Method  Chap. 4

have i = 3, &y = 2, and ¢, = 1. Establishing the complete stiffness matrix directly during the
assemblage process, we have

EA _EA, | [ 4EA _2EA

Ll L] L2 L2
EA 2EA EA
L] L] Lz L2

| 0 0O 0} L O 0 0
[ 4EA; _ 2EA]

L, Ls 0 0 O]

+ 0 O O {+]0 0 O
_2EAy o EAs| |0 0 k|
L Ly

where k »EA"'
L,

EXAMPLE 4.14: The frame structure shown in Fig. E4.14(a) is to be analyzed. Use symmetry
and constraint conditions to establish a suitable model for analysis.

V4
Fixed shaft B4 rL4> Uy

~ P

P#—-

LY

] P

(a) Frame structure (b} One-quarter of structure

Figure E4.14 Analysis of a cyclicly symmetric structure

The complete structure and applied loading display cyclic symmetry, so that only one-

quarter of the structure need be considered, as shown in Fig. E4.14(b), with the following
constraint conditions:
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This is a simple example demonstrating how the analysis effort can be reduced considerably
through the use of symmetry conditions. In practice, the saving through the use of cyclic
symmetry conditions can in some cases be considerable, and indeed only by use of such condi-
tions may the analysis be possible.

In this analysis, the structure and loading show cyclic symmetry. An analysis capability can
also be developed in which only a part of the structure is modeled for the case of a geometrically
cyclic symmetric structure with arbitrary loading (see, for example, W. Zhong and C. Qiu [A)]).

4.2.3 Generalized Coordinate Models for Specific Problems

In Section 4.2.1 the finite element discretization procedure and derivation of the equi-
librium equations was presented in general; i.e., a general three-dimensional body was
considered. As shown in the examples, the general equations derived must be specialized
in specific analyses to the specific stress and strain conditions considered. The objective in
this section is to discuss and summarize how the finite element matrices that correspond to
specific problems can be obtained from the general finite element equations (4.8) to (4.25).

Although in theory any body may be understood to be three-dimensional, for practical
analysis it is in many cases imperative to reduce the dimensionality of the problem. The first
step in a finite element analysis is therefore to decide what kind of problem?® is at hand. This
decision is based on the assumptions used in the theory of elasticity mathematical models
for specific problems. The classes of problems that are encountered may be summarized as
(1) truss, (2) beam, (3) plane stress, (4) plane strain, (5) axisymmetric, (6) plate bending,
(7) thin shell, (8) thick shell, and (9) general three-dimensional. For each of these problem
cases, the general formulation is applicable; however, only the appropriate displacement,
stress, and strain variables must be used. These variables are summarized in Tables 4.2 and
4.3 together with the stress-strain matrices to be employed when considering an isotropic
material. Figure 4.5 shows various stress and strain conditions considered in the formula-
tion of finite element matrices.

TABLE 4.2 C(Corresponding kinematic and static variables in various problems

Displacement

Problem components Strain vector €’ Stress vector 77
Bar u [E.u] [TH]
Beam w [Kxx] [Mxx]
Plane stress u, v [€xx €y Yiyl [Tz Tyy Tay)
Plane strain U, v [Gxx €,y ')’xy] [Txx Tyy T.ry]
Axisymmelric u, v [Exx €yy Yy £::..'.] [Tu Tyy Tay 722]
Three-dimensional u, v, W [€xx €y €2 Vay Vyz Ver) [Tex Ty Tez Ty Tyz Tex)
Plate bending w [Kex Kyy Kzy) MM, M,,]

. _ du _dv _du v _ dw _Fw . 0w
Notation. exx—a,eyy—?y-,y,y——?y E’.”’K”_ axz,x”-—a—yz, Key = 3% 9y’

In Examples 4.5 to 4.10 we already developed some specific finite element matrices.
Referring to Example 4.6, in which we considered a plane stress condition, we used for the
u and v displacements simple linear polynomial assumptions, where we identified the

8 We use here the parlance commonly used in engineering analysis but recognize that “choice of problem”
really corresponds to “choice of mathematical model” (see Section 1.2).



TABLE 4.3 Generalized stress-strain matrices for isotropic materials and the problems in Table 4.2

Material matrix C

194

Problem
Bar E
Beam EI
r— —
1 v 0
E
Plane stress v 1 0
1 - 2
1 —v
0 0
_ 2
_ , -
1 0
1 —v
. E(1 - v) v
Plane strain 1 0
QA+ -2 1-v»
1 —2v
0
n 2(1 - V)_J
_ , -
1 0
1 —v 1 —v
v v
1 : 0 1
_ -y — v
Axisymmetric EQ - v) {2
- — 2v
2(1 — »)
v v
0 1
__1 —-v 1 -
v v 7
1
1—v 1 —-v
v v
1
1 —-v 1 —v
v v
1
. _ E(1 — v) 1—v 1—-v
Three-dimensional
1+ v)Q - 2v) 1 — 2v
2(1 — v)
1 - 2v
Elements not 2(1 = v)
shown are zeros 1 — 2v
i 2(1 — v)J
1 v 0
. Eh’ v 1 0
Plate bending
12(1 — v?) 1 —v
0 0
_ 2

Notation: E = Young’s modulus, v = Poisson’s ratio, £ = thickness of plate, I = moment of inertia
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unknown coefficients in the polynomials as generalized coordinates. The number of un-
known coefficients in the polynomials was equal to the number of element nodal point
displacements. Expressing the generalized coordinates in terms of the element nodal point
displacements, we found that, in general, each polynomial coefficient is not an actual
physical displacement but is equal to a linear combination of the element nodal point
displacements.

Finite element matrices that are formulated by assuming that the displacements vary
in the form of a function whose unknown coefficients are treated as generalized coordinates
are referred to as generalized coordinate finite element models. A rather natural class of
functions to use for approximating element displacements are polynomials because they are
commonly employed to approximate unknown functions, and the higher the degree of the
polynomial, the better the approximation that we can expect. In addition, polynomials are
easy to differentiate; i.e., if the polynomials approximate the displacements of the structure,
we can evaluate the strains with relative ease.

Using polynomial displacement assumptions, a very large number of finite elements
for practically all problems in structural mechanics have been developed.

The objective in this section is to describe the formulation of a variety of generalized
coordinate finite element models that use polynomials to approximate the displacement
fields. Other functions could in principle be used in the same way, and their use can be
effective in specific applications (see Example 4.20). In the presentation, emphasis is given
to the general formulation rather than to numerically effective finite elements. Therefore,
this section serves primarily to enhance our general understanding of the finite element
method. More effective finite elements for general application are the isoparametric and
related elements described in Chapter 3.

In the following derivations the displacements of the finite elements are always de-
scribed in the local coordinate systems shown in Fig. 4.5. Also, since we consider one
specific element, we shall leave out the superscript (m) used in Section 4.2.1 [see (4.31)].

For one-dimensional bar elements (truss elements) we have

u(x) = oy + apx + azx? + . - - (4.51)

where x varies over the length of the element, u is the local element displacement, and a;,

o, . . . , are the generalized coordinates. The displacement expansion in (4.51) can also be
used for the transverse and longitudinal displacements of a beam.

For two-dimensional elements (i.e., plane stress, plane strain, and axisymmetric
elements), we have for the u and v displacements as a function of the element x and y
coordinates,

u(x,)’) = a; + ax +O.’3y + auxy + a5x2 + ...

o(x,y) = B + Box + By + Baxy + Bsx* + - - -

(4.52)

where o, o, . . ., and B,, B2, . . ., are the generalized coordinates.
In the case of a plate bending element, the transverse deflection w is assumed as a
function of the element coordinates x and y; i.e.,

wx,y) =y + ¥ax + 3y + yaxy + ysx? + - - (4.53)

where y;, ¥, . . . , are the generalized coordinates.
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{c} Plane strain condition: long dam subjected to water pressure

Figure 4.5 Various stress and strain conditions with illustrative examples
Finally, for elements in which the w, v, and w displacements are measured as a
function of the element x, y, and z coordinates, we have, in general,
u(x, v,2) = oy + aox + azy + auz + asxy + - - -
o(x,.2) = B + Box + B3y + Baz + Bsxy + - - - (4.54)
wx,y.2) =y t+ pxt+yyt vzt oyxy oo

where ay, a2, . . ., Bi, B2, .. ., and Y1, 72, . . . are now the generalized coordinates.
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As in the discussion of the plane stress element in Example 4.6, the relations (4.51)
to (4.54) can be written in matrix form,

u = Pa (4.55)

where the vector u corresponds to the displacements used in (4.51) to (4.54), the elements
of @ are the corresponding polynomial terms, and « is a vector of the generalized coordi-
nates arranged in the appropriate order.

To evaluate the generalized coordinates in terms of the element nodal point displace-
ments, we need to have as many nodal point displacements as assumed generalized coordi-
nates. Then, evaluating (4.55) specifically for the nodal point displacements @ of the
element, we obtain

i = Aa (4.56)

Assuming that the inverse of A exists, we have
a=A (4.57)

The element strains to be considered depend on the specific problem to be solved.
Denoting by € a generalized strain vector, whose components are given for specific prob-
lems in Table 4.2, we have

€ = Ea (4.58)

where the matrix E is established using the displacement assumptions in (4.55). A vector
of generalized stresses 7 is obtained using the relation

T = Ce (4.59)

where C is a generalized elasticity matrix. The quantities 7 and C are defined for some
problems in Tables 4.2 and 4.3. We may note that except in bending problems, the general-
ized 7, €, and C matrices are those that are used in the theory of elasticity. The word
“generalized” is employed merely to include curvatures and moments as strains and
stresses, respectively. The advantage of using curvatures and moments in bending analysis
1s that in the stiffness evaluation an integration over the thickness of the corresponding
element is not required because this stress and strain variation has already been taken into
account (see Example 4.15).

Referring to Table 4.3, it should be noted that all stress-strain matrices can be derived
from the general three-dimensional stress-strain relationship. The plane strain and axisym-
metric stress-strain matrices are obtained simply by deleting in the three-dimensional
stress-strain matrix the rows and columns that correspond to the zero strain components.
The stress-strain matrix for plane stress analysis is then obtained from the axisymmetric
stress-strain matrix by using the condition that 7, is zero (see the program QUADS in
Section 5.6). To calculate the generalized stress-strain matrix for plate bending analysis, the
stress-strain matrix corresponding to plane stress conditions is used, as shown in the
following example.

EXAMPLE 4.15: Derive the stress-strain matrix C used for plate bending analysis (see
Table 4.3).
The strains at a distance ;7 measured upward from the midsurface of the plate are
[ *w *w 20w ]

ax? ay*? $ox dy
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In plate bending analysis it is assumed that each layer of the plate acts in plane stress condition
and positive curvatures correspond to positive moments (see Section 5.4.2). Hence, integrating
the normal stresses in the plate to obtain moments per unit length, the generalized stress-strain
matrix is
(1 v 0 |
+h/2
E 0
C=I zzl—v2 v l—-v az
—h/2
00
_ 2
1 v 0 ]
Eh’ v 1 0
C =
o 12(1 — »?) 1 — v
00
: 2

Considering (4.55) to (4.59), we recognize that, in general terms, all relationships for
evaluation of the finite element matrices corresponding to the local finite element nodal
point displacements have been defined, and using the notation of Section 4.2.1, we have

H = @A (4.60)
B = EA~! 4.61)

Let us now consider briefly various types of finite elements encountered, which are
subject to certain static or kinematic assumptions.

Truss and beam elements. Truss and beam elements are very widely used in
structural engineering to model, for example, building frames and bridges [see Fig. 4.5(a)
for an assemblage of truss elements].

As discussed in Section 4.2.1, the stiffness matrices of these elements can in many
cases be calculated by solving the differential equations of equilibrium (see Example 4.8),
and much literature has been published on such derivations. The results of these derivations
have been employed in the displacement method of analysis and the corresponding approx-
imate solution techniques, such as the method of moment distribution. However, it can be
effective to evaluate the stiffness matrices using the finite element formulation, i.e., the
virtual work principle, particularly when considering complex beam geometries and geo-
metric nonlinear analysis (see Section 5.4.1).

Plane stress and plane strain elements. Plane stress elements are employed to
model membranes, the in-plane action of beams and plates as shown in Fig. 4.5(b), and so
on. In each of these cases a two-dimensional stress situation exists in an xy plane with the
stresses T,;, Tyz, and 7, equal to zero. Plane strain elements are used to represent a slice (of
unit thickness) of a structure in which the strain components €., y,., and 7,. are zero. This
situation arises in the analysis of a long dam as illustrated in Fig. 4.5(c).

Axisymmetric elements. Axisymmetric elements are used to model structural
components that are rotationally symmetric about an axis. Examples of application are
pressure vessels and solid rings. If these structures are also subjected to axisymmetric loads,
a two-dimensional analysis of a unit radian of the structure yields the complete stress and
strain distributions as illustrated in Fig. 4.5(d).



200 Formulation of the Finite Element Method  Chap. 4

On the other hand, if the axisymmetric structure is loaded nonaxisymmetrically, the
choice lies between a fully three-dimensional analysis, in which substructuring (see Sec-
tion 8.2.4) or cyclic symmetry (see Example 4.14) is used, and a Fourier decomposition of
the loads for a superposition of harmonic solutions (see Example 4.20).

Plate bending and shell elements. The basic proposition in plate bending and
shell analyses is that the structure is thin in one dimension, and therefore the following
assumptions can be made [see Fig. 4.5(e)]:

1. The stress through the thickness (i.e., perpendicular to the midsurface) of the
plate/shell is zero.

2. Material particles that are originally on a straight line perpendicular to the midsurface
of the plate/shell remain on a straight line during deformations. In the Kirchhoff
theory, shear deformations are neglected and the straight line remains perpendicular
to the midsurface during deformations. In the Reissner/Mindlin theory, shear deforma-
tions are included, and therefore the line originally normal to the midsurface in
general does not remain perpendicular to the midsurface during the deformations (see
Section 5.4.2).

The first finite elements developed to model thin plates in bending and shells were
based on the Kirchhoff plate theory (see R. H. Gallagher [A]). The difficulties in these
approaches are that the elements must satisfy the convergence requirements and be rela-
tively effective in their applications. Much research effort was spent on the development of
such elements; however, it was recognized that more effective elements can frequently be
formulated using the Reissner/Mindlin plate theory (see Section 5.4.2).

To obtain a shell element a simple approach is to superimpose a plate bending stiffness
and a plane stress membrane stiffness. In this way flat shell elements are obtained that can
be used to model flat components of shells (e.g., folded plates) and that can also be
employed to model general curved shells as an assemblage of flat elements. We demonstrate
the development of a plate bending element based on the Kirchhoff plate theory and the
construction of an associated flat shell element in Examples 4.18 and 4.19.

EXAMPLE 4.16: Discuss the derivation of the displacement and strain-displacement interpo-
lation matrices of the beam shown in Fig. E4.16.

The exact stiffness matrix (within beam theory) of this beam could be evaluated by solving
the beam differential equations of equilibrium, which are for the bending behavior

d? d*w bh?
—— _— . _— E —
Tz (EI 7 fz) 0; El T (a)
and for the axial behavior
d du
—|EA— ) =0 A = bh b
df( df) ®)

where E is Young’s modulus. The procedure is to impose a unit end displacement, with all other
end displacements equal to zero, and solve the appropriate differential equation of equilibrium
of the beam subject to these boundary conditions. Once the element internal displacements for
these boundary conditions have been calculated, appropriate derivatives give the element end
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Figure E4.16 Beam element with varying section

forces that together constitute the column of the stiffness matrix corresponding to the imposed
end displacement. It should be noted that this stiffness matrix is only “exact” for static analysis
because in dynamic analysis the stiffness coefficients are frequency-dependent.

Alternatively, the formulation given in (4.8) to (4.17) can be used. The same stiffness
matrix as would be evaluated by the above procedure is obtained if the exact element internal
displacements [that satisfy (a) and (b)] are employed to construct the strain-displacement matrix.
However, in practice it is frequently expedient to use the displacement interpolations that corre-
spond to a uniform cross-section beam, and this yields an approximate stiffness matrix. The
approximation is generally adequate when A, is not very much larger than A, (hence when a
sufficiently large number of beam elements is employed to model the complete structure). The
errors encountered in the analysis are those discussed in Section 4.3, because this formulation
corresponds to displacement-based finite element analysis.

Using the variables defined in Fig. E4.16 and the “exact” displacements (Hermitian func-
tions) corresponding to a prismatic beam, we have

—(1-8), + (8 _&), _ (1-4f43E
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For (c) we ordered the nodal point displacements as follows

Uy w, 01

Considering only normal strains and stresses in the beam, i.e., neglecting shearing defor-
mations, we have as the only strain and stress components

ST

u = [U]Wl 91

du
€ = &; Tee = E€g
and hence | | o '
1} 6m(1 28\ (-4 6§):1: 61;(1 2§): (2 65)]
— _—— e——m—_—— =] — _.._+...._. Ve ) o] e — om0 _— e —
B [ LEL(L Lz)g "(L )L L\L 13/ \L L @

The relations in (c) and (d) can be used directly to evaluate the element matrices defined in (4.33)
to (4.37); e.g.,

L h/2
K = Eb f f B'B dn d¢
0 —h/2

where h=nh + (h, — hl)%
This formulation can be directly extended to develop the element matrices corresponding
to the three-dimensional action of the beam element and to include shear deformations (see

K. J. Bathe and S. Bolourchi [A]).

EXAMPLE 4.17: Discuss the derivation of the stiffness, mass, and load matrices of the axisym-
metric three-node finite element in Fig. E4.17.

This element was one of the first finite elements developed. For most practical applications,
much more effective finite elements are presently available (see Chapter 5), but the element is
conveniently used for instructional purposes because the equations to be dealt with are relatively
simple.

The displacement assumption used is

ulx, y) = o + apx + a3y

o(x, y) = B + Box + Byy

Therefore, a linear displacement variation is assumed, just as for the derivation of the four-node
plane stress element considered in Example 4.6 where the fourth node required that the term xy
be included in the displacement assumption. Referring to the derivations carried out in Example
4.6, we can directly establish the following relationships:

o —

U
Uz

[u(x, y)] _nul®

o(x, y) v
U2

U3

where

_ 1 xi y
1
I:Al 0 ]; Al=11 x y2

1 x5 y
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Figure E4,17 Axisymmetric three-node element

1 _xz)’3 — X3Y2 X3y, T X1¥Ys X1Y:» — x2)’l—
Hence A7l = —— = — -
enc 1 det A, ¥y2 y3 ¥ Y1 Y1 Y2
B X3 — X2 X1 — X3 X2 — Xj ]
where det Ay = xi(y2 — y3) + xo{ys — y1) + xo{y1 — ¥y2)

We may note that det A, is zero only if the three element nodal points lie on a straight line. The
strains are given in Table 4.2 and are

ou ov ou ov ow u
€x = T/, eyy=__; 7xy=_+"""_; ezz-'-':-——z-.-
0x ay dy 0x 0z x
Using the assumed displacement polynomials, we obtain
(U | _ -
€. ” 01 0 0 0 O
0O 00O 0 0 1
€y Us
=B : B=|]0 01 01 0OJA!'=EA"
Yxy U 1
| €2 U2 - 1 Y 0 0 O
X X
_03_ - .
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Using the relations (4.33) to (4.37), we thus have

0o 0 0o 1| 1 7 0 7
b 4 1 — v 1 — v
E(l1 — v) Lo lf' 1 0 1f
K=A‘T{ 2 1o o 1?2 g g
A0+ - 2y X 0 0 1 — 2v 0
0 0 0O 2(1 — v)
0 01 0 v v 0 |
0100_1—v 1 — v
01 00 0 o
0 00 0 0 1
0 01 0 1 Ofxdx dy}A‘l (a)
1
- 1200 0
|_x X -

where 1 radian of the axisymmetric element is considered in the volume integration. Similarly,
we have

Gl
x 0]
B
RB=A“TI y O [):;:dexdy
40 1|3
0 x
0 0 O !
x
1 0 0 1|+
yl| 7>
R;=A"Tf 0 0 1 =|| 7lxdxdy (b)
A X lery
0 0 0 O]l
0 01 O
01 0 0
1 0]
x 0
R ) 0}][1 x y 0 O 0] }—1
M=pA {Lo 1[0 0 0 1 x y[*@YA
0 x

where the mass density p is assumed to be constant.

For calculation of the surface load vector Rg, it is expedient in practice to introduce
auxiliary coordinate systems located along the loaded sides of the element. Assume that the side
2-3 of the element is loaded as shown in Fig. E4.17. The load vector R; is then evaluated using
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Considering these finite element matrix evaluations the following observations can be
made. First, to evaluate the integrals, it is possible to obtain closed-form solutions; alternatively,
numerical integration (discussed in Section 5.5) can be used. Second, we find that the stiffness,
mass, and load matrices corresponding to plane stress and plane strain finite elements can be
obtained simply by (1) not including the fourth row in the strain-displacement matrix E used in
(a) and (b), (2) employing the appropriate stress-strain matrix C in (a), and (3) using as the
differential volume element & dx dy instead of x dx dy, where A is the thickness of the element
(conveniently taken equal to 1 in plane strain analysis). Therefore, axisymmetric, plane stress,
and plane strain analyses can effectively be implemented in a single computer program. Also, the
matrix E shows that constant-strain conditions €., €,,, and ., are assumed in either analysis.

The concept of performing axisymmetric, plane strain, and plane stress analysis in an
effective manner in one computer program is, in fact, presented in Section 5.6, where we discuss
the efficient implementation of isoparametric finite element analysis.

EXAMPLE 4.18: Derive the matrices ¢(x, y), E(x, ), and A for the rectangular plate bending
element in Fig. E4.18.

This element is one of the first plate bending elements derived, and more effective plate
bending elements are already in use (see Section 5.4.2).

As shown in Fig. E4.18, the plate bending element considered has three degress of freedom
per node. Therefore, it is necessary to have 12 unknown generalized coordinates, ay, . . . , aiz,

Figure E4.18 Rectangular plate bending element.
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in the displacement assumption for w. The polynomial used is

w=a + ax + oy + ax® + asxy + asy? + aax® + agx?y
+ asxy? + ayoy® + anx’y + anxy?

Hence,
dx,y)=[1 x y x* xy y* x> x*y xy* y* x’y xy’] (a)
We can now calculate dw/dx and ow/dy:
aw 2 2 2 k|
-é; = ap + 2asx + asy + 3aix* + 2axy + asy” + 3anx‘y + ay (b)
and
ow 2 2 3 2
-é— = a3 + asx + 2asy + agx* + 2a9xy + 3a0y° + a;x’ + 3ai.xy (©
Yy

Using the conditions

-

. aw
wl' = (w)x,',y,-; 0.'! = (_a-;)
Xis ¥i

(2
¢ ax Xi, ¥i

we can construct the matrix A, obtaining

K28 " |
]
" :
0,
S l=A
4
0)
6] lon
where
- -

1 x1 X1 X1 Vi I? I%)’l Il)’% )’? x?)’l X1)’:1’

1 x& ya X5 xeya yi  x3 Xi¥a  XeYi Yi  Xiya  Xa)i
0 0 1 0 x31 2y O xi 2xy1 3yt x3 3xy3
0 0 1 0 xa 2y, O X3 2xays  3y3 x3 3x4Y3

0 -1 0O "211 -¥ 0 _31% —2x1y1 -'y% 0 —Bx%yl _y:;

0 -1 0 ~2x4 —ys 0 —=3x; ~2xiya =-yi 0 =3xiys —y;

h— A

which can be shown to be always nonsingular.
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To evaluate the matrix E, we recall that in plate bending analysis curvatures and moments
are used as generalized strains and stresses (see Tables 4.2 and 4.3). Calculating the required
derivatives of (b) and (c), we obtain

62
3;--—2a4+6a7x+2a3y+6anxy
62
ay = 2a5 + 2000x + 610y + 6a2xy (e)
2azw = 2as + 4azx + dayy + 6anx® + 6azy?
ax ay 142 g X oy XX a2y
Hence we have
_0002006x2y0061y0_
E=}J]0 0 0 002 0 0 2x 6y 0 6xy (f)
0 000 20 0 4x 4y 0 6x* 6y*

With the matrices ®, A, and E given in (a), (d), and (f) and the material matrix C in
Table 4.3, the element stiffness matrix, mass matrix, and load vectors can now be calculated.

An important consideration in the evaluation of an element stiffness matrix is whether the
element is complete and compatible. The element considered in this example is complete as
shown in (e) (i.e., the element can represent constant curvature states), but the element is not
compatible. The compatibility requirements are violated in a number of plate bending elements,
meaning that convergence in the analysis is in general not monotonic (see Section 4.3).

EXAMPLE 4.19: Discuss the evaluation of the stiffness matrix of a flat rectangular shell
element.

A simple rectangular flat shell element can be obtained by superimposing the plate bending
behavior considered in Example 4.18 and the plane stress behavior of the element used m
Example 4.6. The resulting element is shown in Fig. E4.19. The element can be employed to
mode] assemblages of flat plates (e.g., folded plate structures) and also curved shells. For actual
analyses more effective shell elements are available, and we discuss here only the element in
Fig. E4.19 in order to demonstrate some basic analysis approaches.

Let Kz and Ky be the stiffness matrices, in the local coordinate system, corresponding to
the bending and membrane behavior of the element, respectively. Then the shell element stiffness

matrix Ks is ~ _
ﬁs = 1§?2 0 (a)
20x20 0 KM

—— BXE8—

The matrices Ky and Kz were discussed in Examples 4.6 and 4.18, respectively.

This shell element can now be directly employed in the analysis of a variety of shell
structures. Consider the structures in Fig. E4.19, which might be idealized as shown. Since we
deal in these analyses with six degrees of freedom per node, the element stiffness matrices
corresponding to the global degrees of freedom are calculated using the transformation given

in (4.41) ~
Ks = TTKX*T (b)
24x24 3 _

where K* = zolg‘go 0

24 xX24 0 0 (c)
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(a) Basic shell element with local five degrees of freedom at a node

(b) Analysis of folded plate structure

=y

(c} Analysis of slightly curved shell
Figure E4.19 Use of a flat shell element

and T is the transformation matrix between the local and global element degrees of freedom. To
define K§ corresponding to six degrees of freedom per node, we have amended K on the
right-hand side of (c) to include the stiffness coefficients corresponding to the local rotations 6,
(rotations about the z-axis) at the nodes. These stiffness coefficients have been set equal to zero
in (c). The reason for doing so is that these degrees of freedom have not been included in the
formulation of the element; thus the element rotation 6, at a node is not measured and does not
contribute to the strain energy stored in the element.

The solution of a model can be obtained using K ¥ in (c) as long as the elements surround-
ing a node are not coplanar. This does not hold for the folded plate model, and considering the
analysis of the slightly curved shell in Fig. E4.19(c), the elements may be almost coplanar
(depending on the curvature of the shell and the idealization used). In these cases, the global



Sec. 4.2 Formulation of the Displacement-Based Finite Element Method 209

stiffness matrix is singular or ill-conditioned because of the zero diagonal elements in K# and
difficulties arise in solving the global equilibrium equations (see Section 8.2.6). To avoid this
problem it is possible to add a small stiffness coefficient corresponding to the 6, rotation; i.e.,
instead of K in (c) we use

f(§" == 2(!5%0 0 (d)
0 kIl

= 44—

where k is about one-thousandth of the smallest diagonal element of f(s The stiffness coefficient
k must be large enough to allow accurate solution of the finite element system equilibrium
equations and small enough not to affect the system response significantly. Therefore, a large
enough number of digits must be used in the floating-point arithmetic (see Section 8.2.6).

A more effective way to circumvent the problem is to use curved shell elements with five
degrees of freedom per node where these are defined corresponding to a plane tangent to the
midsurface of the shell. In this case the rotation normal to the shell surface is not a degree of
freedom (see Section 5.4.2).

In the above element formulations we used polynomial functions to express the
displacements. We should briefly note, however, that for certain applications the use of other
functions such as trigonometric expressions can be effective. Trigonometric functions, for
example, are used in the analysis of axisymmetric structures subjected to nonaxisymmetric
loading (see E. L. Wilson [A)), and in the finite strip method (see Y. K. Cheung [A]). The
advantage of the trigonometric functions lies in their orthogonality properties. Namely, if
sine and cosine products are integrated over an appropriate interval, the integral can be
zero. This then means that there is no coupling in the equilibrium equations between the
generalized coordinates that correspond to the sine and cosine functions, and the equi-
librium equations can be solved more effectively. In this context it may be noted that the best
functions that we could use in the finite element analysis would be given by the eigenvectors
of the problem because they would give a diagonal stiffness matrix. However, these func-
tions are not known, and for general applications, the use of polynomial, trigonometric, or
other assumptions for the finite element displacements is most natural.

The use of special interpolation functions can of course also lead to efficient solution
schemes in the analysis of certain fluid flows (see, for example, A. T. Patera [A]).

We demonstrate the use of trigonometric functions in the following example.

EXAMPLE 4.20: Figure E4.20 shows an axisymmetric structure subjected to a nonaxisymmet-
ric loading in the radial direction. Discuss the analysis of this structure using the three-node
axisymmetric element in Example 4.17 when the loading is represented as a superposition of
Fourier components.

The stress distribution in the structure is three-dimensional and could be calculated using
a three-dimensional finite element idealization. However, it is possible to take advantage of the
axisymmetric geometry of the structure and, depending on the exact loading applied, reduce the
computational effort very significantly.

The key point in this analysis is that we expand the externally applied loads R,(8,y) in the
Fourier series:

Pc Ps
R, = 2 R cos pd + & RS sin ph (a)
p=1

r=1



210 Formulation of the Finite Element Method Chap. 4

3-node
triangular
element

u = radial displacement
v = axial displacement
w = circumferential displacement

First symmetric load term First antisymmetric load term

(b} Representation of nonaxisymmetric loading

Figure E4.20 Axisymmetric structure subjected to nonaxisymmetric loading

where p. and p; are the total number of symmetric and antisymmetric load contributions about
6 = 0, respectively. Figure E4.20(b) illustrates the first terms in the expansion of (a).

The complete analysis can now be performed by superimposing the responses due to the
symmetric and antisymmetric load contributions defined in (a). For example, considering the
symmetric response, we use for an element

Pc
u(x,y, 6) = > cos p6 HG*
p=1

Pc
o(x,y, 6) = > cos pO HV? (b)
p=1

Pc
wix,y, 0) = > sin p6 HW?
p=1
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where for the triangular elements, referring to Example 4.17,
H=[1 x y]A{! (©)

and the 0%, ¥¥, and W” are the element unknown generalized nodal point displacements corre-
sponding to mode p.

We should note that we superimpose in (b) the response measured in individual harmonic
displacement distributions. Using (b), we can now establish the strain-displacement matrix of the
element. Since we are dealing with a three-dimensional stress distribution, we use the expression
for three-dimensional strain distributions in cylindrical coordinates:

ey -
ar
v
ay
u, 1ow
r r a8
““lou oo @
—— -|— ———
dy dr
w, 13
dy r 00
ow l1du w
or raoe |
where € =[e. €, € Y Yo Yol (e

Substituting from (b) into (d) we obtain a strain-displacement matrix B, for each value of
p, and the total strains can be thought of as the superposition of the strain distributions contained
in each harmonic.

The unknown nodal point displacements can now be evaluated using the usual procedures.
The equilibrium equations corresponding to the generalized nodal point displacements U%, V%,

Wi i=1,...,N(Nisequal to the total number of nodes) andp = 1, . . ., p. are evaluated
as given in (4.17) to (4.22), where we now have
U’ =[U7 U¥ .. U] (f)
and
U= Vi WU ... Wi ®)

In the calculations of K and Rs we note that because of the orthogonality properties

2
J sin n@ sin mé do = () n+m

0

e (h)
J cos nfcosmfdd =0 n+m

0

the stiffness matrices corresponding to the different harmonics are decoupled from each other.
Hence, we have the following equilibrium equations for the structure:

KW =R, p=1,...,p ()

where K” and Rf are the stiffness matrix and load vector corresponding to the pth harmonic.
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Solution of the equations in (i) gives the generalized nodal point displacements of each element,
and (b) then yields all element internal displacements.

In the above displacement solution we considered only the symmetric load contributions.
But an analogous analysis can be performed for the antisymmetric load harmonics of (a) by
simply replacing in (b) to (i) all sine and cosine terms by cosine and sine terms, respectively. The
complete structural response is then obtained by superimposing the displacements corresponding
to all harmonics.

Although we have considered only surface loading in the discussion, the analysis can be
extended using the same approach to include body force loading and initial stresses.

Finally, we note that the computational effort required in the analysis is directly propor-
tional to the number of load harmonics used. Hence, the solution procedure is very efficient if
the loading can be represented using only a few harmonics (e.g., wind loading) but may be
inefficient when many harmonics must be used to represent the loading (e.g., a concentrated
force).

4.2.4 Lumping of Structure Properties and Loads

A physical interpretation of the finite element procedure of analysis as presented in the
previous sections is that the structure properties—stiffness and mass—and the loads,
internal and external, are lumped to the discrete nodes of the element assemblage using the
virtual work principle. Because the same interpolation functions are employed in the

fB
elong
edge 2-1
3.0;
20—
1.0
P
X
2.0
V2 Vi
2 Node T 1
K 2 “
1.0

3 % Plane stress element, 4

¢B thickness = 0.5
X
slong
edge 3—4 1.0
Y
X

R}=10.5 0.5 0.5 0.5 0.0 0.0 0.0 0.0}

Figure 4.6 Body force distribution and corresponding lumped body force vector R of a
rectangular element
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calculation of the load vectors and the mass matrix as in the evaluation of the stiffness
matrix, we say that “consistent” load vectors and a consistent mass matrix are evaluated.
In this case, provided certain conditions are fulfilled (see Section 4.3.3), the finite element
solution is a Ritz analysis.

It may now be recognized that instead of performing the integrations leading to the
consistent load vector, we may evaluate an approximate load vector by simply adding to the
actually applied concentrated nodal forces R¢ additional forces that are in some sense
equivalent to the distributed loads on the elements. A somewhat obvious way of constructing
approximate load vectors is to calculate the total body and surface forces corresponding to
an element and to assign equal parts to the appropriate element nodal degrees of freedom.
Consider as an example the rectangular plane stress element in Fig. 4.6 with the variation
of the body force shown. The total body force is equal to 2.0, and hence we obtain the
lumped body force vector given in the figure.

In considering the derivation of an element mass matrix, we recall that the inertia
forces have been considered part of the body forces. Hence we may also establish an
approximate mass matrix by lumping equal parts of the total element mass to the nodal
points. Realizing that each nodal mass essentially corresponds to the mass of an element
contributing volume around the node, we note that using this procedure of lumping mass,
we assume in essence that the accelerations of the contributing volume to a node are
constant and equal to the nodal values.

An important advantage of using a lumped mass matrix is that the matrix is diagonal,
and, as will be seen later, the numerical operations for the solution of the dynamic equations
of equilibrium are in some cases reduced very significantly.

EXAMPLE 4.21: Evaluate the lumped body force vector and the lumped mass matrix of the
element assemblage in Fig. E4.5.
The lumped mass matrix is

100 : 0 0] 80 ,[JO0 0 0
M=pf Mo 3 0dx+pf (1+_.x_) 0 2 0]dx
’ 0 0 O ° 0 0 0 3
150 0 0]
or M=§ 0 670 0
0 0 520

Similarly, the lumped body force vector is

100 E3 80 o \2 0] !
RB = (J (1) -;' (1) dx + f (1 + -'—) % (_) dx)fz(t)
0 0 40 1 10
0] |7 |
1‘150”
= 5 202 fz(t)

It may be noted that, as required, the sums of the elements in M and Rp in both this
example and in Example 4.5 are the same.
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When using the load lumping procedure it should be recognized that the nodal point
loads are, in general, calculated only approximately, and if a coarse finite element mesh is
employed, the resulting solution may be very inaccurate. Indeed, in some cases when
higher-order finite elements are used, surprising results are obtained. Figure 4.7 demon-
strates such a case (see also Example 5.12).

* y Thickness = 1 cm

7/,
7 / p
+ p = 300 N/em?
2cm/ 2 — E =3 x 10" N/cm?
X
L v=0.3
e———6 c————]
(a) Problem
1 y
Y/ Integration
° p point Fax Tyy xy
A % A 300.00| 0.0 0.0
"X B X 3 B 300.00| 0.0 0.0
C x p C 300.00| 0.0 0.0
® Lad
3
(b) Finite element model (All stresses have units of N/cm?)
with consistent loading
y
7 Integration
. P point Txx Tyy Txy
— a ;i A 301.41| -7.85 24.72
X g X P B 295.74| -9.65 0.0
o X p C 301.41| -7.86 | 24.72
2
: 2
(c) Finite element model (All stresses have units of N/cm*)
with lumped loading (3 X 3 Gauss points are used, see Table 5.7)

Figure 4.7 Some sample analysis results with and without consistent loading

Considering dynamic analysis, the inertia effects can be thought of as body forces.
Therefore, if a lumped mass matrix is employed, little might be gained by using a consistent
load vector, whereas consistent nodal point loads should be used if a consistent mass matrix
1s employed in the analysis.

4.2.5 Exercises

4.1. Use the procedure in Example 4.2 to formally derive the principle of virtual work for the
one-dimensional bar shown.
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, A(x)
)/ \ *
X, u — 15 — R
Z:/"’ 1
» L -

E = Young's modulus

The differential equations of equilibrium are

£2(42) 4 g2 -

ax ax
d
EAZ| =R
0X|,=1

4.2. Consider the structure shown.
(a) Write down the principle of virtual displacements by specializing the general equation (4.7)

to this case.
(b) Use the principle of virtual work to check whether the exact solution is
= (Ze2)E
! 73 " 73L) A

Use the following three virtual displacements: (i) u(x) = aox, (ii) u(x) = aox?,
(ili) u(x) = aox’.
(¢) Solve the governing differential equations of equilibrium,

d du
E—[A—) =0
ax( ax)
EA -QE = F
ax x=L

(d) Use the three different virtual displacement patterns given in part (b), substitute into the
principle of virtual work using the exact solution for the stress [from part (c)], and explicitly
show that the principle holds.

- X
7
e
Bt
—
ey
P/, 7]
/%/
e
—

F = total force exerted on right end
E = Young's modulus
A(x) = Ap(1 - x/4L)
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4.3. Consider the bar shown.

Formulation of the Finite Element Method

(a) Solve for the exact displacement response of the structure.
(b) Show explicitly that the principle of virtual work is satisfied with the displacement patterns

(1) ¥ = ax and (i) ¥ = ax?.
(¢) Identify a stress T, for which the principle of virtual work is satisfied with pattern (ii) but

not with pattern (i).

A= Ag(4 - 3x/L)

fP = constant force per unit length
Young's modulus E

Chap. 4

4.4. For the two-dimensional body shown, use the principle of virtual work to show that the body
forces are in equilibrium with the applied concentrated nodal loads.

2 =101 + 2x) N/m’
f& =201 + y) N/m’

R, = 60N
R2=45N
Ry = 15N

Unit thickness
2m

fy
f8 Tm
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4.5. Idealize the bar structure shown as an assemblage of 2 two-node bar elements.
(a) Calculate the equilibrivm equations KU = R,
(b) Calculate the mass matrix of the element assemblage.

- 60 + 80 _I
7
é
7
A .
Z—*x | — f B(x) — 20 Aol
7
é f B(x) = 0.1f, force/unit volume
é E=Young's m.odulus
A= Ay(1-n/120);n <60 p = mass density
) f1x
1017‘—
|
!
t Tlm-e-

4.6. Consider the disk with a centerline hole of radius 20 shown spinning at a rotational velocity of
w radians/second.

20 60 80

3.0 - - - - - - — -

1 E = Young's modulus
i p = mass density
v = Poisson's ratio

Idealize the structure as an assemblage of 2 two-node elements and calculate the steady-state
(psendostatic) equilibrium equations. (Note that the strains are now du/dx and u/x, where u/x
is the hoop strain.)

4.7. Consider Example 4.5 and the state at time t+ = 2.0 with U,(t) = 0 at all times.
(a) Use the finite element formulation given in the example to calculate the static nodal point
displacements and the element stresses.
(b) Calculate the reaction at the support.
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(c) Let the calculated finite element solution be #'E. Calculate and plot the error r measured in
satisfying the differential equation of equilibrium, i.e.,

d ( ou FE)]
r=El—|A + f2A
[ax ( ox f
(d) Calculate the strain energy of the structure as evaluated in the finite element solution and
compare this strain energy with the exact strain energy of the mathematical model.

4.8. The two-node truss element shown, originally at a uniform temperature, 20°C, is subjected to a
temperature variation

0 = (10x + 20)°C

Calculate the resulting stress and nodal point displacement. Also obtain the analytical solution,
assuming a continuum, and briefly discuss your results.

X
|-< r} -
2 E = 200,000

a>' 7@7 A=1

a=1x 10 (per °C)
- »4

4.9. Consider the finite element analysis illustrated.

5 psi
Young's modulus E . /,/
Poisson's rstio v = 0.30 2 psi 1
Us Us t t Uss
a>_ | REE. ) LI
Us Us U12
3in

% N G CON o
i gL % 4in | U

Plane stress condition (thickness t).
All elements sre 4-node elements

(a) Begin by establishing the typical matrix B of an element for the vector @7 =
[ul Uy Uy V2 Uz U3 U 04].

(b) Calculate the elements of the K matrix, Xv,uv,, Kv,v,, Ku,u,, and Ky,u,, of the structural
assemblage.

(c) Calculate the nodal load R, due to the linearly varying surface pressure distribution.
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V2 (4|

IERE 1

V3 Va
u I u
I 3 4

3 4

M

4.10. Consider the simply supported beam shown.
(a) Assume that usual beam theory is employed and use the principle of virtual work to evaluate
the reactions R, and R,.

i T TR ﬂ’

(b) Now assume that the beam is modeled by a four-node finite element. Show that to be able
to evaluate R, and R; as in part (a) it is necessary that the finite element displacement
functions can represent the rigid body mode displacements.

P

———-
———

4.11. The four-node plane stress element shown carries the initial stresses
I, = 0 MPa
, = 10 MPa
Ty, = 20 MPa
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(a) Calculate the corresponding nodal point forces R;.

(b) Evaluate the nodal point forces Rs equivalent to the surface tractions that correspond to the
element stresses. Check your results using elementary statics and show that Ry is equal to R,
evaluated in part (a). Explain why this result makes sense.

(c) Derive a general result: Assume that any stresses are given, and R, and R are calculated.
What conditions must the given stresses satisfy in order that R, = Rs, where the surface
tractions in Rs are obtained from equation (b) in Example 4.2?

o
e Y

30 mm

Y

. 2

Young's modulus E
Poisson's rstio v
Thickness = 0.5 mm

4.12. The four-node plane strain element shown is subjected to the constant stresses

T = 20 psi
Tyy = 10 psi
Ty = 1Q psi

Calculate the nodal point displacements of the element.

et 3in -
“t 1 T
2in
Y} 3§ :4_1_
Y-
X

Young's modulus E =30 x 10° psi
Poisson's ratiov = 0.30
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4.13. Consider element 2 in Fig. E4.9,
(a8) Show explicitly that

F@ = j BT £ gY@
Vi)
(b) Show that the element nodal point forces F® are in equilibrium.
4.14. Assume that the element stiffness matrices K4 and Kz corresponding to the element displace-

ments shown have been calculated. Assemble these element matrices directly into the global
structure stiffness matrix with the displacement boundary conditions shown.

V2 V4
4
B

Individual elements

<
&
AS

V3
Structural assemblage us
and degrees of freedom
. - _ -
Ay a2z A3 Qs ais Qs | W by b b1z b bis bis| wa
Ay QA 4z Qi dzs 4| Ui by bxn bx by bis by |ty
A3y Q32 Q33 Qi Qs Qie )| U2 _ byi byn by by bys b | O
K 4 = KB =

Q41 Qa2 Q43 Qaa Qs Qa6 | D2 by by bas bas bys bas | u2
sy Qas2 QAsy Qsa QAss aQss | U3 bsy bsy bss; bsqy bss bss | V2
As1 QAQs2 QAs3 AQsa Qs QAss | U3 by, bs: bes bss bes bes | b

4.15. Assume that the element stiffness matrices K, and Ky corresponding to the element displace-
ments shown have been calculated. Assemble these element matrices directly into the global
structure stiffness matrix with the displacement boundary conditions shown.

/ Uz @11 =ee eee 38 | Uy
b S
Ur Ka= . Uy
A agq .. . &gg | V4

U4 - —
%ﬁ US{IA b1y «ee ee byg | Uy
Uj . ., . 4]
Kg= | 0
B : ..o : .
NN __b61 I bBB_J %
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V2 V1 g
6, 1.
u y
1

t
A B
" S
U3 Uy “

4.16. Consider Example 4.1 f Assume that at the support A, the roller allows a displacement only along
a slope of 30 degrees to the horizontal direction. Determine the modifications necessary in the
solution in Example 4.11 to obtain the structure matrix K for this situation.

(8) Consider imposing the zero displacement condition exactly.
(b) Consider imposing the zero displacement condition using the penalty method.

Quadrilateral plane
stress element

Uy
A
{ UO \
30°

4.17. Consider the beam element shown. Evaluate the stiffness coefficients k;;, and k.
(a) Obtain the exact coefficients from the solution of the differential equation of equilibrium
(using the mathematical model of Bernoulli beam theory).
(b) Obtain the coefficients using the principle of virtual work with the Hermitian beam functions
(see Example 4.16).

hix) = hg (1 + x/L)

Us

P~ o
o
5
x

Young's modulus E
Unit thickness
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4.18. Consider the two-element assemblage shown.
(a) Evaluate the stiffness coefficients K, K4 for the finite element idealization.
(b) Calculate the load vector of the element assemblage.

|- 4.0 -

Element 1

LA Element 2

E = 200,000
v=0.3

Plane stress, thickness = 0.1

4.19. Consider the two-element assemblage in Exercise 4.18 but now assume axisymmetric condi-
tions. The y-axis is the axis of revolution.

(a) Evaluate the stiffness coefficients X,,, K4 for the finite element idealization.
(b) Evaluate the corresponding load vector.
4.20. Consider Example 4.20 and let the loading on the structure be R, = f,(¢) cos 6.
(a) Establish the stiffness matrix, mass matrix, and load vector of the three-node element

y. v A
fi(t)
\ :
1
¢ x(orr), u
é —_— o
& w 2 3
- . ]
E = 200,000
v=03

p = mass density
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shown. Establish explicitly all matrices you need but do not perform any multiplications
and integrations.
(b) Explain (by physical reasoning) that your assumptions on u, v, w make sense.

4.21. An inviscid fluid element (for acoustic motions) can be obtained by considering only volumetric
strain energy (since inviscid fluids provide no resistance to shear). Formulate the finite element
fluid stiffness matrix for the four-node plane element shown and write out all matrices required.
Do not actually perform any integrations or matrix multiplications. Hint: Remember that
p=—-BAV/Vandt =[1, 17, Ty T]=[—p —p 0 -—pland AV/V = €. + ¢,

I 12 1
b Thickness t
Bulk modulus 8
3 4
+ — —
y e a .
X

4.22. Consider the element assemblages in Exercises 4.18 and 4.19. For each case, evaluate a
lumped mass matrix (using a uniform mass density p) and a lumped load vector.
4.23. Use a finite element program to solve the model shown of the problem in Example 4.6.
(a) Print out the element stresses and element nodal point forces and draw the “‘exploded
element views” for the stresses and nodal point forces as in Example 4.9.
(b) Show that the element nodal point forces of element 5 are in equilibrium and that the
element nodal point forces of elements 5 and 6 equilibrate the applied load.
(c) Print out the reactions and show that the element nodal point forces equilibrate these
reactions.
(d) Calculate the strain energy of the finite element model.

P=100

Eight constant-strsin trisngles
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4.24. Use a finite element program to solve the model shown of the problem in Example 4.6. Print out
the element stresses and reactions and calculate the strain energy of the model. Draw the
“exploded element views” for the stresses and nodal point forces. Compare your results with
those for Exercise 4.23 and discuss why we should not be surprised to have obtained different
results (although the same kind and same number of elements are used in both idealizations).

P=100

»

Eight constant-strain triangles

4.3 CONVERGENCE OF ANALYSIS RESULTS

Since the finite element method is a numerical procedure for solving complex engineering
problems, important considerations pertain to the accuracy of the analysis results and the
convergence of the numerical solution. The objective in this section is to address these
issues. We start by defining in Section 4.3.1 what we mean by convergence. Then we
consider in a rather physical manner the criteria for monotonic convergence and relate these
criteria to the conditions in a Ritz analysis (introduced in Section 3.3.3). Next, some
important properties of the finite element solution are summarized (and proven) and the
rate of convergence is discussed. Finally, we consider the calculation of stresses and the
evaluation of error measures that indicate the magnitude of the error in stresses at the
completion of an analysis.

We consider in this section displacement-based finite elements leading to monotoni-
cally convergent solutions. Formulations that lead to a nonmonotonic convergence are
considered in Sections 4.4 and 4.5.

4.3.1 The Model Problem and a Definition of Convergence

Based on the preceding discussions, we can now say that, in general, a finite element
analysis requires the idealization of an actual physical problem into a mathematical model
and then the finite element solution of that model (see Section 1.2). Figure 4.8 summarizes
these concepts. The distinction given in the figure is frequently not recognized in practical
analysis because the differential equations of motion of the mathematical model are not
dealt with, and indeed the equations may be unknown in the analysis of a complex problem,
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Actual Physical Problem

Geometric domain
Material

Loading

Boundary conditions

|

Mathematical Model (which corresponds to a mechanical idealization)

Kinematics, e.g., truss )
plane stress
three-dimensional
Kirchhoff plate .
et'c onp Yields:

) o Governing differential
Material, e.g.,  isotropic linear equation(s) of motion
elastic e.g.,

Mooney-Rivlin rubber >

etc. ai (EA a—‘-’—) = - p(x)
Loading, e.g., concentrated X X

centrifugal and principie of

etc. virtual work equation
Boundary prescribed (see Example 4.2)
Conditions, e.g., displecements

l etc. J

Finite Element Solution } Yields:

Approximate solution of the
mathematical model (that is,
approximate response of mechanical
idealization)

Choice of elements and solution procedures

Figure 4.8 Finite element solution process

such as the response prediction of a three-dimensional shell. Instead, in a practical analysis,
a finite element idealization of the physical problem is established directly. However, to
study the convergence of the finite element solution as the number of elements increases,
it is valuable to recognize that a mathematical model is actually implied in the finite element
representation of the physical problem. That is, a proper finite element solution should
converge (as the number of elements is increased) to the analytical (exact) solution of the
differential equations that govern the response of the mathematical model. Furthermore,
the convergence behavior displays all the characteristics of the finite element scheme be-
cause the differential equations of motion of the mathematical model express in a very
precise and compact manner all basic conditions that the solution variables (stress, dis-
placement, strain, and so on) must satisfy. If the differential equations of motion are not
known, as in a complex shell analysis, and/or analytical solutions cannot be obtained, the
convergence of the finite element solutions can be measured only on the fact that all basic
kinematic, static, and constitutive conditions contained in the mathematical model must
ultimately (at convergence) be satisfied. Therefore, in all discussions of the convergence of
finite element solutions we imply that the convergence to the exact solution of a mathemat-
ical model is meant.

Here it is important to recognize that in linear elastic analysis there is a unique exact
solution to the mathematical model. Hence if we have a solution that satisfies the governing
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mathematical equations exactly, then this is the exact solution to the problem (see Sec-
tion 4.3.4).

In considering the approximate finite element solution to the exact response of the
mathematical model, we need to recognize that different sources of errors affect the finite
element solution results. Table 4.4 summarizes various general sources of errors. Round-off
errors are a result of the finite precision arithmetic of the computer used; solution errors in
the constitutive modeling are due to the linearization and integration of the constitutive
relations; solution errors in the calculation of the dynamic response arise in the numerical
integration of the equations of motion or because only a few modes are used in a mode
superposition analysis; and solution errors arise when an iterative solution is obtained
because convergence is measured on increments in the solution variables that are small but
not zero. In this section, we will discuss only the finite element discretization errors, which
are due to interpolation of the solution variables. Thus, in essence, we consider in this
section a model problem in which the other solution errors referred to above do not arise:
a linear elastic static problem with the geometry represented exactly with the exact calcula-
tion of the element matrices and solution of equations, i.e., also negligible round-off
errors. For ease of presentation, we assume that the prescribed displacements are zero.
Nonzero displacement boundary conditions would be imposed as discussed in Sec-
tion 4.2.2, and such boundary conditions do not change the properties of the finite element
solution.

For this model problem, let us restate for purposes of our discussion the basic equation
of the principle of virtual work governing the exact solution of the mathematical model

f €7 dV=f astyds + f u’'f?dv (4.62)
v S v

TABLE 4.4 Finite element solution errors

Error Error occurrence in See section
Discretization Use of finite element 4.2.1
interpolations for geome- 423,53
try and solution variables
Numerical Evaluation of finite 5.5
integration element matrices using 6.8.4
in space numerical integration
Evaluation of, Use of nonlinear material 6.6.3
constitutive models 6.6.4
relations’
Solution of Direct time integration, 9.2-94
dynamic equi- mode superposition
librium
equations
Solution of Gauss-Seidel, conjugate 8.3, 8.4
finite element gradient, Newton-Raphson, 9.5
equations by quasi-Newton methods, 10.4
iteration eigensolutions
Round-off Setting up equations and 8.2.6

their solution
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We recall that for T to be the exact solution of the mathematical model, (4.62) must
hold for arbitrary virtual displacements u (and corresponding virtual strains € ), with Gizero
at and corresponding to the prescribed displacements. A short notation for (4.62) 1s

Find the displacements u (and corresponding stresses 7) such that

a(u, v) = (f, v) for all admissible v (4.63)

Here a(:,-) is a bilinear form and (f,-) is a linear form>—these forms depend on the mathe-
matical model considered—u is the exact displacement solution, v is any admissible virtual
displacement [“admissible” because the functions v must be continuous and zero at and
corresponding to actually prescribed displacements (see (4.7)], and f represents the forcing
functions (loads £° and £?). Note that the notation in (4.63) implies an integration process.
The bilinear forms af(-,-) that we consider in this section are symmetric in the sense that
a(ua, v) = a(v, u).

From (4.63) we have that the strain energy corresponding to the exact solution u is
1/2 a(u, u). We assume that the material properties and boundary conditions of our model
problem are such that this strain energy is finite. This is not a serious restriction in practice
but requires the proper choice of a mathematical model. In particular, the material proper-
ties must be physically realistic and the load distributions (externally applied or due to
displacement constraints) must be sufficiently smooth. We have discussed the need of
modeling the applied loads properly already in Section 1.2 and will comment further on it
in Section 4.3.4.

Assume that the finite element solution is u,: this solution lies of course in the finite
element space given by the displacement interpolation functions (% denoting here the size
of the generic element and hence denoting a specific mesh). Then we define “convergence”
to mean that

au —u,u-—u)—0 as h—0 (4.64)

or, equivalently [see (4.90)], that
a(u;, u,) — a(u, u) ash—0

Physically, this statement means that the strain energy calculated by the finite element
solution converges to the exact strain energy of the mathematical model as the finite element
mesh is refined. Let us consider a simple example to show what we mean by the bilinear
form a(,-).

®The bilinearity of a(,-) refers to the fact that for any constants vy, and 7,,
a(yiu; + yuz, v) = ya(u,, v) + ya(uy, v)
au, v, + v2v2) = yia(u, vi) + y2a(u, vo)

and the linearity of (f,.) refers to the fact ’that for any constants y, and ¥y,,

(£, ‘)’1V1\""'+"‘)’2V2) =" f,v,) + ‘Yz(f, V2).
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EXAMPLE 4.22: Assume that a simply supported prestressed membrane, with (constant)
prestress tension 7, subjected to transverse loading p is to be analyzed (see Fig. E4.22). Establish
for this problem the form (4.63) of the principle of virtual work.

Hinged on all edges

Figure E4.22 Prestressed membrane

The principle of virtual work gives for this problem
ow| T [ow

ax ax

T dxdy = w d

L _?_W o x dy J; pw dx dy
| 3y | dy
where w(x, y) is the transverse displacement. The left-hand side of this equation gives the bilinear
form a(v, u), with v = W, 4 = w, and the integration on the right-hand side gives ( f, v).

Depending on the specific (properly formulated) displacement-based finite elements
used in the analysis of the model problem defined above, we may converge monotonically
or nonmonotonically to the exact solution as the number of finite elements is increased. In
the following discussion we consider the criteria for the monotonic convergence of solutions.
Finite element analysis conditions that lead to nonmonotonic convergence are discussed in
Section 4.4.

4.3.2 Criteria for Monotonic Convergence

For monotonic convergence, the elements must be complete and the elements and mesh must
be compatible. If these conditions are fulfilled, the accuracy of the solution results will
increase continuously as we continue to refine the finite element mesh. This mesh re-
finement should be performed by subdividing a previously used element into two or more
elements; thus, the old mesh will be “embedded” in the new mesh. This means mathemat-
ically that the new space of finite element interpolation functions will contain the previously
used space, and as the mesh is refined, the dimension of the finite element solution space
will be continuously increased to contain ultimately the exact solution.

The requirement of completeness of an element means that the displacement functions

of the element must be able to represent the rigid body displacements and the constant
strain states.
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The rigid body displacements are those displacement modes that the element must be
able to undergo as a rigid body without stresses being developed in it. As an example, a
two-dimensional plane stress element must be able to translate uniformly in either direction
of its plane and to rotate without straining. The reason that the element must be able to
undergo these displacements without developing stresses is illustrated in the analysis of the
cantilever shown in Fig. 4.9: the element at the tip of the beam-—for any element size—
must translate and rotate stress-free because by simple statics the cantilever is not subjected
to stresses beyond the point of load application.

The number of rigid body modes that an element must be able to undergo can usually
be identified without difficulty by inspection, but it is instructive to note that the number of
element rigid body modes is equal to the number of element degrees of freedom minus the
number of element straining modes (or natural modes). As an example, a two-noded truss
has one straining mode (constant strain state), and thus one, three, and five rigid body modes
in one-, two-, and three-dimensional conditions, respectively. For more complex finite

|
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(a) Rigid body modes of a plane stress element

Distributed
load p

AN

o

Rigid body translation
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(b) Analysis to illustrate the rigid body mode
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Figure 4.9 Use of plane stress element in analysis of cantilever
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elements the individual straining modes and rigid body modes are displayed effectively by
representing the stiffness matrix in the basis of eigenvectors. Thus, solving the eigenproblem

Kb = rd (4.65)
we have (see Section 2.5)

K® = ®dA (4.66)
where ® is a matrix storing the eigenvectors ¢, . . ., ¢, and A is a diagonal matrix storing

the corresponding eigenvalues, A = diag(A;). Using the eigenvector orthonormality prop-
erty we thus have

O’Kd = A (4.67)

We may look at A as being the stiffness matrix of the element corresponding to the
eigenvector displacement modes. The stiffness coefficients Ay, . . ., A, display directly how
stiff the element is in the corresponding displacement mode. Thus, the transformation in
(4.67) shows clearly whether the rigid body modes and what additional straining modes are
present.'® As an example, the eight eigenvectors and corresponding eigenvalues of a four-
node element are shown in Fig. 4.10.

The necessity for the constant strain states can be physically understood if we imagine
that more and more elements are used in the assemblage to represent the structure. Then
in the limit as each element approaches a very small size, the strain in each element
approaches a constant value, and any complex variation of strain within the structure can
be approximated. As an example, the plane stress element used in Fig. 4.9 must be able to
represent two constant normal stress conditions and one constant shearing stress condition.
Figure 4.10 shows that the element can represent these constant stress conditions and, in
addition, contains two flexural straining modes.

The rigid body modes and constant strain states that an element can represent can also
be directly identified by studying the element strain-displacement matrix (see Exam-
ple 4.23).

The requirement of compatibility means that the displacements within the elements
and across the element boundaries must be continuous. Physically, compatibility ensures
that no gaps occur between elements when the assemblage is loaded. When only transla-
tional degrees of freedom are defined at the element nodes, only continuity in the displace-
ments u, v, or w, whichever are applicable, must be preserved. However, when rotational
degrees of freedom are also defined that are obtained by differentiation of the transverse
displacement (such as in the formulation of the plate bending element in Example 4.18), it
is also necessary to satisfy element continuity in the corresponding first displacement
derivatives. This is a consequence of the kinematic assumption on the displacements over
the depth of the plate bending element; that is, the continuity in the displacement w and the
derivatives ow/dx and/or ow/dy along the respective element edges ensures continuity of
displacements over the thickness of adjoining elements.

Compatibility is automatically ensured between truss and beam elements because
they join only at the nodal points, and compatibility is relatively easy to maintain in

'9Note also that since the finite element analysis overestimates the stiffness, as discussed in Section 4.3.4,
the “smaller” the eigenvalues, the more effective the element.
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two-dimensional plane strain, plane stress, and axisymmetric analysis and in three-
dimensional analysis, when only u, v, and w degrees of freedom are used as nodal point
variables. However, the requirements of compatibility are difficult to satisfy in plate bend-
ing analysis, and particularly in thin shell analysis if the rotations are derived from the
transverse displacements. For this reason, much emphasis has been directed toward the
development of plate and shell elements, in which the displacements and rotations are
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variables (see Section 5.4). With such elements the compatibility requirements are just as
easy to fulfill as in the case of dealing only with translational degrees of freedom.

Whether a specific element is complete and compatible depends on the formulation
used, and each formulation need be analyzed individually. Consider the following simple
example.

EXAMPLE 4.23: Investigate if the plane stress element used in Example 4.6 is compatible and

complete.
We have for the displacements of the element,

u(x, y) = a, + aax + asy + auxy
o(x,y) = B + Box + By + Baxy

Observing that the displacements within an element are continuous, in order to show that
the element is compatible, we need only investigate if interelement continuity is also preserved
when an element assemblage is loaded. Consider two elements interconnected at two node points
(Fig. E4.23) on which we impose two arbitrary displacements. It follows from the displacement
assumptions that the points (i.e., the material particles) on the adjoining element edges displace
linearly, and therefore continuity between the elements is preserved. Hence the element is
compatible.

Particles on element edges
remeln together

g =
-
.-""—_- ---"'-.
Vv R - —
¥ - -
- -
—— -
- —— ’ -
- e

Figure E4.23 Compatibility of plane stress element

Considering completeness, the displacement functions show that a rigid body translation
in the x direction is achieved if only «, is nonzero. Similarly, a rigid body displacement in the
y direction 1s imposed by having only 8, nonzero, and for a rigid body rotation as and 8, must
be nonzero only with 8, = —as. The same conclusion can also be arrived at using the matrix
E that relates the strains to the generalized coordinates (see Example 4.6). This matrix also
shows that the constant strain states are possible. Therefore the element is complete.
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4.3.3 The Monotonically Convergent Finite Element
Solution: A Ritz Solution

We observed earlier that the application of the principle of virtual work is identical to using
the stationarity condition of the total potential of the system (see Example 4.4). Considering
also the discussion of the Ritz method in Section 3.3.3, we can conclude that monotonically
convergent displacement-based finite element solutions are really only applications of this
method. In the finite element analysis the Ritz functions are contained in the element
displacement interpolation matrices H™, m = 1, 2,. . ., and the Ritz parameters are the
unknown nodal point displacements stored in U. As we discuss further below, the mathe-
matical conditions on the displacement interpolation functions in the matrices H*, in order
that the finite element solution be a Ritz analysis, are exactly those that we identified earlier
using physical reasoning. The correspondence between the analysis methods is illustrated
in Examples 3.22 and 4.5.
Considering the Ritz method of analysis with the finite element interpolations, we
have
I1 = LU'KU — U'R (4.68)

where II is the total potential of the system. Invoking the stationarity of IT with respect to
the Ritz parameters U; stored in U and recognizing that the matrix K is symmetric, we
obtain

KU =R (4.69)

The solution of (4.69) yields the Ritz parameters, and then the displacement solution in the
domain considered is

u™ = H™; m=1,2,... (4.70)

The relations in (4.68) to (4.70) represent a Ritz analysis provided the functions used
satisfy certain conditions. We defined in Section 3.3.2 a C™"! variational problem as one
in which the variational indicator of the problem contains derivatives of order m and lower.
We then noted that for convergence the Ritz functions must satisfy the essential (or geomet-
ric) boundary conditions of the problem mvblvmg derivatives up to order (m — 1), but that
the functions do not need to satisfy the natural (or force) boundary conditions involving
derivatives of order m to (2m — 1) because these conditions are implicitly contained in the
variational indicator II. Therefore, in order for a finite element solution to be a Ritz analysis,
the essential boundary conditions must be completely satisfied by the finite element nodal
point displacements and the displacement interpolations between the nodal points. How-
ever, in selecting the finite element displacement functions, no special attention need be
given to the natural boundary conditions because these conditions are imposed with the
load vector and are satisfied approximately in the Ritz solution. The accuracy with which
the natural or force boundary conditions are satisfied depends on the specific Ritz functions
employed, but this accuracy can always be increased by using a larger number of functions,
i.e., a larger number of finite elements to model the problem.

In the classical Ritz analysis the Ritz functions extend over the complete domain
considered, whereas in the finite element analysis the individual Ritz functions extend only
over subdomains (finite elements) of the complete region. Hence, there must be a question
as to what conditions must be fulfilled by the finite element interpolations with regard to
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continuity requirements between adjacent subdomains. To answer this question we consider
the integrations that must be performed to evaluate the coefficient matrix K. We recognize
that in considering a C™~! problem we need continuity in at least the (m — 1)st derivatives
of the Ritz trial functions in order that we can perform the integrations across the element
boundaries. However, this continuity requirement corresponds entirely to the element
compatibility conditions that we discussed in Section 4.3.2. For example, in the analysis of
fully three-dimensional problems only the displacements between elements must be contin-
uous, whereas in the analysis of plate problems formulated using the Kirchhoff plate theory
we also need continuity in the first derivatives of the displacement functions.

In summary, therefore, for a C™~! problem [C™! = continuity on trial functions and
their derivatives up to order (m — 1)], in the classical Ritz analysis the trial functions are
.selected to satisfy exactly all boundary conditions that involve derivatives up to order
(m — 1). The same holds in finite element analysis, but in addition, continuity in the trial
functions and their derivatives up to order (m — 1) must be satisfied between elements in
order for the finite element solution to correspond to a Ritz analysis.

Although the classical Ritz analysis procedure and the displacement-based finite
element method are theoretically identical, in practice, the finite element method has
important advantages over a conventional Ritz analysis. One disadvantage of the conven-
tional Ritz analysis is that the Ritz functions are defined over the whole region considered.
For example, in the analysis of the cantilever in Example 3.24, the Ritz functions spanned
from x = 0 to x = L. Therefore, in the conventional Ritz analysis, the matrix K is a full
matrix, and as pointed out in Section 8.2.3, the numerical operations required for solution
of the resulting algebraic equations are considerable if many functions are used.

A particular difficulty in a conventional Ritz analysis is the selection of appropriate
Ritz functions since the solution is a linear combination of these functions. In order to solve
accurately for large displacement or stress gradients, many functions may be needed.
However, these functions also unnecessarily extend over the regions in which the displace-
ments and stresses vary rather slowly and where not many functions are needed.

Another difficulty arises in the conventional Ritz analysis when the total region of
interest is made up of subregions with different kinds of strain distributions. As an example,
consider a plate that is supported by edge beams and columns. In such a case, the Ritz
functions used for one region (e.g., the plate) are not appropriate for the other regions (i.e.,
the edge beams and columns), and special displacement continuity conditions or boundary
relations must be introduced.

~ The few reasons given already show that the conventional Ritz analysis is, in general,
not particularly computer-oriented, except in some cases for the development of special-
purpose programs. On the other hand, the finite element method has to a large extent
removed the practical difficulties while retaining the advantageous properties of the con-
ventional Ritz method. Withregard to the difficulties mentioned above, the selection of Ritz
functions is handled by using an adequate element library in the computer program. The use
of relatively many functions in regions of high stress and displacement gradients is possible
simply by using many elements, and the combination of domains with different kinds of
strain distributions is possible by using different kinds of elements to idealize the domains.
It is this generality of the finite element method, and the good mathematical foundation,
that have made the finite element method the very widely used analysis tool in today’s
engineering environments.
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4.3.4 Properties of the Finite Element Solution

Let us consider the general linear elasticity problem and its finite element solution and
identify certain properties that are useful for an understanding of the finite element method.
We shall use the notation summarized in Table 4.5.

The elasticity problem can be written as follows (see, for example, G. Strang and G. F.
Fix [A], P. G. Ciarlet [A], or F. Brezzi and M. Fortin [A]).

Find u € V such that

auv)=(Fv) Vveyv (4.71)

where the space V is defined as
V= {v| v € L¥(Vol); %’J—’c— € L¥Vol),i,j = 1,2,3;0ils, = 0,i = 1, 2, 3} (4.72)

J

Here L*(Vol) is the space of square integrable functions in the volume, “Vol”, of the body
being considered,

L*(Vol) = {wl w is defined in Vol and j

Vol

(2 (wi)z) dVol = [| Witz < +w} @7)

i=1

TABLE 4.5 Notation used in discussion of the properties and convergence of finite element

solutions
Symbol Meaning
a(., .) Bilinear form corresponding to model problem being considered (see Example 4.22)
f Load vector
Exact displacement solution to mathematical model; an element of the space V
\/ Displacements; an element of the space V
Finite element solution, an element of the space V,
Va Finite element displacements; an element of the space V,
v For all
€ An element of
V, Vi Spaces of functions [see (4.72) and (4.84)]
Vol Volume of body considered
L2 Space of a square integrable functions [see (4.73)]
€, Error between exact and finite element solution, €, = U — u,
3 There exists
- Contained in
(1: Contained in but not equal to
| e Energy norm [see (4.74)]
inf We take the infimum.

sup We take the supremum.
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Hence, (4.72) defines a space of functions corresponding to a general three-dimensional
analysis. The functions in the space vanish on the boundary §,, and the squares of the
functions and of their first derivatives are integrable. Corresponding to V, we use the energy
norm

| vl = a(v, v) (4.74)

which actually corresponds to twice the strain energy stored in the body when the body is
subjected to the displacement field v.

We assume in our discussion that the structure considered in (4.71) is properly
supported, corrresponding to the zero displacement conditions on §,, so that || v||Z is greater
than zero for any v different from zero.

In addition, we shall also use the Sobolev norms of orderm = 0and m = 1 defined as

m = 0;

i=1

Ui = | (2 ) ava 475)

[ .im (3'?-‘)2] dVol (4.76)

i=1 axj

vl = v lo? + j

Vol

For our elasticity problem the norm of order 1 is used,'' and we have the following two
important properties for our bilinear form a.

Continuity.

M > Osuchthat Vv, v, EV, la(vi, v} | = M || wi|h]| vz, (4.77)

Ellipticity:

Ja>0suchthat Vv eEV, a(v, v) = a| v|} (4.78)

where the constants a and M depend on the actual elasticity problem being considered,
including the material constants used, but are independent of v.

"In our discussion, we shall also use the Poincaré-Friedrichs inequality, namely, that for the analysis
problems we consider, for any v we have

L,l ( g (”*)2) dVol < ¢ Ld(,-,,z; (%—%)2) d Vol

where c is a constant (see, for example, P. G. Ciarlet [A)).
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The continuity property is satisfied because reasonable norms are used in (4.77), and
the ellipticity property is satisfied because a properly supported (i.e., stable) structure is
being considered (see P. G. Ciarlet [ A] for a mathematical proof). Based on these properties
we have

allvih = (a(v, v))V2 = | vl (4.79)
where ¢ and c; are constants independent of v, and we therefore have that the energy norm
is equivalent to the 1-norm (see Section 2.7). In mathematical analysis the Sobolev norms
are commonly used to measure rates of convergence (see Section 4.3.5), but in practice the

energy norm is frequently more easily evaluated [see (4.97)]. Because of (4.79), we can say
that convergence can also be defined, instead of using (4.64), as

||u—u;,||1—->0 ash—0

and the energy norm in problem solutions will converge with the same order as the 1-norm.
We examine the continuity and ellipticity of a bilinear form a in the following example.

EXAMPLE 4.24: Consider the problem in Example 4.22. Show that the bilinear form a
satisfies the continuity and ellipticity conditions.
Continuity follows because'?

i ow 0
T(awl 2 n owi Wz) dx dy
1A ox 0x dy 0y

G T - ()] e
([ ()
() ) <

Ellipticity requires that

o= [ ]2+ (2o
ol [ ) - ()] ot

However, the Poincaré-Friedrichs inequality,

o= [+ (3]

where c is a constant, ensures that (a) is satisfied.

a(wlv W2) =

A

| S

A

(a)

'> Here we use the Schwarz inequality, which says that for vectorsaand b, | a * b| = | a]} || b|., where] - |;
is defined in (2.148).
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The above statements on the elasticity problem encompass one important point
already mentioned earlier: the exact solution to the problem must correspond to a finite
strain energy, see (4.64) and (4.79). Therefore, for example,—strictly—we do not endeavor
to solve general two- or three-dimensional elasticity problems with the mathematical
idealization of point loads (the solution for a point load on a half space corresponds to
infinite strain energy, see for instance S. Timoshenko and J. N. Goodier [A)]). Instead, we
represent the loads in the elasticity problem closer to how they actually act in nature, namely
as smoothly distributed loads, which however can have high magnitudes and act over very
small areas. Then the solution of the variational formulation in (4.71) is the same as the
solution of the differential formulation. Of course, in our finite element analysis so long as
the finite elements are much larger than the area of load application, we can replace the
distributed load over the area with an equivalent point load, merely for efficiency of
solution; see Section 1.2 and the example in Fig. 1.4.

An important observation is that the exact solution to our elasticity problem is unique.
Namely, assume that u, and u, are two different solutions; then we would have

a(a;, v) = (f, v) Vveyv (4.80)
and a(uz, v) = (f,v) VvevV (4.81)
Subtracting, we obtain |

au; — U, v)=0 VveV (4.82)

and takingv = u, — u,, we havea(u, — u;,m; — w) = 0. Using (4.79) withy = u; — u,,
we obtain ||u, — u; ||| = 0, which means u, = u,, and hence we have proven that our
assumption of two different solutions is untenable.

Now let V. be the space of finite element displacement functions (which correspond
to the displacement interpolations contained in all element displacement interpolation
matrices H™) and let v, be any element in that space (i.e., any displacement pattern that
can be obtained by the displacement interpolations). Let u, be the finite element solution;
hence u, is also an element in V, and the specific element that we seek. Then the finite
element solution of the problem in (4.71) can be written as

Find u, € V, such that
(4.83)

a(ug, vi) = (£, vi) VviE Vs

The space V, is defined as

3 (vn);
Vi = {Val vi € L¥(Vol); % € L¥(Vol), i,j = 1,2, 3; (va)ls, = 0,i = 1, 2, 3} (4.84)

J

and for the elements of this space we use the energy norm (4.74) and the Sobolev norm
(4.76). Of course, V, C V.

The relation in (4.83) is the principle of virtual work for the finite element discretiza-
tion corresponding to V,. With this solution space, the continuity and ellipticity conditions
(4.77) and (4.78) are satisfied, using v, € Vi, and a positive definite stiffness matrix is
obtained for any V.
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We should note that V, corresponds to a given mesh, where h denotes the generic
element size, and that in the discussion of convergence we of course consider a sequence of
spaces Vi (a sequence of meshes with decreasing h). We illustrate in Figure 4.11 the
elements of V; for the discretization dealt with in Example 4.6.

Nodal Element
point number
number

Figure 4.11 Aerial view of basis functions for space V;, used in analysis of cantilever plate
of Example 4.6. The displacement functions are plotted upwards for ease of display, but each
function shown is applicable to the u and v displacements. An element of V, is any linear
combination of the 12 displacement functions. Note that the functions correspond to the
element displacement interpolation matrices H*™, discussed in Example 4.6, and that the
displacements at nodes 1, 2 and 3 are zero.
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Considering the finite element solution u, and the exact solution u to the problem, we
have the following important properties.

Property 1. Let the error between the exact solution u and the finite element
solution u, be e,

e, = u— u, (4.85)
Then the first property is

a(e;,, Vh) = () A4 vV, € Vh (486)

The proof is obtained by realizing that the principle of virtual work gives
a(u, V;,) = (f, Vh) A4 \ =7 (487)
and a(u;,, V},) = (f, Vh) A4 v, €EV, (488)

so that by subtraction we obtain (4.86). We may say that the error is “orthogonal in a(. , .)”
to all v, in V4. Clearly, as the space V, increases, with the larger space always containing the
smaller space, the solution accuracy will increase continuously. The next two properties are
based on Property 1.

Property 2. The second property is

a(u;,, llh) = a(u, ll) (489)

We prove this property by considering
a(u, u) = a(u, + e, up + €)
= a(uy, uy) + 2a(u,, e,) + ale, e;) (4.90)
= a(uy, uy) + ale,, €,)

where we have used (4.86) with v, = u,. The relation (4.89) follows because a(es, ex) > 0
for any e, # 0 (since for the properly supported structure ||v |l > 0 for any nonzero v).

Hence, the strain energy corresponding to the finite element solution is always smaller
than or equal to the strain energy corresponding to the exact solution.

Property 3. The third property is

a(e;,, e;,) = a(u - Vp, U — V;,) A4 vV, € Vh (491)

For the proof we use that for any w, in V,, we have

a(e;, + Wy, €, + W;,) = a(e;,, e;,) + a(w;,, W;,) (492)
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Hence, a(ey, er) =< ale, + wy, e, + wj) (4.93)

Choosing w, = u, — v, gives (4.91).

This third property says that the finite element solution u is chosen from all the
possible displacement patterns v, in V, such that the strain energy corresponding tou — u,
is the minimum. Hence, in that sense, the “energy distance” between u and the elements in
Vi 1s minimized by the solution u, in V.

Using (4.91) and the ellipticity and continuity of the bilinear form, we further obtain

aflu— u, |} < alu - u,u— u)
= inf alu — vy, u — vp) (4.94)

w,EV,,

= Mvzga. la — walli ”ll — vl

where “inf” denotes the infimum (see Table 4.5). If we let d(u, V,) = lim |u — v, we
recognize that we have the property V4EVs

"I.l — llp,”l =cC d(ll, Vh) (495)

where c is a constant, ¢ = V M/«, independent of h but dependent on the material proper-
ties."® This result is referred to as Cea’s lemma (see, for example, P. G. Ciarlet [A)).

The above three properties give valuable insight into how the finite element solution
is chosen from the displacement patterns possible within a given finite element mesh and
what we can expect as the mesh is refined.

We note, in particular, that (4.95), which is based on Property 3, states that a
sufficient condition for convergence with our sequence of finite element spaces is that for
any u € V we have lim,—oinflju — v.|i = 0. Also, (4.95) can be used to measure the rate
of convergence as the mesh is refined by introducing an upper bound on how d(u, V})
changes with the mesh refinement (see Section 4.3.5).

Further, Properties 2 and 3 say that af the finite element solution the error in strain
energy is minimized within the possible displacement patterns of a given mesh and that the
strain energy corresponding to the finite element solution will approach the exact strain
energy (from below) as increasingly finer meshes are used (with the displacement patterns
of the finer mesh containing the displacement patterns of the previous coarser mesh).

We can also relate these statements to earlier observations that in a finite element
solution the stationarity of the total potential is established (see Section 4.3.2). That is, for
a given mesh and any nodal displacements U,,y, we have

I1 ’U = lUInyKUany - UgnyR (4'96)

any_i

13 There is a subtle point in considering the property (4.95) and the condition (4.156) discussed later; namely,
while (4.95) is always valid for any values of bulk and shear moduli, the constant ¢ becomes very large as the bulk
modulus increases, and the property (4.95) is no longer useful. For this reason, when the bulk modulus « is very
large, we need the new property (4.156) in which the constant is independent of x, and this leads to the inf-sup
condition.
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The finite element solution U is obtained by invoking the stationarity of II to obtain
KU =R

At the finite element displacement solution U we have the total potential II and strain
energy U

Il=-i{UR;, u=iUR (4.97)

Therefore, to evaluate the strain energy corresponding to the finite element solution, we
only need to perform a vector multiplication.

To show with this notation that within the given possible finite element displacements
(i.e., within the space V) Il is minimized at the finite element solution U, let us calculate
IT at U + €, where € is any arbitrary vector,

|v+e = 3(U + €)’K(U + €) — (U + €)’R
= II|y + €’(KU — R) + ;€'Ke (4.98)
=TI IU + %ETKE

where we used that KU = R and the fact that K is a symmetric matrix. However, since K
is positive definite, I Iy is the minimum of 11 for the given finite element mesh. As the mesh
is refined, IT will decrease and according to (4.97) AU will correspondingly increase.

Considering (4.89), (4.91), and (4.97), we observe that in the finite element solution
the displacements are (on the “whole”) underestimated and hence the stiffness of the
mathematical model is (on the “whole”) overestimated. This overestimation of the stiffness
is (physically) aresult of the “internal displacement constraints” that are implicitly imposed
on the solution as a result of the displacement assumptions. As the finite element discretiza-
tion is refined, these “internal displacement constraints” are reduced, and convergence to
the exact solution (and stiffness) of the mathematical model is obtained.

To exemplify the preceding discussion, Figure 4.12 shows the results obtained in the
analysis of an ad hoc test problem for two-dimensional finite element discretizations. The
problem is constructed so as to have no singularities. As we discuss in the next section, in
this case the full (maximum) order of convergence is obtained with a given finite element
in a sequence of uniform finite element meshes (in each mesh all elements are of equal
square size).

Figure 4.12 shows the convergence in strain energy when a sequence of uniform
meshes of nine-node elements is employed for the solutions. The meshes are constructed by
starting with a 2 X 2 mesh of square elements of unit side length (for which 2 = 1), then
subdividing each element into four equal square elements (for which A = 3,) to obtain the
second mesh, and continuing this process. We clearly see that the error in the strain energy
decreases with decreasing element size A, as we would expect according to (4.91). We
compare the order of convergence seen in the finite element computations with a theoreti-
cally established value in the next section.
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Chap. 4

and 7y, T,y Txy, are the stresses corresponding to the exact in-plane displacements given in (b).

Figure 4.12 Ad-hoc test problem for plane stress (or plane strain, axisymmetric) elements.
We use, for h small, E — E, = ¢ h® and hence log (E — E;) = log ¢ + a log h (see also

(c) Test problem

(4.101)). The numerical solutions give a = 3.91.

4.3.5 Rate of Convergence

In the previous sections we considered the conditions required for monotonic convergence
of the finite element analysis results and discussed how in general convergence is reached,
but we did not mention the rate at which convergence occurs.

As must be expected, the rate of convergence depends on the order of the polynomials
used in the displacement assumptions. In this context the notion of complete polynomials is

useful.

Figure 4.13 shows the polynomial terms that should be included to have complete
polynomials in x and y for two-dimensional analysis. It is seen that all possible terms of the
form x®y*? are present, where @ + B = k and k is the degree to which the polynomial is
complete. For example, we may note that the element investigated in Example 4.6 uses a
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{d) Solution for plane stress problem

Figure 4.12 (continued)

polynomial displacement that is complete to degree 1 only. Figure 4.13 also shows impor-
tant notation for polynomial spaces. The spaces Py correspond to the complete polynomials
up to degree k. They can also be thought of as the basis functions of triangular elements:
the functions in P; correspond to the functions of the linear displacement (constant strain)
triangle (see Example 4.17); the functions in P, correspond to the functions of the parabolic
displacement (linear strain) triangle (see Section 5.3.2); and so on.

In addition, Fig. 4.13 shows the polynomial spaces Q«, k = 1, 2, 3, which correspond
to the 4-node, 9-node, and 16-node elements, referred to as Lagrangian elements because
the displacement functions of these elements are Lagrangian functions (see also Sec-
tion 5.5.1).

In considering three-dimensional analysis of course a figure analogous to Fig. 4.13
could be drawn in which the variable z would be included.

Let us think about a sequence of uniform meshes idealizing the complete volume of
the body being considered. A mesh of a sequence of uniform meshes consists of elements
of equal size—square elements when the polynomial spaces Q« are used. Hence, the
parameter A can be taken to be a typical length of an element side. The sequence is obtained
by taking a starting mesh of elements and subdividing each element with a natural pattern
to obtain the next mesh, and then repeating this process. We did this in solving the ad hoc
test problem in Fig. 4.12. However, considering an additional analysis problem, for exam-
ple, the problem in Example 4.6, we would in Fig. 4.11 subdivide each four-node element
into four equal new four-node elements to obtain the first refined mesh; then we would
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- Figure 4.13 Polynomial terms in two-dimensional analysis, Pascal triangle

subdivide each element of the first refined mesh into four equal new four-node elements to
obtain the second refined mesh; and so on. The continuation of this subdivision process
would give the complete sequence of meshes.

To obtain an expression for the rate of convergence, we would ideally use a formula
giving d(u, V,) in (4.95) as a function of . However, such a formula is difficult to obtain,
and it is more convenient to use interpolation theory and work with an upper bound on
d(ll, Vh).

Let us assume that we employ elements with complete polynomials of degree k and
that the exact solution u to our elasticity problem is “smooth” in the sense that the solution
satisfies the relation'*

=1 j=1 X;

k+1 3 n. 2 1/2
+ > ( il ) ] dVol} < oo
=1

(4.99)

n=2 i r+s+t=n ax'l. axi ax‘3

where of course k = 1.

Therefore, we assume that all derivatives of the exact solution up to order (k + 1) in
(4.99) can be calculated.

A basic result of interpolation theory is that there exists an interpolation function
u; € Vi such that

lu — wlli = é h*{|ule (4.100)

where h is the mesh size parameter indicating the “size” of the elements and ¢ is a constant
independent of A. Typically, A is taken to be the length of the side of a generic element
or the diameter of a circle encompassing that element. Note that u, is not the finite ele-
ment solution in V, but merely an element in V, that geometrically corresponds to a function

4 We then have u is an element of the Hilbert space H**!.
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close to u. Frequently, as nere, we iew u,, at the tinite element nodes, take the value of the
exact solution u.

Using (4.100) and Property 3 discussed in Section 4.3.4 [see (4.91)], we can now
show that the rate of convergence of the finite element solution u, to the exact theory of
elasticity solution u is given by the error estimate

lu = wfl; = ch*|ule (4.101)

where c is a constant independent of A but dependent on the material properties. Namely,
using (4.95) and (4.100), we have

fu — wlli = cd(u, Vi)
=cl|u-wl (4.101a)
<c¢é hk" uuk+1
which gives (4.101) with a new constant c. For (4.101), we say that the rate of convergence

1s given by the complete right-hand-side expression, and we say that the order of conver-
gence is k or, equivalently, that we have o(h*) convergence.

Another way to look at the derivation of (4.101)—which is of course closely related
to the previous derivation—is to use (4.79) and (4.91). Then we have

1
lu — wly = = [au — w,, u — uwx)]?
]

< cl[a(u - u,u — u))”?
‘ (4.101b)
c

= c—j"“ - wlh

=< ¢ h*| s

Hence, we see directly that to obtain the rate of convergence, we really only expressed the
distance d(u,V,) in terms of an upper bound given by (4.100).
In practice, we frequently simply write (4.101) as

lu—wf: =ch* (4.102)

and we now recognize that the constant ¢ used here is independent of A but depends on the
solution and the material properties [because ¢ in (4.101a) and ¢z, ¢; in (4.101b) depend
on the material properties]. This dependence on the material properties is detrimental when
(almost) incompressible material conditions are considered because the constant then be-
comes very large and the order of convergence k results in good accuracy only at very small
(impractical) values of 4. For this reason we need in that case the property (4.95) with the

constant independent of the material properties, and this requirement leads to the condition
(4.156) (see Section 4.5).
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The constant ¢ also depends on the Kind of element used. While we have assumed that
the element is based on a complete polynomial of order %, different kinds of elements within
that class in general display a different constant ¢ for the same analysis problem (e.g.,
triangular and quadrilateral elements). Hence, the actual magnitude of the error may be
considerably different for a given A, while the order with which the error decreases as the
mesh 1s refined is the same. Clearly, the magnitude of the constant ¢ can be crucial in
practical analysis because it largely determines how small & actually has to be in order to
reach an acceptable error.

These derivations of course represent theoretical results, and we may question in how
far these results are applicable in practice. Experience shows that the theoretical results
indeed closely represent the actual convergence behavior of the finite element discretiza-
tions being considered. Indeed, to measure the order of convergence, we may simply
consider the equal sign in (4.102) to obtain

log (lu — wnfh)) = log ¢ + klog A (4.103)

Then, if we plot from our computed results the graph of log (| u — w,||;) versus log A,
we find that the resulting curve indeed has the approximate slope k£ when 4 is sufficiently
small.

Evaluating the Sobolev norm may require considerable effort, and in practice, we may
use the equivalence of the energy norm with the 1-norm. Namely, because of (4.79), we see
that (4.101) also holds for the energy norm on the left side, and this norm can frequently
be evaluated more easily [see (4.97)]. Figure 4.12 shows an application. Note that the error
in strain energy can be evaluated simply by subtracting the current strain energy from the
strain energy of the limit solution (or, if known, the exact solution) [see (4.90)]. In the
solution in Fig. 4.12 we obtained an order of convergence (of the numerical results) of
3.91, which compares very well with the theoretical value of 4 (here k = 2 and the strain
energy is the energy norm squared). Further results of convergence for this ad hoc problem
are given in Fig. 5.39 (where distorted elements with numerically integrated stiffness
matrices are considered).

The relation in (4.101) gives, in essence, an error estimate for the displacement
gradient, hence for the strains and stresses, because the primary contribution in the 1-norm
will be due to the error in the derivatives of the displacements. We will primarily use (4.101)
and (4.102) but also note that the error in the displacements is given by

lw = walo = ¢ 24" [[ufless (4.104)

Hence, the order of convergence for the displacements is one order higher than for the
strains.

These results are intuitively reasonable. Namely, let us think in terms of a Taylor series
analysis. Then, since a finite element of ‘“dimension A” with a complete displacement
expansion of order k can represent displacement variations up to that order exactly, the local
error in representing arbitrary displacements with a uniform mesh should be o(h**!). Also,
for a C™~! problem the stresses are calculated by differentiating the displacements m times,
and therefore the error in the stresses is o(h**'™™). For the theory of elasticity problem
considered above, m = 1, and hence the relations in (4.101) and (4.104) are what we might
expect.
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EXAMPLE 4.25: Consider the problem shown in Figure E4.25. Estimate the error of the finite
element solution if linear two-node finite elements are used.

NANNNNNNNY

AN

- X o £B( )

U e e

Constant cross-sectional area A
Young's modulus E

(s) Bsr subjected to losd per unit length £8(x) = ax

uix) A
up(x)

u=(———63-—— X3 + aTsz)/EA

Up(x)

o

X x=L

(b) Solutions (for finite element
solution three elements sre used)

Figure E4.25 Analysis of bar

The finite element problem in this case is to calculate u, € V, such that

(EA uh, 08) = (f% 00  Vox €V
8
with V, = {u,, | os € L¥(Vol), -(%" € LAVol), Oalseo = 0}

To estimate the error we use (4.91) and can directly say for this simple problem

LL (' — un)?dx = LL (W' — up)?dx (a)

where u is the exact solution, ), is the finite element solution, and u; is the interpolant, meaning
that &, is considered to be equal to u at the nodal points. Hence, our aim is now to obtain an upper
bound on f5 (u' — u})? dx.

Consider an arbitrary element with end points x; and x;;, in the mesh. Then we can say
that for the exact solution u(x) and x; < x < x4,

w'(x) =u'ly, + (x — x)u" |x=x
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where x = x. denotes a chosen point in the element and X is also a point in the element. Let us
choose an x. where u'|,_ = u;, which can always be done because

ur(x;) = u(x;), u(xiv1) = u(xi+1)

Then we have for the element

,u'(x) - u;l = h({)@%‘ ,un') (b)
where we have introduced the largest absolute value of the second derivative of the exact solution
to obtain an upper bound.
With (b) we have
L 2
f (W' — u;)® dx < LA? (max |u” |)
0

O=x<L
L 1/2
and hence ( f (W' — up)? dx) = ch (c)
0

where the constant ¢ depends on A, E, L, and f* but is independent of 4.

We should recognize that this analysis is quite general but assumes that the exact solution
is smooth so that its second derivative can be calculated (in this example given by — f8/EA). Of
course the result in (c) is just the error estimate (4.102).

An interesting additional result is that the nodal point displacements of the finite element
solution are for two reasons the exact displacements. First, the exact solution at the nodes due
to the distributed loading is the same as that due to the equivalent concentrated loading (the
“equivalent” loading calculated by the principle of virtual work). Second, the finite element space
Vi contains the exact solution corresponding to the equivalent concentrated loading. Of course,
this nice result is a special property of the solution of one-dimensional problems and does not
exist in general two- or three-dimensional analysis.

In the above convergence study it is assumed that uniform discretizations are used
(that, for example, in two-dimensional analysis the elements are square and of equal size)
and that the exact solution is smooth. Also, implicitly, the degree of the element polynomial
displacement expansions is not varied. In practice, these conditions are generally not
encountered, and we need to ask what the consequences might be.

If the solution is not smooth—for example, because of sudden changes in the geome-
try, in loads, or in material properties or thicknesses—and the uniform mesh subdivision is
used, the order of convergence decreases; hence, the exponent of /2 in (4.102) is not £ but
a smaller value dependent on the degree of “loss of smoothness.”

In practice of course graded meshes are used in such analyses, with small elements in
the areas of high stress variation and larger elements away from these regions. The order of
convergence of the solutions is then still given by (4.101) but rewritten as

lu — w2 < ¢ 2 A% | uZein (4.1010)

where m denotes an individual element and A,, is a measure of the size of the element. Hence
the total error is now estimated by summing the local contributions in (4.101) from each
element. A good grading of elements means that the error density in each element is about
the same.
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In practice when mesh grading is employed, geometrically distorted elements are
invariably used. Hence, for example, general quadrilateral elements are very frequently
encountered in two-dimensional analyses. We discuss elements of general geometric shapes
in Chapter 5 and point out in Section 5.3.3 that the same orders of convergence are
applicable to these elements so long as the magnitude of the geometric distortions is
reasonable.

In the above sequence of meshes the same kind of elements are used and the element
sizes are uniformly decreased. This approach is referred to as the hA-method of analysis.
Alternatively, an initial mesh of relatively large and low-order elements may be chosen, and
then the polynomial displacement expansions in the elements may be successively in-
creased. For example, a mesh of elements with a bilinear displacement assumption may be
used (here £ = 1), and then the degree of the polynomial expansion is increased to order
2,3, ... p,where p may be 10 or even higher. This approach is referred to as the p-method
of analysis. To achieve this increase in element polynomial order efficiently, special interpo-
lation functions have been proposed that allow the calculation of the element stiffness
matrix corresponding to a higher interpolation by using the previously calculated stiffness
matrix and simply amending this matrix, and that have valuable orthogonality properties
(see B. Szabé and I. Babuska [A]). However, unfortunately, these functions lack the internal
element displacement variations which are important when elements are geometrically
distorted (see K. Kato, N. S. Lee, and K. J. Bathe [A] and Section 5.3.3). We demonstrate
the use of these functions in the following example.

EXAMPLE 4.26: Consider the one-dimensional bar element shown in Fig. E4.26. Let (K,) be
the stiffness matrix corresponding to the order of displacement interpolation p, where p =

I, 2,3,...,and let the interpolation functions corresponding to p = 1 be
ho=3(1 — x); hy = 3(1 + x) (a)
8= fix)
® ——ip-— ®
1 o 2
X =-1 X X=+1

Young's modulus E
Cross-sectional area A

Figure E4.26 Bar clement subjected to varying body force

For the higher-order interpolations use

hi{x) = ¢i-1 (x) i=3,4, ... (b)

_ 1
[2(2) —

where &

577 [PAD) = Prea(0)] ©
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and the P; are the Legendre polynomials (see, for example, E. Kreyszig [A]),

P] =X

P, = %(3-’52 - 1)

P3 = %(51‘3 = 31‘)

1(35x* — 30x2 + 3)

=
I

(n + DP,y1 = 2n + 1)xP. — nP,_,

Calculate the stiffness matrix (K), and corresponding load vector of the element for p = 1.

Let us first note that these interpolation functions fulfill the requirements of monotonic
convergence: the displacement continuity between elements is enforced, and the functions are
complete (they can represent the rigid body mode and the constant strain state). This follows
because the functions in (a) fulfill these requirements and the functions in (b) merely add
higher-order displacement variations within the element with 4, = O atx = = 1,i = 3.

The stiffness matrix and load vector of the element are obtained using (4.19) and (4.20).
Hence, typical elements of the stiffness matrix and load vector are

o dhy dhy

y f_l I dx (d)

R = f f(x)h. dx

The evaluation of (d) gives

1 -1 Zero
-1 1 entries
AE
(K)p=—2- 2. ©
Y |
i 2Mp+ DX (p+1)

where we note that, in essence, the usual 2 X 2 stiffness matrix corresponding to the interpola-
tion functions (a) has been amended by diagonal entries corresponding to the internal element
displacement modes (b). In this specific case, each such entry is uncoupled from all other entries
because of the orthogonality properties of the Legendre functions. Hence, as the order of the
element is increased, additional diagonal entries are simply computed and all other stiffness
coefficients are unchanged.

This structure of the matrix (K), makes the solution of the governing equations of an
element assemblage simple, and the conditioning of the coefficient matrix is always good irre-
spective of how high an order of element matrices is used. Note also that if the finite element
solution is known for elements with a given order of interpolation, then the solution for an
increased order of interpolation within the elements is obtained simply by calculating and adding
the additional displacements due to the additional internal element modes.

Since the sets of displacement functions corresponding to the matrix (K),.. contain the
sets of functions corresponding to the matrix (K),, we refer to the displacement functions and
the stiffness matrices as hierarchical functions and matrices. This hierarchical property is gener-
ally available when the interpolation order is increased (see Exercise 4.29 and Section 5.2).



Sec. 4.3 Convergence of Analysis Results 253

The concept given in Example 4.26 is also used to establish the displacement func-
tions for higher-order two- and three-dimensional elements. For example, in the two-di-
mensional case, the basic functions are h;, i = 1, 2, 3, 4, used in Example 4.6, and the
additional functions are due to side modes and internal modes (see Exercises 4.30 and 4.31).

We noted that in the analysis of a bar structure idealized by elements of the kind
discussed in Example 4.26, the coupling between elements is due only to the nodal point
displacements with the functions A; and A, and this leads to the very efficient solution.
However, in the two- and three-dimensional cases this computational efficiency is not
present because the element side modes couple the displacements of adjacent elements and
the governing equations of the finite element assemblage have, in fact, a large bandwith (see
Section 8.2.3).

A very high rate of convergence in the solution of general stress conditions can be
obtained if we increase the number of elements and at the same time increase the order of
displacement variations in the elements. This approach of mesh/element refinement is

referred to as the #/p method and can yield an exponential rate of convergence of the form
(see B. Szabé and 1. Babuska [A])

”ll - uh”l = (4.105)

c
exp [B(N)"]
where ¢, B, and y are positive constants and N is the number of nodes in the mesh. If for
comparison with (4.105) we write (4.101) in the same form, we obtain for the 2 method
the algebraic rate of convergence

C
”u - uhlll = (N)k/d
where d = 1, 2, 3, respectively, in one-, two-, and three-dimensional problems. The effec-
tiveness of the 4/p method lies in that it combines the two attractive properties of the 4 and
p methods: using the p method, an exponential rate of convergence is obtained when the
exact solution is smooth, and using the A method, the optimal rate of convergence is
maintained by proper mesh grading independent of the smoothness of the exact solution.

While the rate of convergence can be very high in the 4/p solution approach, of
course, whether the solution procedure is effective depends on the total computational
effort expended to reach a specified error (which also depends on the constant c).

A key feature of a finite element solution using the &, p, or A/p methods must therefore
be the “proper” mesh grading. The above expressions indicate a priori how convergence to
the exact solution will be obtained as the density of elements and the order of interpolations
are increased, but the meshes used in the successive solutions must be properly graded. By
this we mean that the local error density in each element should be about constant. We
discuss the evaluation of errors in the next section.

We also assumed in the above discussion on convergence—considering the linear
static model problem—that the finite element matrices are calculated exactly and that the
governing equilibrium equations are solved without error. In practice, numerical integration
is employed in the evaluation of the element matrices (see Section 5.5), and finite precision
arithmetic is used to solve the governing equilibrium equations (see Section 8.2.6); hence
some error will clearly be introduced in the solution steps. However, the numerical integra-
tion errors will not reduce the order of convergence, provided a reliable integration scheme
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of high enough order is used (see Section 5.5.5), and the errors in the solution of equations
are normally small unless a very ill-conditioned set of equations is solved (see Sec-
tion 8.2.6).

4.3.6 Calculation of Stresses and the Assessment of Error

We discussed above that for monotonic convergence to the exact results (“exact” within the
mechanical, i.e., mathematical, assumptions made) the elements must be complete and
compatible. Using compatible (or conforming) elements means that in the finite element
representation of a C™~! variational problem, the displacements and their (m — 1)st deriva-
tives are continuous across the element boundaries. Hence, for example, in a plane stress
analysis the ¥ and v displacements are continuous, and in the analysis of a plate bending
problem using the transverse displacement w as the only unknown variable, this displace-
ment w and its derivatives, dw/dx and dw/dy, are continuous. However, this continuity does
not mean that the element stresses are continuous across element boundaries.

The element stresses are calculated using derivatives of the displacements [see (4.11)
and (4.12)], and the stresses obtained at an element edge (or face) when calculated in
adjacent elements may differ substantially if a coarse finite element mesh is used. The stress
differences at the element boundaries decrease as the finite element mesh is refined, and the
rate at which this decrease occurs is of course determined by the order of the elements in the
discretization.

For the same mathematical reason that the element stresses are, in general, not
continuous across element boundaries, the element stresses at the surface of the structure
that is modeled are, in general, not in equilibrium with the externally applied tractions.
However, as for the stress jumps between elements, the difference between the externally
applied tractions and the element stresses decreases as the number of elements used to
model the structure increases.

The stress jumps across element boundaries and stress imbalances at the boundary of
the body are of course a consequence of the fact that stress equilibrium is not accurately
satisfied at the differential level unless a very fine finite element discretization is used: we
recall the derivation of the principle of virtual work in Example 4.2. The development in this
example shows that the differential equations of equilibrium are fulfilled only if the virtual
work equation is satisfied for any arbitrary virtual displacements that are zero on the surface
of the displacement boundary conditions. In the finite element analysis, the number of “real”
and virtual displacement patterns is equal to the number of nodal degrees of freedom, and
hence only an approximate solution in terms of satisfying the stress equilibrium at the
differential level is obtained (while the compatibility and constitutive conditions are
satisfied exactly). The error in the solution can therefore be measured by substituting the
finite element solution for the stresses 77 into the basic equations of equilibrium to find that
for each geometric domain represented by a finite element,

Tin — 4 #0 (4.107)

where »; represents the direction cosines of the normal to the element domain boundary and
the 1, are the components of the exact traction vector along that boundary (see Fig. 4.14).
Of course, this traction vector of the exact solution is not known, and that the left-hand side
of (4.107) is not zero simply shows that we must expect stress jumps between elements.
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Figure 4.14 Finite element representing
{(b) Finite element solution subdomain of continuum

It can be proven that for low-order elements the imbalance in (4.107) is larger than
the imbalance in (4.106), and that for high-order elements the imbalance in (4.106)
becomes predominant. In practice, (4.107) can be used to obtain an indication of the
accuracy of the stress solution and is easily applied by using the isobands of stresses as
proposed by T. Sussman and K. J. Bathe [A]. These isobands are constructed using the
calculated stresses without stress smoothing as follows:

Choose a stress measure; typically, pressure or the effective (von Mises) stress is
chosen, but of course any stress component may be selected.

Divide the entire range over which the stress measure varies into stress intervals,
assign each interval a color (or use black and white shading or simply alternate black
and white intervals).

A point in the mesh is given the color of the interval corresponding to the value of the
stress measure at that point.

If all stresses are continuous across the element boundaries, then this procedure will
yield unbroken isobands of stresses. However, in practice, stress discontinuities arise across
the element boundaries, resulting in “breaks” in the bands. The magnitude of the intervals
of the stress bands together with the severity of the breaks in the bands indicate directly the
magnitude of stress discontinuities (see Fig. 4.15). Hence, the isobands represent an
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Figure 4.15 Schematic of estimating
stress discontinuities using pressure
bands, width of bands = 5 MPa; black
and white intervals are used; (a) negligi-
ble discontinuities, Ap <€ 5 MPa;
(b) visible discontinuities but bands still
distinguishable, Ap == 2 MPa; (c) visible
discontinuities, bands not distinguishable,

(c) Ap > 5 MPa.

“eyeball norm” for the accuracy of the stress prediction i, achieved with a given finite
element mesh.

In linear analysis, the finite element stress values can be calculated using the relation
" = CBit at any point in the element; however, this evaluation is relatively expensive and
hardly possible in general nonlinear analysis (including material nonlinear effects). An
adequate approach is to use the integration point values to bilinearly interpolate over the
corresponding domain of the element. Figure 4.16 illustrates an example in two-
dimensional analysis.

An alternative procedure for obtaining an approximation to the error in the calculated
stresses 7% is to first find some improved values (7/)imp:. and then evaluate and display

Ary = 78 — T})impr. (4.108)

The display can again be achieved effectively using the isoband procedure discussed above.

Improved values might be found by simply averaging the stress values obtained at the
nodes using the procedure indicated in Fig. 4.16 or by using a least squares fit over the
integration point values of the elements (see E. Hinton and J. S. Campbell [A]). The least
squares procedure might be applied over patches of adjacent elements or even globally over
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Domain over which stresses are interpolated bilinearly using
the four Gauss point values (3 x 3 Gauss integration is used)

b=‘/§a
5

(see Section 5.5.3)

Gauss point 2a

2a

Figure 4.16 Interpolation of stresses from Gauss point stresses

a whole mesh. However, if the domain over which the least squares fit is applied involves
many stress points, the solution will be expensive and, in addition, a large error in one part
of the domain may affect rather strongly the least squares prediction in the other parts.
Another consideration is that when using the direct stress evaluation in (4.12), the stresses
are frequently more accurate at the numerical integration points used to evaluate the
element matrices (see Section 5.5) than at the nodal points. Hence, for a least squares fit,
it can be of value to use functions of order higher than that of the stress variations obtained
from the assumed displacement functions because in this way improved values can be

expected.
We demonstrate the nodal point and least squares stress averaging in the following

example.

EXAMPLE 4.27: Consider the mesh of nine-node elements shown in Fig. E4.27. Propose
reasonable schemes for improving the stress results by nodal point averaging and least squares
fitting.

Let 7be a typical stress component. One simple and frequently effective way of improving
the stress results is to bilinearly extrapolate the calculated stress components from the integration
points of each element to node i. In this way, for the situation and node i in Fig. E4.27, four
values for each stress component are obtained. The mean value, say (7") fuean, Of these four values
is then taken as the value at nodal point i. After performing similar calculations for each nodal
point, the improved value of the stress component over a typical element is

P impe, = El BT nan @

where the 4, are the displacement interpolation functions because the averaged nodal values are
deemed to be more accurate than the values obtained simply from the derivatives of the displace-
ments (which would imply that an interpolation of one order lower is more appropriate).

The key step in this scheme is the calculation of (7")fean. Such an improved value can also
be extracted by using a procedure based on least squares.

Consider the eight nodes closest to node i, plus node i, and the values of the stress
component of interest at the 16 integration points closest to node i (shown in Fig. E4.27). Let
(T")4niegr. be the known values of the stress component at the integration points,j = 1, .. ., 16,
and let (t")%.as be the unknown values at the nine nodes (of the domain corresponding to the
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Figure E4.27 Mesh of nine-node elements. Integration points near node i are also shown.

integration points). We can use the least squares procedure (see Section 3.3.3) to calculate the
values (7") .4« by minimizing the errors between the given integration point values and the values
calculated at the same points by interpolation from the nodal point values (T")5oges.

—-—‘3-—-—[2 (Ve — (&h){n@m] =0

a(,rh ﬁodcs i=1 (b)
k=1 ...,9
9
where (%h){ntegr. = 2 hk (Th ﬁodes (C)
k=1 at integr.
point J
Note that in (c) we evaluate the interpolation functions at the 16 integration stations shown in Fig.
E4.27. The relations in (b) and (¢) give nine equations for the values (T")roges, kK = 1, ..., 9. We

solve for these values but accept only the value at node i as the improved stress value, which is

now our value for (7") ean in (@). The same basic procedure is used for all nodes to arrive at nodal
“mean” values, so that (a) can be used for all elements.

A least squares procedure clearly involves more computations, and in many cases the
simpler scheme of merely extrapolating the Gauss values and averaging at the nodes as
described above is adequate.

Of course, we presented in Fig. E4.27 a situation of four equal square elements. In
practice, the elements are generally distorted and fewer or more elements may couplie into
the node i. Also, element non-corner nodes and special mesh topologies at boundaries need
to be considered.

We emphasize that the caiculation of an error measure and its display is a most
important aspect of a finite element solution. The quality of the finite element stress solution
7+ should be known. Once the error is acceptably small, values of stresses that have been

smoothed, for example, by nodal point or least squares averaging, can be used with
confidence.
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These error measures are based on the discontinuities of stresses between elements.
However, for high-order elements (of order 4 and higher), such discontinuities can be small
and yet the solution is not accurate because the differential equations of equilibrium of
stresses within the elements are not satisfied to sufficient accuracy. In this case the error
measure should also include the element internal stress imbalance (4.106).

Once an error measure for the stresses has been calculated in a finite element solution
and the errors are deemed to be too large, a procedure needs to be used to establish a new
mesh (with a refined discretization in certain areas, derefinement in other areas, and
possibly new element interpolation orders). This process of new mesh selection can be
automatized to a large degree and is important for the widespread use of finite element
analysis in CAD (see Section 1.3).

4.3.7 Exercises

4.25. Calcuiate the eight smallest eigenvalues of the four-node shell element stiffness matrix available
in a finite element program and interpret each eigenvalue and corresponding eigenvector. (Hint:
The eigenvalues of the element stiffness matrix can be obtained by carrying out a frequency
solution with a mass matrix corresponding to unit masses for each degree of freedom.)

4.26. Show that the strain energy corresponding to the displacement error e,, where e, = u — u,, is
equal to the difference in the strain energies, corresponding to the exact displacement solution u
and the finite element solution u,.

4.27. Consider the analysis problem in Example 4.6. Use a finite element program to perform the
convergence study shown in Fig. 4.12 with the nine-node and four-node (Lagrangian) elements.
That is, measure the rate of convergence in the energy norm and compare this rate with the
theoretical results given in Section 4.3.5. Use N = 2, 4, 8, 16, 32: consider N = 32 to be the
limit solution, and use uniform and graded meshes.

4.28. Perform an analysis of the cantilever problem shown using a finite element program. Use a
two-dimensional plane stress element idealization to solve for the static response.

(a) Use meshes of four-node elements.
(b) Use meshes of nine-node elements.

In each case construct a sequence of meshes and identify the rate of convergence of strain energy.

et vy

/
7 T
4 1
Z 1
7n 6 -

E = 200,000
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4.29.

4.30.

Formulation of the Finite Element Method Chap. 4

Also, compare your finite element solutions with the solutions using Bernoulli-Euler and
Timoshenko beam theories (see S. H. Crandall, N. C. Dahl, and T. J. Lardner [A] and Sec-
tion 5.4.1).

Consider the three-node bar element shown. Construct and plot the displacement functions of the
element for the following two cases:

for case 1: hi=1atnodei,i = 1,2,3
=Qatnodej +* i
for case 2: h;,=1latnodei,i =1, 2
=Q0atnodej #i,j=1,2
h; = 1 at node 3

h; = (Qatnode 1, 2

We note that the functions for case 1 and case 2 contain the same displacement variations,
and hence correspond to the same displacement space. Also, the sets of functions are hierarchical
because the three-node element contains the functions of the two-node element.

-
W
*oN

Consider the eight-node element shown. Identify the terms of the Pascal triangle present in the
element interpolations.

2 ") _
2 5 1
-t % —*
2 6 8
¢ $ -
X
I ¢ -— |
3 7 4

hy=5(1+ 00+ ), h=5{1- 001+

hy=45(1 — 01 — y), he = 3(1 + D1 - y)

hs = £(1 + y)(x), he = 1(1 — x)(y)

hr = 3(1 — y)(x), b = 3(1 + x)a(y)
where ¢, is defined in Example 4.26.
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4.31. A p-element of order p = 4 is obtained by using the following displacement functions.

h;,i =1, 2,3, 4, as for the basic four-node element (with corner nodes only; see Example 4.6).

h:,i =35,..., 16 to represent side modes.

side 1: Y = 2(1 + y)d(x); i =5913,j=2,3,4
side 2: AP =11 - x)¢(y); i=6,10,14;j=2,3,4
side 3: A = 2(1 — y)di(x); i=7,11,15;j=2,3,4
side 4: R =51 + x)d(y); i =18,12,16;j = 2,3, 4

where ¢, ¢, and ¢4 have been defined in Example 4.26. h;; to represent an internal mode
= (1 — x50 — y%)

Identify the terms of the Pascal triangle present in the element interpolations.

y
2 Side 1 1
i *— —9
Side 2 Side 4
5 -
X
v ® - ®
3 Side 3 4

4.32. Consider the analysis problem in Example 4.6. Use a finite element program to solve the
problem with the meshes of nine-node elements in Exercise 4.27 and plot isobands of the von
Mises stress and the pressure (without using stress smoothing). Hence, the isobands will display
stress discontinuities between elements. Show how the bands converge to continuous stress
bands over the cantilever plate.

4.4 INCOMPATIBLE AND MIXED FINITE ELEMENT MODELS

In the previous sections we considered the displacement-based finite element method, and
the conditions imposed so far on the assumed displacement (or field) functions were com-
pleteness and compatibility. If these conditions are satisfied, the calculated solution con-
verges in the strain energy monotonically (i.e., one-sided) to the exact solution. The com-
pleteness condition can, in general, be satisfied with relative ease. The compatibility
condition can also be satisfied without major difficulties in C° problems, for example, in
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plane stress and plane strain problems or in the analysis of three-dimensional solids such
as dams. Yet, in the analysis of shell problems, and in complex analyses in which completely
different finite elements must be used to idealize different regions of the structure, compat-
ibility may be quite impossible to maintain. However, although the compatibility require-
ments are violated, experience shows that good results are frequently obtained.

Also, in the search for finite elements it was realized that for shell analysis and the
analysis of incompressible media, the pure displacement-based method is not efficient. The
difficulties in developing compatible displacement-based finite elements for these problems
that are computationally effective, and the realization that by using variational approaches
many more finite element discretizations can be developed, led to large research efforts. In
these activities various classes of new types of elements have been proposed, and the
amount of information available on these elements is voluminous. We shall not present the
various formulations in detail but only briefly outline some of the major ideas that have been
used and then concentrate upon a formulation for a large class of problems—the analysis
of almost incompressible media. The analysis of plate and shell structures using many of the
concepts outlined below is then further addressed in Chapter 5.

4.4.1 Incompatible Displacement-Based Models

In practice, a frequently made observation is that satisfactory finite element analysis results
have been obtained although some continuity requirements between displacement-based
elements in the mesh employed were violated. In some instances the nodal point layout was
such that interelement continuity was not preserved, and in other cases elements were used
that contained interelement incompatibtlities (s¢g Example 4.28). The final result was the
same in either case, namely, that the displacements or their derivatives between elements
were not continuous to the degree necessary to satisfy all compatibility conditions discussed
in Section 4.3.2.

Since in finite element analysis using incompatible (nonconforming) elements the
requirements presented in Section 4.3.2 are .not satisfied, the calculated total potential
energy is not necessarily an upper bound to the exact total potential energy of the system,
and consequently, monotonic convergence is not ensured. However, having relaxed the
objective of monotonic convergence in the analysis, we still need to establish conditions that
will ensure at least a nonmonotonic convergence.

Referring to Section 4.3, the element completeness condition must always be satisfied,
and it may be noted that this condition is not affected by the size of the finite element. We
recall that an element is complete if it can represent the physical rigid body modes (but the
element matrix has no spurious zero eigenvalues) and the constant strain states.

However, the compatibility condition can be relaxed somewhat at the expense of not
obtaining a monotonically convergent solution, provided that when relaxing this require-
ment, the essential ingredients of the completeness condition are not lost. We recall that as
the finite element mesh is refined (i.e., the size of the elements gets smaller), each element
should approach a constant strain condition. Therefore, the second condition on conver-
gence of an assemblage of incompatible finite elements, where the elements may again be
of any size, is that the elements together can represent constant strain conditions. We should
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note that this is not a condition on a single individual element but on an assemblage of
elements. That is, although an individual element is able to represent all constant strafn
states, when the element is used in an assemblage, the incompatibilities between elements
may prohibit constant strain states from being represented. We may call this condition the
completeness condition on an element assemblage.

As a test to investigate whether an assemblage of nonconforming elements is com-
plete, the patch test has been proposed (see B. M. Irons and A. Razzaque [A]). In this test
a specific element is considered and a patch of elements is subjected to the minimum
displacement boundary conditions to eliminate all rigid body modes and to the boundary
nodal point forces that by an analysis should result in constant stress conditions. If for any
patch of elements the element stresses actually represent the constant stress conditions and
all nodal point displacements are correctly predicted, we say that the element passes the
patch test. Since a patch may also consist of only a single element, this test ensures that the
element itself is complete and that the completeness condition is also satisfied by any
element assemblage,

The number of constant stress states in a patch test depends of course on the actual
number of constant stress states that pertain to the mathematical model; for example, in plane
stress analysis three constant stress states must be considered in the patch test, whereas in
a fully three-dimensional analysis six constant stress states should be possible.

Fig. 4.17 shows a typical patch of elements used in numerical investigations for
various problems. Here of course only one mesh with distorted elements is considered,
whereas in fact any patch of distorted elements should be analyzed. This, however, requires
an analytical solution. If in practice the element is complete and the specific analyses shown
here produce the correct results, then it is quite likely that the element passes the p&tchi test.

When considering displacement-based elements with incompatibilities, if the patch
test is passed, convergence is ensured (although convergence may not be monatonic and
convergence may be slow).

The patch test is used to assess incompatible finite element meshes, and we may note
that when properly formulated displacement-based elements are used in compatible
meshes, the patch test is automatically passed.

Figure 4.18(a) shows a patch of eight-node elements (which are discussed in detail in
Section 5.2). The tractions corresponding to the plane stress patch test are also shown. The
elements form a compatible mesh, and hence the patch test is passed.

However, if we next assign to nodes 1 to 8 individual degrees of freedom for the
adjacent elements [e.g., at node 2 we assign two « and v degrees of freedom each for
elements 1 and 2] such that the displacements are not tied together at these nodes (and
therefore displacement incompatibilities exist along the edges), the patch test is not passed.
Figure 4.18(b) gives some results of the solution.

The example in Fig. 4.18(b) uses, in essence, an element that was proposed by E. L.
Wilson, R. L. Taylor, W. P. Doherty, and J. Ghaboussi [A]. Since the degrees of freedom
of the midside nodes of an element are not connected to the adjacent elements, they can be
statlcally condensed out at the element level (see Section 8.2.4) and a four-node element is
obtained. However, as indicated in Fig. 4.18(b), this element does not pass the patch test.
In the following example, we consider the element in more detail, first as a square element
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(b) Patch test of incompatible mesh of 8-node elements. All element midside nodes are now element
individual nodes with degrees of freedom not coupled to the adjacent element. Hence, two nodes
are located where in Fig. 4.18(a) only one node was located. Patch test results are shown at center
of elements for external traction applied in the x-direction. (Note that only the corner nodes of the
complete patch are subjected to externally applied loads)

Figure 4.18 Patch test results using the patch and element geometries of Fig. 4.17
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and then as a general quadrilateral element. We also present aremedy to correct the element
so that it will always pass the patch test (see E. L. Wilson and A. Ibrahimbegovic [A]).

EXAMPLE 4.28: Consider the four-node square element with incompatible modes in
Fig. E4.28(a) and determine whether the patch test is passed. Then consider the general quadri-
lateral element in Fig. E4.28(b) and repeat the investigation.

We notice that the square element is really a special case of the general quadrilateral
element. In fact, the quadrilateral element is formulated using the square element as a basis and
using the natural coordinates (r, s) in the interpolations as discussed in Section 5.2.

2
— Poned
2 Node 1
} ¢ &
Y. v
2 -

X u h,=}(1+x)(1+y)
hy=1(1-x01+y)
hg=2(1-2(1-y)

I _ & ¢ hi=7(1+x(1-p
3 4

Displecement interpoletion functions
4
u =2 hiu; + a1Pq + Q22

v=2h,v,+a3¢1 + Q42
1=(1-x2) $2=(1-y?

(e) Squere element

v i

X, U

(b) Generel quedrileterel element (here h;end ¢; ere used
with r, s coordinetes; see Section 5.2)

Figure E4.28 Four-node plane stress element with incompatible modes, constant thickness
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For this element formulation we can analytically investigate whether, or under which
conditions, the patch test is passed. First, we recall that the patch test is passed for the four-node
compatible element (i.e., when the ¢,, ¢, displacement interpolations are not used).

Next, let us consider that the element is placed in a condition of constant stresses 7¢. Then
the requirement for passing the patch test is that, in these constant stress conditions, the element
shouid behave in the same way as the four-node compatible element.

The formal mathematical condition can be derived by considering the stiffness matrix of
the element with incompatible modes.

Let
o= 2]
o
with ﬁT = [u1 .o U E‘Dl . oe . ‘04]
and o =la, ... a4
a
Then € =[B: BIC][' . ]
o

where B is the usual strain-displacement matrix of the four-node element and B¢ is the contri-
bution due to the incompatible modes.
Hence, with our usual notation, we have

jBTCBdV jBTCBlCdv
v ¢ v

------------- HE I

jB{c CBd4V | jB{C CByc dV
v | v

Jd

In practice, the incompatible displacement parameters a would now be statically condensed out
to obtain the element stiffness matrix corresponding to only the G degrees of freedom.

If the nodal point displacements are the physically correct values U° for the constant
stresses T°, we have

jB{c CBdVix = j Bi1 dV (b)
v v

To now force the element to behave under constant stress conditions in the same way as the
four-node compatible element, we require that (since the entries 7° are independent of each other)

j BidV =0 (©)

v

Namely, when (c) is satisfied, we find from (a):
If the nodal point forces of the element are those of the compatible four-node element, the
solution is i = 0° and & = 0. Also, of course, if we set i = 0° and & = 0, we obtain
from (a) the nodal point forces of the compatible four-node element and no forces corre-

sponding to the incompatible modes.

Hence, under constant stress conditions the element behaves as if the incompatible modes were
not present.
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We can now easily check that the condition in (¢) is satisfied for the square element:

-2x 0 0 0
j 0 0 0 =2ylav=0
1 o -2y -2x 0O

L -

However, we can also check that the condition is not satisfied for the general gquadrilateral
element (here the Jacobian transformation of Section 5.2 is used to evaluate Bic). In order to
satisfy (c) we therefore modify the B,c matrix by a correction Bfc and use

Bie" = Bic + Bfc
The condition (¢) on B gives

1

B = —"}J Bic dV
v

The element stiffness matrix is then obtained by using B{¢* in (a) instead of Bic. In practice, the
element stiffness matrix is evaluated by numerical integration (see Chapter 5), and B is
calculated by numerical integration prior to the evaluation of (a).

With the above patch test we test only for the constant stress conditions. Any patch
of elements with incompatibilities must be able to represent these conditions if convergence
1$ to be ensured.

In essence, this patch test is a boundary value problem in which the external forces are
prescribed (the forces f? are zero and the tractions f° are constant) and the deformations
and internal stresses are calculated (the rigid body modes are merely suppressed to render
the solution possible). If the deformations and constant stresses are correctly predicted, the
patch test is passed, and (because at least constant stresses can be correctly predicted)
convergence in stresses will be at least o(h).

This interpretation of the patch test suggests that we may in an analogous manner also
test for the order of convergence of a discretization. Namely, using the same concept, we
may instead apply the external forces that correspond to higher-order variations of internal
stresses and test whether these stresses are correctly predicted. For example, in order to test
whether a discretization will give a quadratic order of stress convergence, that is, whether
the stresses converge o(h?), a linear stress variation needs to be correctly represented. We
infer from the basic differential equations of equilibrium that the corresponding patch test
is to apply a constant value of internal forces and the corresponding boundary tractions.
While numerical results are again of interest and are valuable as in the test for constant
stress conditions, only analytical results can ensure that for all geometric element distor-
tions in the patch the correct stresses and deformations are obtained (see Section 5.3.3 for
further discussion and results). :

Of course, in practice, when testing element formulations, this formal procedure of
evaluating the order of convergence frequently is not followed, and instead a sequence of
simple test problems is used to identify the predictive capability of an element.

4.4.2 Mixed Formulations

To formulate the displacement-based finite elements we have used the principle of virtual
displacements, which is equivalent to invoking the stationarity of the total potential energy
I1 (see Example 4.4). The essential theory used can be summarized briefly as follows.
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1. We use’’
II(u) = %j e’ Ce dV — j u’f? dv — j u¥ £% ds
v v ¥ (4.109)
= stationary
with the conditions € = 0.u (4.110)
ws« —u, =0 4.111)

where 0, represents the differential operator on u to obtain the strain components, the
vector u, contains the prescribed displacements, and the vector u’« lists the corre-
sponding displacement components of u.

If the strain components are ordered as in (4.3), we have

o
-a—x 0 O
o
0 -6; 0
- _ o
u(x,y,z) 0 0 a—z
u=|v(xy2| 9, = 5 3
| w(x,,2) | a_y " 0
o o
0 %2 5}-’
R
| 92 ax_

2. The equilibrium equations are obtained by invoking the stationarity of I1 (with respect
to the displacements which appear in the strains),

j de’Ce dV=j SquBdV+j dus/ £5 dS (4.112)
v v Sy

The variations on u must be zero at and corresponding to the prescribed displacements
on the surface area S.. We recall that to obtain from (4.112) the differential equations
of equilibrium and the stress (natural) boundary conditions we substitute Ce = T and
reverse the process of transformation employed in Example 4.2 (see Sections 3.3.2
and 3.3.4). Therefore, the stress-strain relationship, the strain-displacement condi-
tions [in (4.110)], and the displacement boundary conditions [in (4.111)] are directly
fulfilled, and the condition of differential equilibrium (in the interior and on the
boundary) is a consequence of the stationarity condition of 1L

3. In the displacement-based-finite element solution the stress-strain relationship, the
strain-displacement conditions [in (4.110)], and the displacement boundary condi-
tions [in (4.111)] are satisfied exactly, but the differential equations of equilibrium in
the interior and the stress (natural) boundary conditions are satisfied only in the limit
as the number of elements increases.

15 In this section, as in equation (4.7), we use the notation £ instead of the usual £* to explicitly denote that
these are tractions applied to S,. Similarly, we have in this section also the tractions f*« and the surface displacements
u* and u’« For definitions of these quantities, see Section 4.2.1.
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The important point to note concerning the use of (4.109) to (4.112) for a finite
element solution is that the only solution variables are the displacements which must satisfy
the displacement boundary conditions in (4.111) and appropriate interelement conditions.
Once we have calculated the displacements, other variables of interest such as strains and
stresses can be directly obtained.

In practice, the displacement-based finite element formulation is used most fre-
quently; however, other techniques have also been employed successfully and in some cases
are much more effective (see Section 4.4.3).

Some very general finite element formulations are obtained by using variational
principles that can be regarded as extensions of the principle of stationarity of total poten-
tial. These extended variational principles use not only the displacements but also the strains
and/or stresses as primary variables. In the finite element solutions, the unknown variables
are therefore then also displacements and strains and/or stresses. These finite element
formulations are referred to as mixed finite element formulations.

Various extended variational principles can be used as the basis of a finite element
formulation, and the use of many different finite element interpolations can be pursued.
While a large number of mixed finite element formulations has consequently been proposed
(see, for example, H. Kardestuncer and D. H. Norrie (eds.) [A] and F. Brezzi and M. Fortin
[A]), our objective here is only to present briefly some of the basic ideas, which we shall then
use to formulate some efficient solution schemes (see Sections 4.4.3 and 5.4).

To arrive at a very general and powerful variational principle we rewrite (4.109) in
the form

Inm* =11 - f Alle — 9.u) dV — f AU« — u,) dS
v

Su (4.113)
= stationary

where A. and A, are Lagrange multipliers and S, is the surface on which displacements are
prescribed. The Lagrange multipliers are used here to enforce the conditions (4.110) and
(4.111) (see Section 3.4). The variables in (4.113) are u, €, A., and A.. By invoking
OII* = O the Lagrange multipliers A, and A, are identified, respectively, as the stresses 7
and tractions over S, 5« so that the variational indicator in (4.113) can be written as

Hszn"‘f

14

(e — d.u) dV — f f5%’(u’ — u,) dS (4.114)
Su

This functional is referred to as the Hu-Washizu functional (see H. C. Hu [A] and
K. Washizu [A, B]). The independent variables in this functional are the displacements u,
strains €, stresses T, and surface tractions f5«. The functional can be used to derive a number
of other functionals, such as the Hellinger-Reissner functionals (see E. Hellinger [A] and
E. Reissner [A], Examples 4.30 and 4.31, and Exercise 4.36) and the minimum complemen-
tary energy functional, and can be regarded as the foundation of many finite element
methods (see H. Kardestuncer and D. H. Norrie (eds.) [A], T. H. H. Pian and P. Tong [A],
and W. Wunderlich [A]).

Invoking the stationarity of ITyw with respect to u, €, T, and f5«, we obtain

f 8€"Ce dV — f du'f? dv — f Sus £5 dS — f d17(e — Ou) dV
v 14 Sy

14
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- fv tv’(6e — 9.6u) dV — f

Su

SEST(uS — u,) dS — f ST SuudS =0  (4.115)

Su

where Sy is the surface on which known tractions are prescribed.

The above discussion shows that the Hu-Washizu variational formulation may be
regarded as a generalization of the principle of virtual displacements, in which the displace-
ment boundary conditions and strain compatibility conditions have been relaxed but then
imposed by Lagrange multipliers, and variations are performed on all unknown displace-
ments, strains, stresses, and unknown surface tractions. That this principle is indeed a valid
and most general description of the static and kinematic conditions of the body under
consideration follows because (4.115) yields, since (4.115) must hold for the individual
variations used, the following.

For the volume of the body:
The stress-strain condition,
T = Ce (4.116)
The compatibility condition,
€ = 0.u 4.117)

The equilibrium conditions,

B = ()
x 3y z I
07Tyx a7y a7y, 8
+ = At
ettt (4.118)
a'sz a'sz a’Tzz + ff =0

For the surface of the body:

The applied tractions are equilibrated by the stresses,
fSr = T on S (4.119)

The reactions are equilibrated by the stresses,

fS« = on S, (4.120)

where n represents the unit normal vector to the surface and 7 contains in matrix form
the components of the vector =.
The displacements on §, are equal to the prescribed displacements,

u« =y, on S, (4.121)

The variational formulation in (4.115) represents a very general continuum mechan-
ics formulation of the problems in elasticity.
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Considering now the possibilities for finite element solution procedures, the Hu-
Washizu variational principle and principles derived therefrom can be directly employed to
derive various finite element discretizations. In these finite element solution procedures the
applicable continuity requirements of the finite element variables between elements and on
the boundaries need to be satisfied either directly or to be imposed by Lagrange multipliers.
It now becomes apparent that with this added flexibility in formulating finite element
methods a large number of different finite element discretizations can be devised, depending
on which variational principle is used as the basis of the formulation, which finite element
interpolations are employed, and how the continuity requirements are enforced. The vari-
ous different discretization procedures have been classified as hybrid and mixed finite
element formulations (see H. Kardestuncer and D. H. Norrie (eds.) [A] and T. H. H. Pian
and P. Tong [A]).

We demonstrate the use of the Hu-Washizu principle in the following examples.

EXAMPLE 4.29: Consider the three-node truss element shown in Fig. E4.29. Assume 2
parabolic variation for the displacement and a linear variation in strain and stress. Also, let the
stress and strain variables correspond to internal element degrees of freedom so that only the
displacements at nodes 1 and 2 connect to the adjacent elements. Use the Hu-Washizu variational
priniciple to calculate the element stiffness matrix.

Young's modulus E
Aree A

. t,x‘u
= e -

1 1 Figure E4.29 Three-node truss element

We can start directly with (4.115) to obtain

f 8e’(Ce — 1) dV — f 817(e — deu) dV
| 4 | 4

| | | |

@ @ (2)

+ f (8w TdV — f Su’f® dV + boundary terms = (
v v
|

1

®

9
T=17x C=E  fP=f;F

where € = €Exx, Oe = it
ax

and the boundary terms correspond to expressions for Sy and S, and are not needed to evaluate
the element stiffness matrix.
We now use the following interpolations:
(1 + x)x (1 — x)x

= R = | ———— —_———— - x2
u = Hu; H [ 5 3 1 x]

=[lui w us)



Sec. 4.4 Incompatible and Mixed Finite Element Models 273

a, 1l +x 1—-x
T = En1, E [ 2 2 ]

¢ = Ee¢

T =[n mnl; & =[e €]

Substituting the interpolations into (a), we obtain corresponding to term 1:

([ vl ([ o]

corresponding to term 2:

o] ([l ([ma]

corresponding to term 3: SﬁT(f B'E d V)"i'
v

where B=[G3+x (—3+x —2x]

Hence, we obtain

0 0 K.llu
0 K. K.l|lél|= (b)
_K:Tt"r K{-r 0 J _'?J
[
where K. = J E'CE dv
v
.
K, = B’E dV
Jv
and K., = —f E'E dV
v

If we now substitute the expressions for B and E and eliminate the ¢ and 7; degrees of freedom
(because they are assumed to pertain only to this element, thus allowing jumps in stresses and
strains between adjacent elements), we obtain from (b)
[~ 7 | _’8_ _u1_
EA
—6" 1 7 "'8 7%}
| —8 —8 16 |f us

This stiffness matrix is identical to the matrix of a three-node displacement-based truss ele-
ment—as should be expected using a linear strain and parabolic displacement assumption.

However, we should note that if the element stress and strain variables are not eliminated
on the element level and instead are used to impose continuity in stress and strain between
elements, then clearly with the element stiffness matrix in (b) the stiffness matrix of the complete
element assemblage is not positive definite.

This derivation could of course be extended to obtain the stiffness matrices of truss
elements with various displacement, stress, and strain assumptions. However, a useful element
1s obtained only if the interpolations are “judiciously” chosen and actually fulfill specific require-
ments (see Section 4.5).
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EXAMPLE 4.30: Consider the two-node beam element shown in Fig. E4.30. Assume linear
variations in the transverse displacement w and section rotation 6 and a constant element
transverse shear strain 7. Establish the finite element equations.

E = Young's modulus

G = shear modulus W1A * zZ, W we
@4 @,
h e
1 X, U 2

10, | - L/2 e L2 ]

Figure E4.30 Two-node beam element

We assume that the stresses are given by the strains, and so we can substitute 7 = Ce into
(4.114) and obtain

1
II% = f (— -2—eTCe + €’Co.u — u"f") dV + boundary terms (a)
v

This varjational indicator is also a Hellinger-Reissner functional, but comparing (a) with the
functional in Exercise 4.36, we note that here strains and displacements are the independent
variables (instead of the stresses and displacements in Exercise 4.36).

In our beam formulation the variables are u, w, and %> (the superscript AS denotes the
.assumed constant value). Hence, the bending strain ,, is calculated from the displacement, and
we can specialize (a) further:

- 1 1
IIf: = f ('2- € Ee,, — '2")’535 Gy + Y GY.: — quB) dV + boundary terms
Vv
_[#]. _ . _w
where U= [w] ’ € = Ox Y 7 5% T eV4
Now invoking 811%; = 0, we obtain corresponding to 6u, (not including boundary terms)
j (O€x E€rr + 8Y,, GY2S) dV = j Su’f? dv (b)
Vv Vv
and corresponding to 8y%’,
j SYVE C(Yee — v)dV =0 (c)
Vv
Let (W |
a= % e=pn
W3 ’
_GZ_I
Then we can write
u = Hu; €&x = B,u

‘sz = Bsﬁs ﬁz = BsAsé



Sec. 4.4 Incompatible and Mixed Finite Element Models

275

Substituting into (b) and (c), we obtain
K.
K.

clLe) =[] @

where K., = J Bl EB, dV: K. = J BIGBAS 4V
v v

K. = - j (B4 GBS dV; Ry = j HTE? dV
v

14

We can now use static condensation on € to obtain the final element stiffness matrix:

K = Kuu - KucK:EI K:Tc
In our case, we have _

Z({L z{L
H—- 0 L(2 X) 0 Z(E.,_x)
- _l_(é_x 0 1L, 0
I\2 \2 " * |
R Z
B, = _0 3 0 L]
B =|_1 ._l(é_. ) 1 _,1_(£+ )]
~ |71 "I\2" % L "I\27*
B2 = [1]
| Gh Gh —Gh Gh |
L 2 L 2
@8 2@z
2 12L 2 12L
that K =
0T —Gh —Gh Gh —~Gh ©
L 2 L 2
2 12L 2 121

It is interesting to note that a pure displacement formulation would give a very similar stiffness
matrix. The only difference is that the circled terms would be GhL/3 on the diagonal and GhL/6
in the off-diagonal locations. However, the element predictive capability of the pure
displacement-based formulation is drastically different, displaying a behavior that is much too
stiff when the element is thin (we discuss this phenomenon in Sections 4.5.7 and 5.4.1).

Note that if we assume a displacement vector corresponding to section rotations only,

i=[0 a O

then using (e) the element displays bending stiffness only, whereas the pure displacement-based
element shows an erroneous shear contribution.

Let us finally note that the stiffness matrix in (e) corresponds to the matrix obtained in the
mixed interpolation approach discussed in detail in Section 5.4.1. Namely, if we use the last
equation in (d), which corresponds to the equation (c), we obtain

Wz_Wl__91+92
L 2

"‘O!]

Y2 =
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which shows that the assumed shear strain value is equal to the shear strain value at the midpoint
of the beam calculated from the nodal point displacements.

As pointed out above, the Hu-Washizu principle provides the basis for the derivation
of various variational principles, and many different mixed finite element discretizations
can be designed. However, whether a specific finite element discretization is effective for
practical analysis depends on a number of factors, particularly on whether the method is
general for a certain class of applications, whether the method is stable with a sufficiently
high rate of convergence, how efficient the method is computationally, and how the method
compares to alternative schemes. While mixed finite element discretizations can offer some
advantages In certain analyses, compared to the standard displacement-based discretiza-
tion, there are two large areas in which the use of mixed elements is much more efficient
than the use of pure displacement-based elements. These two areas are the analysis of
almost incompressible media and the analysis of plate and shell structures (see the following
sections and Section 5.4).

4.4.3 Mixed Interpolation——DispIacemenilPressure
Formulations for Incompressible Analysis

The displacement-based finite element procedure described in Section 4.2 is very widely
used because of its simplicity and general effectiveness. However, there are two problem
areas 1n which the pure displacement-based finite elements are not sufficiently effective,
namely, the analysis of incompressible (or almost incompressible) media and the analysis of
plates and shells. In each of these cases, a mixed interpolation approach—which can be
thought of as a special use of the Hu-Washizu variational principle (see Example 4.30)—is
far more efficient.

We discuss the mixed interpolation for beam, plate, and shell analyses in Section 5.4,
and we address here the analysis of incompressible media.

Although we are dealing with the solution of incompressible solid media, the same
basic observations are also directly applicable to the analysis of incompressible fluids (see
Section 7.4). For example, the elements summarized in Tables 4.6 and 4.7 (later in this
section) are also used effectively in fluid flow solutions.

The Basic Differential Equations for Incompressible Analysis

In the analysis of solids, it is frequently necessary to consider that the material is almost
incompressible. For example, some rubberlike materials, and materials in inelastic condi-
tions, may exhibit an almost incompressible response. Indeed, the compressibility effects
may be so small that they could be neglected, in which case the material would be idealized
as totally incompressible.

A basic observation in the analysis of almost incompressible media is that the pressure
is difficult to predict accurately. Depending on how close the material is to being incom-
pressible, the displacement-based finite element method may still provide accurate solu-
tions, but the number of elements required to obtain a given solution accuracy is usually far
greater than the number of elements required in a comparable analysis involving a com-
pressible material.
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To identify the basic difficulty in more detail, let us again consider the three-
dimensional body in Fig. 4.1. The material of the body is isotropic and is described by
Young’s modulus E and Poisson’s ratio v.

Using indicial notation, the governing differential equations for this body are (see
Example 4.2)

., + fF=0 throughout the volume V of the body (4.122)
Tyhy = fff on S (4.123)
u = up on S, (4.124)

If the body is made of an almost incompressible material, we anticipate that the volumetric
strains will be small in comparison to the deviatoric strains, and therefore we use the
constitutive relations in the form (see Exercise 4.39)

Ty = Kevdy + 266:} (4125)
where « is the bulk modulus,
E 4.126
K —_—

30 = 29) (4.126)

év is the volumetric strain,

€y = €
AV . . :

= 7( = €., + €, + €, in Cartesian coordinates) (4.127)

o, is the Kronecker delta,
i ’ 4.128
&{=m i # j (4.128)

€; are the deviatoric strain components,

6{; = €y — "65‘:6;_; (4129)
and G is the shear modulus,
E
G = ) (4.130)

We also have for the pressure in the body,

AX + + ZZ . . v
where p=— T—;k ( - T;y " in Cartesian coordmates) (4.132)
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Now let us gradually increase k (by increasing the Poisson ratio v to approach 0.5).
Then, as k increases, the volumetric strain €y decreases and becomes very small.

In fact, in total incompressibility v is exactly equal to 0.5, the bulk modulus is infinite,
the volumetric strain is zero, and the pressure is of course finite (and of the order of the

applied boundary tractions). The stress components are then expressed as [see (4.125) and
(4.131)]

Ty = —pdy + 2Ge;; (4.133)

and the solution of the governing differential equations (4.122) to (4.124) now involves
using the displacements and the pressure as unknown variables.

In addition, special attention need also be given to the boundary conditions in (4.123)
and (4.124) when material incompressibility is being considered and the displacements are
prescribed on the complete surface of the body, i.e., when we have the special case S, = §,
S = 0. If the material is totally incompressible, a first condition is that the prescribed
displacements 7 must be compatible with the zero volumetric strain throughout the body.
This physical observation i1s expressed as

€ =0 throughout V (4.134)
hence, f € dV = f wendS =0 (4.135)
14 AY

where we used the divergence theorem and n is the unit normal vector on the surface of the
body. Hence, the displacements prescribed normal to the body surface must be such that the
volume of the body is preserved. This condition will of course be automatically satisfied if
the prescribed surface displacements are zero (the particles on the surface of the body are
not displaced).

Assuming that the volumetric strain/boundary displacement compatibility is satisfied,
for the case S, = S, the second condition is that the pressure must be prescribed at some
point in the body. Otherwise, the pressure is not unique because an arbitrary constant
pressure does not cause any deformations. Only when both these conditions are fulfilled is
the problem well posed for solution.

Of course, the condition of prescribed displacements on the complete surface of the
body is a somewhat special case in the analysis of solids, but we encounter an analogous
situation frequently in fluid mechanics. Here the velocities may be prescribed on the
complete boundary of the fluid domain (see Chapter 7).

Although we considered here a totally incompressible medium, it is clear that these
considerations are also important when the material is only almost incompressible—a
violation of the conditions discussed will lead to an ill-posed problem statement.

Of course, these observations also pertain to the use of the principle of virtual work.
Let us consider the simple example shown in Fig. 4.19. Since only volumetric strain energy
is present, the principle of virtual work gives for this case,

f -évKEV dVv = _f ‘E‘J-Sp* das (4.136)
14 Sf
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L
Bulk modulus x
Pressure p
v, v A
/
L
Figure 4.19 Block of material in plane

— strain condition, subjected to uniform
X, u surface pressure p*

If the bulk modulus « is finite, we obtain directly from (4.136),

*L
vS = —p—’;(— (4.137)

and p = p* (4.138)

However, if kis infinite, we need to use instead of (4.136) the following form of the principle
of virtual work, with the pressure p unknown,

f &{—p)dV = —f o5p* dS (4.139)
14 Sf

and we again obtain p = p*. Of course, the solution of (4.139) does not use the constitutive
relation but only the equilibrium condition.

The Finite Element Solution of Almost Incompressible Conditions

The preceding discussion indicates that when pursuing a pure displacement-based finite
element analysis of an almost incompressible medium, significant difficulties must be
expected. The very small volumetric strain, approaching zero in the limit of total incom-
pressibility, is determined from derivatives of displacements, which are not as accurately
predicted as the displacements themselves. Any error in the predicted volumetric strain will
appear as a large error in the stresses, and this error will in turn also affect the displacement
prediction since the external loads are balanced (using the principle of virtual work) by the
stresses. In practice, therefore, a very fine finite element discretization may be required to
obtain good solution accuracy.
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(a) Geometry, material data, applied loading, and the coarse sixteen
element mesh

Figure 4.20 Analysis of cantilever bracket in plane strain conditions. Nine-node displace-
inent-based eleinents are used. The 16 X 64 = 1024-elemnent 1nesh is obtained by dividing
each elenent of the 16-elemnent nesh into 64 elemnents. Maximun principal stress results are
shown using the band representation of Fig. 4.15. Also, (01)max is the predicted naximnuin
value of the maxiinun principal stress, and & is defined in (a).
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(b} Displacement-based element solution resuits for the case Poisson’s ratio
v = 0.30. Sixteen element and 16 X 64 element mesh resulis

Figure 4.20 (continued)

Figure 4.20 shows some results obtained in the analysis of a cantilever bracket sub-
jected to pressure loading. We consider plane strain conditions and the cases of Poisson’s
ratio v = (.30 and v = 0.499. In all solutions, nine-node displacement-based elements
have been used (with 3 X 3 Gauss integration; see Section 5.5.5). A coarse mesh and a very
fine mesh are used, and Fig. 4.20(a) shows the coarse idealization using only 16 elements.
The solution results for the maximum principal stress o, are shown using the isoband
representation discussed in Section 4.3.6. Here we have selected the bandwidth so as to be
able to see the rather poor performance of the displacement-based element when the Poisson
ratio 18 close to 0.5. Figure 4.20(b) shows that when v = (.30, the element stresses are
reasonably smooth across boundaries for the coarse mesh and very smooth for the fine
mesh. Indeed, the coarse 1dealization gives a quite reasonable stress prediction. However,
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(c) Displacement-based element solution results for the case Poisson's ratio
v = 0.499. Sixteen element and 16 X 64 element mesh results

Figure 4.20 (continued)

when v = 0.499, the same meshes of nine-node displacement-based elements result into
poor stress predictions [see Fig. 4.20(c)]. Large stress fluctuations are seen in the individual
elements of the coarse mesh and the fine mesh.'® Hence, in summary, we see here that the
displacement-based element used in the analysis is effective when v = 0.3, but as v ap-
proaches 0.5, the stress prediction becomes very inaccurate.

This discussion indicates what is very desirable, namely, a finite element formulation
which gives essentially the same accuracy in results for a given mesh irrespective of what
Poisson’s ratio is used, even when v is close to 0.5. Such behavior is observed if for the finite

' We discuss briefly in Section 5.5.6 the use of “reduced integration.” If in this analysis the reduced

integration of 2 X 2 Gauss integration is attempted, the solution cannot be obtained because the resulting stiffness
malrix s stngular.
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element formulation the predictive capability of displacements and stresses is independent
of the bulk modulus used.

We refer to finite element formulations with this desirable behavior as nonlocking,
whereas otherwise the finite elements are locking.

The term “locking” is based upon experiences in the analysis of beams, plates, and
shells (see Section 5.4.1), where an inappropriate formulation—one that locks—results in
displacements very much smaller than those intuitively expected for a given mesh (and
calculated with an appropriate formulation; see, for example, Fig. 5.20). In the analysis of
almost incompressible behavior, using a formulation that locks, the displacements are not
necessarily that much in error but the stresses (the pressure) are very inaccurate. We note
that the pure displacement formulation generally locks in almost incompressible analysis.
These statements are discussed more precisely in Section 4.5.

Effective finite element formulations for the analysis of almost incompressible behav-
ior that do not lock are obtained by interpolating displacements and pressure. Figure 4.21
shows the results obtained in the analysis of the cantilever bracket in Fig. 4.20 with a
displacement/pressure formulation referred to as u/p formulation using the 9/3 element
(see below for the explanation of the formulation and the element). We see that the
isobands of the maximum principal stress have in all cases the desirable degree of smooth-
ness and that the stress prediction does not deteriorate when Poisson’s ratio v ap-
proaches 0.5.

To introduce the displacement/pressure formulations, we recall that in a pure dis-
placement formulation, the evaluation of the pressure from the volumetric strain is difficult
when k is large (in comparison to G) and that when a totally incompressible condition is
considered, the pressure must be used as a solution variable [see (4.133)]. It therefore
appears reasonable to work with the unknown displacements and pressure as solution
variables when almost incompressible conditions are analyzed. Such analysis procedures,
if properly formulated, should then also be directly applicable to the limit of incompressible
conditions.

The basic approach of displacement/pressure finite element formulations is therefore
to interpolate the displacements and the pressure. This requires that we express the principle
of virtual work in terms of the independent variables u and p, which gives

f e7S dvV — f epdV =R (4.140)
14 14

where, as usual, the overbar indicates virtual quantities, R corresponds to the usual external
virtual work [RR is equal to the right-hand side of (4.7)], and S and €’ are the deviatoric stress
and strain vectors,
S=1+ pd (4.141)
1

€ =€ — -§EV8 (4.142)

where 8 is a vector of the Kronecker delta symbol [see (4.128)].

Note that using the definition of p in (4.131), a uniform compressive stress gives a
positive pressure and that in the simple example in Fig. 4.19, only the volumetric part of the
internal virtual work contributed.

In (4.140) we have separated and then summed the deviatoric strain energy and the
bulk strain energy. Since the displacements and pressure are considered independent vari-
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(a) Bands of maximum principal stress. Case of Poisson’s ratio v = 0.30.
Sixteen and 16 X 64 element mesh resulis

Figure 4.21 Analysis of cantilever bracket in plane strain conditions. Bracket is shown in
Fig. 4.20(a). Same meshes as in Fig. 4.20 are used but with the nine-node mixed interpolated
element (the 9/3 element). Compare the results shown with those given in Fig. 4.20.

ables, we need another equation to connect these two solution variables. This equation is
provided by (4.131) written in integral form (see Example 4.31),

f (3 + ev)ﬁ dv =0 (4.143)

K

These basic equations can also be derived more formally from variational principles (see
L. R. Herrmann [A] and S. W. Key [A]). We derive the basic equations in the following

example from the Hu-Washizu functional.
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(b) Bands of maximum principal stress. Case of Poisson’s ratio v = 0.499.
Sixteen and 16 X 64 element mesh results

Figure 4.21 (continued)

EXAMPLE 4.31: Derive the u/p formulation from the Hu-Washizu variational principle.
The derivation is quite analogous to the presentation in Example 4.30 where we considered
a mixed interpolation for a beam element.
We start by letting T = Ce in (4.114) to obtain the Hellinger-Reissner functional,

1 .
tr(u, €) = —f EeTCe dv + f eCoudv — f u’f? dv — f w’ £ dS (a)
Vv 14 14 Sj

where we assume that the displacement boundary conditions are satisfied exactly (hence, also the
displacement variations will be zero on the surface of prescribed displacements).
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Next we establish the deviatoric and volumetric contributions and postulate that the
deviatoric contribution will be evaluated from the displacements. Hence, we can specialize (a)
into
1 IT Lt f lp ? f f TeB f ST§S
~€'TC'e' dV — | -—dV — | pevdV — | u'f?4dV — | wrf¥dS (b)
2 v2 K v v S
where the prime denotes deviatoric quantities, €y is the volumetric strain evaluated from the
displacements, p is the pressure, and k is the bulk modulus. Note that whereas in (a) the
independent variables are u and €, in (b) the independent variables are u and p.

Invoking the stationarity of II%; with respect to the displacements and the pressure, we
obtain

ﬁﬁR(us p) = f

Vv

f O6e'TC'e’' dV — f poey dV = R
v v

and I(E + ev)Sp dv =0
V K

where R corresponds to the virtual work of the externally applied loading [see (4.7)].

It is interesting to note that we may also think of (b) as the total potential in terms of the
displacements and the pressure plus a Lagrange multiplier term that enforces the constraint
between the volumetric strains and the pressure,

- I ety lp_z _ T¢B
[¥: = €e’Ce dV + dVv u’ff dv
v2 v2K v

—f wSTES dS — f /\(ev + E) dv
S v K

In (c) the last integral represents the Lagrange multiplier constraint, and we find A = p.

To arrive at the governing finite element equations, we can now use (4.140) and
(4.143) as in Section 4.2.1, but in addition to interpolating the displacements we also
interpolate the pressure p. The discussion in Section 4.2.1 showed that we need to consider
the formulation of only a single element; the matrices of an assemblage of elements are then
formed in a standard manner.

Using, as in Section 4.2.1,

u = Hi (4.144)
we can calculate
' = Bpii; ey = Byl (4.145)
The additional interpolation assumption is
p=H,p (4.146)

where the vector P lists the pressure variables [(see the discussion following (4.148)].
Substituting from (4.144) to (4.146) into (4.140) and (4.143), we obtain

el = Lo (141

where K, = f BLIC'B, dV
1%
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K, =K =~ f TH, dV (4.148)
1’

I

KPP

_ f HIiH, av
v UK

and C’ is the stress-strain matrix for the deviatoric stress and strain components.

The relations in (4.144) to (4.148) give the basic equations for formulating elements
with displacements and pressure as variables. The key question for the formulation is now,
What pressure and displacement interpolations should be used to arrive at effective ele-
ments? For example, if the pressure interpolation is of too high a degree compared to the
displacement interpolation, the element may again behave as a displacement-based element
and not be effective.

Considering for the moment only the pressure interpolation, the following two main
possibilities exist and we label them differently.

The u/p formulation. In this formulation, the pressure variables pertain only to
the specific element being considered. In the analysis of almost incompressible media (as so
far discussed), the element pressure variables can be statically condensed out prior to the
element assemblage. Continuity of pressure is not enforced between elements but will be a
result of the finite element solution if the mesh used is fine enough.

The u/p-c formulation. The letter “c” denotes continuity in pressure.

In this formulation, the element pressure is defined by nodal pressure variables that
pertain to adjacent elements in the assemblage. The pressure variables therefore cannot be
statically condensed out prior to the element assemblage. Continuity of pressure between
elements is directly enforced and will therefore always be a result of the solution irrespec-
tive of whether the mesh used is fine or coarse.

Consider the following two elements, one corresponding to each of the formulations.

EXAMPLE 4.32: For the four-node plane strain element shown, assume that the displacements
are interpolated using the four nodes and assume a constant pressure. Evaluate the matrix
expressions used for the u/p formulation.

y,v+

Young's modulus E
Poisson's ratio v

Figure E4.32 A 4/1 element
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This element is referfed to as the u/p 4/1 element. In plane strain analysis we have
el vey| [2a_ 100
o3 39x 3 dy
, 1 20v 1 du
€ = Eyy"g(e'n'l' &y) | = 5-{;}}-—5‘5; ; €y = €x T €, (a)
o,
Yoy dy ox
Loy | A2
3 n > i 3\dx ay/
and S = C’e’, where
26 0 0 O
0 26 0 O E
C' = ; G =
0O 0 G O 2(1 + v)
0 0 0 2G|
The displacement interpolation is as in Example 4.6,
u = Ha
with ulx, y) = ulx, y)]; ' =lwy, w ws w V1 V2 U3 V4]
Lv(x, y)
‘hi h, hs h, ¢ 0 0 0 O
H — 1 2 3 4 ] (b)
0 0 0 0 hi h, hy hy
h = 3(1 + (1 + y); hy = 3(1 — (1 + y)
hy = (1 = (1 = y); he = 3(1 + (1 — y)
Using (a) and (b), the strain-displacement interpolation matrices are
th . thyr ...+ —3hy, —3hyy
BD — _%hl.x _%hZ,x v %hl.)’ %hz-)’
hl.y h2.y hl.x hz.x
_—%hl,x —shy, ... % —3hy, —ihy,
and BV = [hl,x hz,x hl,y hz,y . ]
For a constant pressure assumption we have
H, = [1]; b = [po]
Since the degree of freedom p = [po] pertains only to this element and not to the adjacent
elements, we can use static condensation to obtain from (4.147) the element stiffness matrix
corresponding to the nodal point displacement degrees of freedom only;
K=K, K,K, K,
The element is further discussed in Example 4.38.
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EXAMPLE 4.33: Consider the nine-node plane strain element shown in Fig. E4.33. Assume
that the displacements are interpolated using the nine nodes and that the pressure is interpolated
using only the four corner nodes. Refer to the information given in Example 4.32 and discuss the
additional considerations for the evaluation of the matrix expressions of this element.

y. v |

® Displacament noda
@ Displacement and pressure node

X, U Young's modulus E
Poisson's ratio v

Figure E4.33 A 9/4-c element

This element was proposed by P. Hood and C. Taylor [A]. In the formulation the nodal
pressures pertain to adjacent elements, and according to the above element nomination we refer
to it as a u/p-c element (it is the 9/4-c element).

The deviatoric and volumetric strains are as given in (a) in Example 4.32. The displace-
ment interpolation corresponds to the nine nodes of the element,

/3

o
[u(x,y)]=|:h’f .. h¥ + 0 ... 0] (a)
v(x, y) 0 ... 0 ¢ h¥ ... h¥flloy,

Lv.%

where the interpolation functions A} are constructed as explained in Section 4.2.3 (or see
Section 5.3 and Fig. 5.4).
The deviatoric and volumetric strain-displacement matrices are obtained as inExample 4.32.
The pressure interpolation is given by

D1
P=[h1 h: hs h4] p

D4

—

where the h; are those given in (b) in Example 4.32.

A main computational difference between this element and the four-node element dis-
cussed in Example 4.32 is that the pressure degrees of freedom cannot be statically condensed
out on the element level because the variables py, . . . , p4 pertain to the element we are consid-
ering here and to the adjacent elements, thus describing a continuous pressure field for the
discretization.
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Let us now return to the discussion of what pressure and displacement interpolations
should be used in order to have an effective element.

For instance, in Example 4.32, we used four nodes to interpolate the displacements
and assumed a constant pressure, and we may ask whether a constant pressure is the
appropriate choice for the four-node element. Actually, for this element, it is a somewhat
natural choice because the volumetric strain calculated from the displacements contains
linear variations in x and y and our pressure assumption should be of lower order.

When higher-order displacement interpolations are used, the choice of the appropri-
ate pressure interpolation is not obvious and indeed much more difficult: the pressure
should not be interpolated at too low a degree because then the pressure prediction could
be of higher order and hence be more accurate, but the pressure should also not be
interpolated at too high a degree because then the element would behave like the displace-
ment-based elements and lock. Hence, we want to use the highest degree of pressure
interpolation that does not introduce locking into the element.

For example, considering the u/p formulation and biquadratic displacement interpola-
tion (i.e., nine nodes for the description of the displacements), we may naturally try the
following cases:

1. Constant pressure, p = po (9/1 element)
2. Linear pressure, p = po + pix + p2y (9/3 element)
3. Bilinear pressure, p = po + pix + p2y + psxy (9/4 element)

and so on, up to a quadratic pressure interpolation {which corresponds to the 9/9 element)

These elements have been analyzed theoretically and by use of numerical experi-
ments. Studies of the elements show that the 9/1 element does not lock, but the rate of
convergence of pressure (and hence stresses) as the mesh is refined is only of o(h) because
a constant pressure is assumed in each nine-node element. The poor quality of the pressure
prediction can of course also have a negative effect on the prediction of the displacements.

Studies also show that the 9/3 element is most attractive because it does not lock and
the stress convergence is of o(h?). Hence, the predictive capability is optimal since if a
biquadratic displacement expansion is used, no higher-order convergence in stresses can be
expected. Also, the 9/3 element is effective for any Poisson’s ratio up to 0.5 (but the static
condensation of the pressure degrees of freedom is possible only for values of v < 0.5).

Hence, we may be tempted to always use the 9/3 element (instead of the displacement-
based nine-node element). However, we find in practice that the 9/3 element is computa-
tionally slightly more expensive than the nine-node displacement-based element, and when
v is less than 0.48, the additional terms in the pressure expansion of the displacement-based
element allow a slightly better prediction of stresses.

The next u/p element of interest is the 9/4 element, and studies show that this element
locks when v is close to 0.50; hence it cannot be recommended for almost incompressible
analysis.

In an analogous manner, other u/p elements can be constructed, and Table 4.6
summarizes some choices. Regarding these elements, we may note that the four-node two-
dimensional and eight-node three-dimensional elements are extensively used in practice.
However, the nine-node two-dimensional and 27-node three-dimensional elements are
frequently more powerful.
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As indicated in Table 4.6, the Q. — P, and P; — P, elements are the first members
of two families of elements that may be used. That is, the quadrilateral elements Q, —
and the triangular elements P; — P,—, n > 2, are also effective elements.

In Table 4.6 we refer to the inf-sup condition, which we will discuss in Section 4.5.

From a computational point of view, the u/p elements are attractive because the
element pressure degrees of freedom can be statically condensed out before the elements are
assembled (assuming v < 0.5 but possibly very close to 0.5). Hence, the degrees of freedom
for the assemblage of elements are only the same nodal point displacements that are also
the degrees of freedom in the pure displacement-based solution.

However, the u/p-c formulation has the advantage that a continuous pressure field is
always calculated. Table 4.7 lists some effective elements.

H—’l,

The Finite Element Solution of Totally Incompressible Conditions

If we want to consider the material to be totally incompressible, we can still use (4.140) and

(4.143), but we then let k — . For this reason, we refer to this case as the limit problem.
Then (4.143) becomes

f epdvV = 0 (4.149)
v

and (4.147) becomes, correspondingly,

[II((,,., KJP] [:] _ [1;] (4.150)

Hence, in the coefficient matrix, the diagonal elements corresponding to the pressure
degrees of freedom are now zero. It follows that a static condensation of the element
pressure degrees of freedom in the u/p formulation is no longer possible and that the
solution of the equations of the complete assemblage of elements needs special consider-
ations (beyond those required in the pure displacement-based solution) to avoid encounter-
ing a zero pivot element (see Section 8.2.5).

Suitable elements for solution are listed in Tables 4.6 and 4.7. These elements are
effective (except for the Q, — P, elements) because they have good predictive capability
irrespective of how close the behavior of the medium is to a situation of total incompressibil-
ity (but the procedure for solving the governing finite element equations must take into
account that the elements in K,, become increasingly smaller as total incompressibility is
approached).

As already noted earlier, we refer to the inf-sup condition in Tables 4.6 and 4.7. This
condition is the basic mathematical criterion that determines whether a mixed finite element
discretization is stable and convergent (and hence will yield a reliable solution). The
condition was introduced as the fundamental test for mixed finite element formulations by
I. Babuska [A] and F. Brezzi [A] and since then has been used extensively in the analysis
of mixed finite element formulations. In addition to the inf-sup condition, there is also the
ellipticity condition which has not received as much attention because frequently—as in the
analysis of almost incompressible media—the ellipticity condition is automatically
satisfied.
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We may ask whether in practice it is really important to satisfy the inf-sup condition,
that is, whether perhaps this condition is too strong and elements that do not satisfy it can
still be used reliably. Our experience is that if the inf-sup condition is satisfied, the element
will be, for the interpolations used, as effective as we can reasonably expect and in that
sense optimal. For example, the 9/3 element for plane strain analysis in Table 4.6 is based
on a parabolic interpolation of displacements and a linear interpolation of pressure.The
element does not lock, and the order of convergence of displacements is always o(h?), and
of stresses, o(h?), which is surely the best behavior we can obtain with the interpolations
used.

On the other hand, if the inf-sup condition is not satisfied, the element will not always
display for all analysis problems (pertaining to the mathematical model considered) the
convergence characteristics that we would expect and indeed require in practice. The
element is therefore not robust and reliable.

Since the inf-sup condition is of great fundamental importance, we present in the
following section a derivation that although not mathematically complete does yield valu-
able insight. In this discussion we will also encounter and briefly exemplify the ellipticity
condition. For a mathematically complete derivation of the ellipticity and inf-sup
conditions and many more details, we refer the reader to the book by F. Brezzi and M.
Fortin [A].

In the derivation in the next section we examine the problem of incompressible
elasticity, but our considerations are also directly applicable to the problem of incompress-
ible fluid flow, and as shown in Section 4.5.7, to the formulations of structural elements.

4.4.4 Exercises

4.33. Use the four-node and eight-node shell elements available in a finite element program and
perform the patch tests in Fig. 4.17.

4.34. Consider the three-dimensional eight-node element shown. Design the patch test and identify
analytically whether it is passed for the element.

N\

N
'S

8
U=y hiuj+ o191 + a6z + azps
i=1

8
V=2 hivi + aspy + ases + agds
i=1
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- - -—-_#
—

}---_ A e
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|

i

1

|

|
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:

|

|

|

|

|

: 8

/ w=3 hw; + asq + agp; + argps

R bt I=1
2

x Y

\

N h-\
()

h,-=-;—(1 + X001 + Y1 + z;2)
pr=1-x%¢2=1-yLp3=1-2

Displacement interpolation functions



Sec. 4.4 Incompatible and Mixed Finite Element Models 297

4.35.

4.36.

4.37.

4.38.

4.39.

term.

Consider the Hu-Washizu functional Ilyw in (4.114) and derive in detail the equations (4.116)
to (4.121).

The following functional is referred to as the Hellinger-Reissner functional'’

1
Igr(u, 1) = f —ETTC“T dv + f " dudV
|4 |4

*f ufédv — f w5 dS — f f5% (0« — u,) dS
v Sy Su

where the prescribed (not to be varied) quantities are f? in V, u, on S,, and f% on §;.
Derive this functional from the Hu-Washizu functional by imposing € = C™'7. Then

invoke the stationarity of Ilyg and establish all remaining differential conditions for the volume
and surface of the body.

Consider the functional
II, =11 — f £’ (s — w,) dS
Sy

where Il is given in (4.109) and u, are the displacements to be prescribed on the surface S,,.
Hence, the vector f°« represents the Lagrange multipliers (surface tractions) used to enforce the
surface displacement conditions. Invoke the stationarity of Il; and show that the Lagrange
multiplier term will enforce the displacement boundary conditions on S,.

Consider the three-node truss element in Fig. E4.29. Use the Hu-Washizu variational principle
and establish the stiffness matrices for the following assumptions:

(a) Parabolic displacement, linear strain, and constant stress

(b) Parabolic displacement, constant strain, and constant stress

Discuss your results in terms of whether the choices of interpolations are sensible (see Exam-
ple 4.29).

Show that the following stress-strain expressions of an isotropic material are equivalent.

T; = keyd; + 2Gej; (a)
7 = Cneén (b)
T = Ce (©
where « is the bulk modulus, G is the shear modulus,
E E
“=30-2) ST 20+

E is Young’s modulus, » is Poisson’s ratio, ey is the volumetric strain, and €;; are the deviatoric
strain components,

€y

3
AlSO, C;]'rs = /\-aijars + “(Sirajs + 8138_#)

€y = Epk, El:';' = € —

5

'7This functional is sometimes given in a different form by applying the divergence theorem to the second
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4.40.

4.41.

4.42.

Formulation of the Finite Element Method Chap. 4

where A and u are the Lamé constants,

_ Ev . _ E
T+ » -2 =20 + »)

In (a) and (b) tensorial quantities are used, whereas in (c) the vector of strains contains the
engineering shear strains (which are equal to twice the tensor components; €.8., ¥, = €12 + €&).
Also, the stress-strain matrix C in (c) is given in Table 4.3.

Identify the order of pressure interpolation that should be used in the u/p formulation in order
to obtain the same stiffness matrix as in the pure displacement formulation. Consider the
following elements of 2 X 2 geometry.

(a) Four-node element in plane strain

(b) Four-node element in axisymmetric conditions

(¢) Nine-node element in plane strain.

Consider the 4/1 element in Example 4.32 and assume that the displacement boundary condition
to be imposed is u; = u. Show formally that imposing this boundary condition prior to or after
the static condensation of the pressure degree of freedom, yields the same element contribution
to the stiffness matrix of the assemblage.

Consider the axisymmetric 4/1 u/p element shown. Construct the matrices B, By, C', and H,
for this element.

A

¢
2 L
I
| 3
{ 24 ad G |
, R=4
et 2 Jom-

4.43. Consider the 4/3-c element in plane strain conditions shown. Formulate all displacement and

strain interpolation matrices for this element (see Table 4.7).

A\

v, v i
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4.44. Consider the 9/3 plane strain u/p element shown. Calculate the matrix K,,.

- 2
°- e
"1 ?
2 9 ®
"
! o °

Young's modulus £
Poisson's ratio v = 0.49

4.45. Consider the plate with the circular hole shown. Use a finite element program to solve for the
stress distribution along section AA for the two cases of Poisson’s ratios » = 0.3 and » = 0.499.
Assess the accuracy of your results by means of an error measure. (Hint: For the analysis with

v = 0.499, the 9/3 element is effective.)

~——— 100 mm

_X_

100 mm —

|

r=40 mm

100 mm

SR e
g
-
-
=
-
s
=
—
e
—
]

»T-n

100 mm

A

A

Plane strain condition
Young's modulus E = 200,000 MPa
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4.46. The static response of the thick cylinder shown is to be calculated with a finite element program.

<

% i/
2777777777 (%
f = force per unit length

30mm
20 mm
-‘ b'

10 mm
|--1——l-

| Y
LSS/ 7777777,

E = 200,000 MPa
v = 0.499

Use idealizations based on the following elements to analyze the cylinder.

(a) Four-node displacement-based element

(b) Nine-node displacement-based element

(¢) 4/1 u/p element.

(d) 9/3 u/p element.

In each case use a sequence of meshes and identify the convergence rate of the strain energy.

4.5 THE INF-SUP CONDITION FOR ANALYSIS OF INCOMPRESSIBLE
MEDIA AND STRUCTURAL PROBLEMS

As we pointed out in the previous section, it is important that the finite element discretiza-
tion for the analysis of almost, and of course totally, incompressible media satisfy the
inf-sup condition. The objective in this section is to present this condition. We first consider
the pure displacement formulation for the analysis of solids and then the displacement/pres-
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sure formulations. Finally, we also briefly discuss the inf-sup condition as applicable to
structural elements.

In our discussion we apply the displacement and displacement/pressure formulations
to a solid medium. However, the basic observations and conclusions are also directly

applicable to the solution of incompressible fluid flows if velocities are used instead of
displacements (see Section 7.4).

4.5.1 The Inf-Sup Condition Derived from Convergence
Considerations

We want to solve a general linear elasticity problem (see Section 4.2.1) in which a body is
subjected to body forces f?, surface tractions f on the surface S;, and displacement
boundary conditions u’« on the surface S,. Without loss of generality of the conclusions that
we want to reach in this section, we can assume that the prescribed displacements w’» and
prescribed tractions f*f are zero. Of course, we assume that the body is properly supported,
so that no rigid body motions are possible. We can then write our analysis problem as a
problem of minimization,

min {la(v v) + s
vev (2 ’ 2 Jva

(div v)? dVol — f

Vol

f2.v dVol} (4.151)
where using indicial notation and tensor quantities (see Sections 4.3.4 and 4.4.3),

a(u, v) = 2G f E €;{u) €/(v) dvol

Vol i.J
€j(u) = €{u) — 3 divudy (4.152)
_ 1 Gu,- Guj . . __
GU(“) B 2( ax_,- * ax;)’ divy = oL

where k = E/[3(1 — 2v)] (bulk modulus), G = E/[2(1 + v)] (shear modulus), E =
Young’s modulus, v = Poisson’s ratio.

V= {VI_E::)%){:r € LX(Vol),i,j =1,2,3; 05, =0,i = 1, 2, 3}

In these expressions we use the notation defined earlier (see Section 4.3) and we denote by
“Vol” the domain over which we integrate so as to avoid any confusion with the vector space
V. Also, we use for the vector v and scalar g the norms

Il = 2

LJ

2
60,-

an

;o llald = Il gllzaven (4.153)

L(Vol)

where the vector norm || - [|vis somewhat easier to work with but is equivalent to the Sobolev
norm || - ||, defined in (4.76) (by the Poincaré-Friedrichs inequality).
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In the following discussion we will not explicitly give the subscripts on the norms but
always imply that a vector w has norm || wlly and a scalar v has norm || v k.

Let u be the minimizer of (4.151) (i.e., the exact solution to the problem) and let V,
be a space of a sequence of finite element spaces that we choose to solve the problem. These
spaces are defined in (4.84). Of course, each discrete problem,

1 K
: 1 + K
ilg‘l,h {2 a(Vp, V) )

(div v,)* d Vol — f fo.v, dVol} (4.154)

Vol Vol

has a unique finite element solution u,. We considered the properties of this solution in
Section 4.3.4, and in particular we presented the properties (4.95) and (4.101). However,
we also stated that the constants ¢ in these relations are dependent on the material proper-
ties. The important point now is that when the bulk modulus x is very large, the relations
(4.95) and (4.101) are no longer useful because the constants are too large. Therefore, we
want our finite element space V,, to satisfy another property, still of the form (4.95) but in
which the constant ¢, in addition to being independent of h, is also independent of «.

To state this new desired property, let us first define the “distance” between the exact
solution u and the finite element space V, (see Fig. 4.22),

d(u, V) = wig‘/k lu = vall = [Ju — G (4.155)

where @, is an element in V, but is in general not the finite element solution.
The Basic Requirements
In engineering practice, the bulk modulus x may vary from values of the order of G to very

large values, and indeed to infinity when complete incompressibility is considered. Our
objective is to use finite elements that are uniformly effective irrespective of what value «

lu-upll

diu, Vi) = llu=dipll

S\ v/

Figure 4.22 Schematic representation of solutions and distances; for optimal convergence
|u = usll = c d(u, V,) with ¢ independent of h and x.
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takes. Mathematically, therefore, our purpose is to find conditions on V, such that

”“ — Uy ” = cd(u, Vi)

with a constant c¢ independent of h and k. (4.156)

These conditions shall guide us in our choice of effective finite elements and discretizations.

The inequality (4.156) means that the distance between the continuous solution u and
the finite element solution u, will be smaller than a (reasonably sized) constant ¢ times
d(u, V) and that this relationship will be satisfied with the same constant ¢ irrespective of
the bulk modulus used. Note that this independence of ¢ from the bulk modulus is the key
property we did not have in Section 4.3.4 when we derived a relation such as (4.156)
[see (4.95)].

Assume that the condition (4.156) holds (with a reasonably sized constant ¢). Then
if d(u, V) is o(h*), we know that |u — w,| is also o(#*), and since c is reasonably sized and
independent of x, we will in fact observe the same solution accuracy and improvement in
accuracy as h is decreased irrespective of the bulk modulus in the problem. In this case the
finite element spaces have good approximation properties for any value of «, and the finite
element discretization is reliable (see Section 1.3).

The relationship in (4.156) expresses our fundamental requirement for the finite
element discretization, and finite element formulations that satisfy (4.156) do not lock (see
Section 4.4.3). In the following discussion, we write (4.156) only in forms with which we
can work more easily in choosing effective finite elements. One of these forms uses an
inf-sup value and is the celebrated inf-sup condition.

To proceed further, we define the spaces K and D,

Kig) ={v|vE V,dvv =g} (4.157)
D = {q| g = div v for some v € V} (4.158)

and the corresponding spaces for our discretizations,

Ku(qn) = {vu | va € Vi, div v, = qu} (4.159)
Dy = {qu | g» = div v, for some v, € V} (4.160)

Hence the space Ki(gs), for a given g,, corresponds to all the elements v, in V, that satisfy
div v, = gx. Also, the space D, corresponds to all the elements g, with g, = div v, that are
reached by the elements v, in V; that is, for any g, an element of D, there is at least one
element v, in V, such that g, = div v,. Similar thoughts are applicable to the spaces K
and D.

We recall that when « is large, the quantity || div u, || will be small; the larger «, the
smaller ||div u,|, and it is difficult to obtain an accurate pressure prediction p, =
~k div u,. In the limit kK — « we have div u, = 0, but the pressure p; is still finite (and
of course of order of the applied tractions) and therefore x(div u,)* = 0.
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Before developing the inf-sup condition, let us state the ellipticity condition for the
problem of total incompressibility: there is a constant a greater than zero and independent
of h such that

a(vy, va) = a ||l V v, € K,(0) (4.161)

This condition in essence states that the deviatoric strain energy is to be bounded from
below, a condition that is clearly satisfied. We further refer to and explain the ellipticity
condition for the incompressible elasticity problem in Section 4.5.2.

Let us emphasize that in this finite element formulation the only variables are the
displacements.

Obtaining the Inf-Sup Condition

The inf-sup condition—which when satisfied ensures that (4.156) holds-—can now be
developed as follows. Since the condition of total incompressibility clearly represents the
most severe constraint, we consider this case. Then g = 0, u belongs to K(g) for ¢ = 0 [that
is, K(0)], and the continuous problem (4.151) becomes

.1 5
min { 5 a(v, v) J;Oi f°-v dVol} (4.162)
with the solution u, while the discrete problem is
. 1 _ B o
v,,réléﬂo) {E a(vy, va) J;d f% . v, dVol} (4.163)

with the solution u,.

Now consider condition (4.156). We notice that in this condition we compare dis-
tances. In the following discussion we characterize a distance as “small” if it remains of the
same order of magnitude as d(u, V,) as h decreases. Similarly, we will say that a vector is
small if its length satisfies this definition and that a vector is “close” to another vector if the
vector difference in the two vectors is small.

Sinceu, € K,(0), and therefore always [u — u,|| = ¢ d[u, K.(0)] (see Exercise 4.47),
we can also write condition (4.156) in the form

d[u, Kx(0)] = c d(u, V}) (4.164)

which means that we want the distance from u to K, (0) to be small. This relation expresses
the requirement that if the distance between u and V,, (the complete finite element displace-
ment space) decreases at a certain rate as h — 0, then the distance between u and the space
in which the actual solution lies [because u, € K,(0)] decreases at the same rate.

Figure 4.23 shows schematically the spaces and vectors that we use. Let u be a
vector of our choice in K,(0) and let w, be the corresponding vector such that

Uy = Upo + W, (4.165)
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diu, K»{0)}

/ diu, V))
u /
-~
“’ﬂ*--—-.. W) ‘
up

Kn{0)

Figure 4.23 Spaces and vectors considered in deriving the inf-sup condition

We can then prove that the condition in (4.164) is fulfilled provided that

for all g, € Dy, there is a w, € Kj(g,) such that

fwall = ¢ || gnf (4.166)
where ¢’ is independent of A and the bulk modulus «.

First, we always have (see Exercise 4.48)
| divia — @) || = allu — @ (4.167)
and hence, [ div @] < a d(u, V3) (4.168)

where « is a constant and we used divua = 0.
Second, we consider

o = ol = Ju — @ + wal
=< flu = @l + [ wall

Now assume that (4.166) holds with g, = div 1.. Because div uy, = 0, we have
div @i, = div w,, where we note that @ is fixed by (4.155) and therefore g, is fixed, but by
choosing different values of u.o different values of w, are also obtained. Then it follows that

lu — wel = d, Vi) + ¢ | g
= d(ll, Vh) + ¢’ “ div ., " (4169)
< d(u, Vp) + cad(u, V)

We emphasize that we have used the condition (4.166) in this derivation and have assumed
that w, is an element in K,(0) such that w, satisfies (4.166). Also, note that (4.168)
established only that || div | is small, but then (4.169) established that | u — || is small.
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Third, since uy € K,(0), we obtain from (4.169),
du, Kx0)] = [lu — uwl = (1 + ac’) du, Vi) (4.170)

which is (4.164) with ¢ = 1 + ac’, and we note that ¢ is independent of 4 and the bulk
modulus.

The crucial step in the derivation of (4.164) is that using (4.166) with ¢, = div ii,, we
can choose a vector wj that is small [which follows by using (4.166) and (4.168)]. We note
that (4.166) is the only condition we need in order to prove (4.164) and is therefore the
fundamental requirement to be satisfied in order to have a finite element discretization that
will give an optimal rate of convergence.

The optimal rate of convergence requires in (4.164) that the constant ¢’ in (4.166) be
independent of h. Assume, for example, that instead of (4.166) we have ||w:|| = (1/8:) g»ll
with B decreasing with h. Then (4.170) will read

d[u, K,(0)] = (1 + -g-) d(u, Vi) (4.171)
h

and hence the distance between u and K,(0) will not decrease at the same rate as d(u, V,).
However, convergence, although not optimal, will still occur if d(u, V) decreases faster
than B,. This shows that the condition in (4.166) is a strong guarantee for good convergence
properties of our discretization.

Let us now rewrite (4.166) in the form of the inf-sup condition. From (4.166) we
obtain, with g, and w, variables, w, € K(q:), the condition

| wall | gull = ¢ | gul? = ¢’ f gn div w, dVol (4.172)

Vol

or the condition is that for all g, € D, there is a w, € Ki(g»s) such that

di dVol
Z gl = R T S0 @173
c I v |
1 ' dVol
Hence, we want — N gull = sup s g1 div ¥4 dVo (4.174)
c V€V “ Va "
and the inf-sup condition follows,
. J‘Vbl qn div Vi dVOl
inf su =8>0
won it Twllal - F
A7
with B a constant independent of « and A (.175)

We note that 8 = 1/c'.

Therefore, (4.166) implies (4.175), and it can also be proven that (4.175) implies
(4.166) (see Example 4.42). (We will not present this proof until later because we must first
discuss certain additional basic facts.) Hence, we may also refer to (4.166) as one form of
the inf-sup condition.
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The inf-sup condition says that for a finite element discretization to be effective, we
must have that, for a sequence of finite element spaces, if we take any g, € D;, there must
be a vi € V, such that the quotient in (4.175)is = 8 > 0. If the inf-sup condition is satis-
fied by the sequence of finite element spaces, then our finite element discretization scheme
will exhibit the good approximation property that we seek, namely, (4.156) will be fulfilled.

Note that if 8 is dependent on h, say (4.175) is satisfied with B, instead of 8, then the
expression in (4.171) will be applicable (for an example, see the three-node isoparametric
beam element in Section 4.5.7).

Whether the inf-sup condition is satisfied depends, in general, on the specific finite
element we use, the mesh topology, and the boundary conditions. If a discretization using
a specific finite element always satisfies (4.175), for any mesh topology and boundary
conditions, we simply say that the element satisfies the inf-sup condition. If, on the other
hand, we know of one mesh topology and/or one set of (physically realistic) boundary
conditions for which the discretization does not satisfy (4.175), then we simply say that the
element does not satisfy the inf-sup condition.

Another Form of the Inf-Sup Condition

To analyze whether an element satisfies the inf-sup condition (4.175), another form of this
condition is very useful, namely

For all u there is a u; € Vj, (a vector that interpolates u) such that

divilu — w,)g, dVol = 0 forall g, € D
f vol ( 0 g * (4.176)

lufl = cllu]

with the constant ¢ independent of u, u,, and hA.

The equivalence of (4.176) and (4.175) [and hence (4.166)] can be formally proven
(see F. Brezzi and M. Fortin [A] and F. Brezzi and K. J. Bathe [A, B]), but to simply relate
the statements in (4.176) to our earlier discussion, we note that two fundamental require-
ments emerged in the derivation of the inf-sup condition; namely, that there is a vector w,
such that (see Figure 4.23)

div w, = div i, 4.177)
and [see (4.166) and (4.168)]
twal = c*d(u, Vi) (4.178)

where ¢* is a constant.

We note that (4.176) corresponds to (4.177) and (4.178) if we consider the vector
i, — u (the vector of difference between the best approximation in V, and the exact
solution) the solution vector and the vector w,, the interpolation vector.

Hence, the conditions are that the interpolation vector w, shall satisfy the above
divergence and “small-size” conditions for and measured on the vector (i, — u) in order
to have an effective discretization scheme.
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The three expressions of the inf-sup condition, (4.166), (4.175), and (4.176), are
useful in different ways but of course all express the same requirement. In mathematical
analyses the forms (4.166) and (4.175) are usually employed, whereas (4.176) is frequently
most easily used to prove whether a specific element satisfies the condition (see Exam-
ple 4.36).

Considering the inf-sup condition, we recognize that the richer the space Kx(0), the
greater the capacity to satisfy (4.175) [that is, (4.164)]. However, unfortunately, using the
standard displacement-based elements, the constraint is generally too strong for the ele-
ments and meshes (i.e., spaces V;) of interest and the discretizations lock (see Fig. 4.20).
We therefore turn to mixed formulations that do not lock and that exhibit the desired rates
of convergence. Excellent candidates are the displacement/pressure formulations already
introduced in Section 4.4.3. However, whereas the pure displacement formulation is (al-
ways) stable but generally locks, for any mixed formulation, a main additional concern 1s
that it be stable. We shall see in the following discussion that the conditions of no locking
and stability are fulfilled if by appropriate choice of the displacement and pressure interpo-
lations the inf-sup condition is satisfied, and the desired (optimal) convergence rate is also
obtained if the interpolations for the displacements and pressure are chosen appropriately.

Weakening the Constraint

Let us consider the u/p formulation. The variational discrete problem in the «/p formula-
tion [corresponding to (4.140) and (4.143)] is

min {l a(v;,, Vh) + ’—‘ J. [P;,(dlv Vh)]z dVol — J. f2 . Vi dVOl} (4179)
iEVs |2 2 Vol Vol
where the projection operator P is defined by
f [P.(div v,) — div vx]g, dVol = 0 for all g, € O, (4.180)
Vol

and Q, is a “pressure space” to be chosen. We see that O, always contains P,(Ds) but that
Qr is sometimes larger than P,(Ds), which is a case that we shall discuss later.

To recognize that (4.179) and (4.180) are indeed equivalent to the u/p formulation,
we rewrite (4.179) and (4.180) as

ZGf e;i(ny)ef(vy) dVol — f
Vol

vol

Ph div v, dVol = J. fB * v, dVol Vv €V, (4.181)

Vol

f 1(% + div u;,)q,, dVol = 0 Y g, € O (4.182)
Vo

These equations are (4.140) and (4.143) in Section 4.4.3, and we recall that they are valid
for any value of « > 0. The key point in the «/p formulation is that (4.180) [i.e., (4.182)]
is applied individually for each element and, provided « is finite, the pressure variables can
be statically condensed out on the element level (before assembly of the element stiffness
matrix into the global structure stiffness matrix).

Consider the following example.

EXAMPLE 4.34: Derive P,(div v») for the 4/1 element shown in Fig. E4.34. Hence, evaluate
the term (x/2) [, [Px(div v») > dVol in (4.179).
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y &
2 1
T 1 ¢
2 —
X
| S -
3 4
’-1 P
2 Figure E4.34 A 4/1 plane strain element
We have
div Vn = [h},x R h4,x : hl,y . e h4,y] ﬁ
where 0 =L ... ow i v ... v

We now use (4.180), with g, an arbitrary nonzero constant (say g, = «), because here (, is the
space of constant pressures. Since P,(div v,) is also constant, we have from (4.180),

4P, (div vi))a = a f div v, dVol

vol

which gives Pidivv) =31 -1 -1 1:1 1 -1 —1]a
= Da
K . K . A
Hence, — | [Pu(div vp)]? dVol = — &7G, @
2 Jva 2
where Gh = 4DTD

Note that although we have used the pressure space Q,, the stiffness matrix obtained from
(4.179) will correspond to nodal point displacements only.
Also, we may note that the term P,(div v,) is simply div v, atx = y = Q.

EXAMPLE 4.35: Consider the nine-node element shown in Fig. E4.35 and assume that v, is
given by the nodal point displacements u, = 1, us = 0.5, ug = 0.5, uy = 0.25 with all other

nodal point displacements equal to zero. Let Q. be the space corresponding to {1, x, y}. Evaluate
P h(diV Vh).

To evaluate P.(div v,) we use the general relationship

f (Py(div v4) — div vi)gs dVol = 0 Y gx € Qs (a)
Vol

In this example,
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{(Unit thickness)
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- . Figure E4.35 A 9/3 clement subjected
2 to nodal point displacements

where u, and v, are given by the element nodal point displacements. Hence,

up = (1 + 20 (1 + y)

Up — 0
and div vy = 3(1 + )
Let P;,(div Vh) = a; + ax + ay

1
then (a) gives f [(a; + ax + asy) — Z(l + y)]q,, dxdy = 0
Yol

for g, = 1, x, and y. Hence, (b) gives the set of equations

s e il e

[ 1
f dx dy f xdxdy f ydx dy|| a -
Vol Vol Vol Jva 4
[ 1
x*dx dy xydxdy||l a2] = -(1 + y)xdxdy
Vol Vol Jva 4
: [ 1
Symmetric ytdx dyl| as —(1 + y)ydxdy
i Vol b _J vor 4
4 0 0]l a 1]
or 3 Olla|=]0
— Sym' %_ l._a3_- l._%_.

The solution of (c) gives a; = 3, a2 = 0, a3 = 3, and hence,

P;,(div Vh) = %(1 + y)

(1 + y)dxdy

(b)

This result is correct because div v, can be represented exactly in Q» and in such a case

the projection gives of course the value of div v,.

The inf-sup condition corresponding to (4.179) is now like the inf-sup condition we
discussed earlier but using the term P,(div v;) instead of div vs. Hence our condition is now
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inf  sup fVol qn div v, dVol

ahEP(Dy) vyEV), || Vi || || Qh”

>8>0 (4.183)

In other words, the inf-sup condition now corresponds to any element in Vi, and Px(Ds).
Hence, when applying (4.166), (4.175), or (4.176) to the mixed interpolated u/p elements,
we now need to consider the finite element spaces V, and P.(D;), where Py(D;) is used
instead of D.

EXAMPLE 4.36: Prove that the inf-sup condition is satisfied by the 9/3 two-dimensional u/p
element presented in Section 4.4.3.

For this proof we use the form of the inf-sup condition given in (4.176) (see F. Brezzi and
K. J. Bathe [A]). Given u smooth we must find an interpolation, w; € V,, such that for each
element m,

f . (div u — div u))g, dVol™ = 0 (a)
Vol\™

for all g, polynomials of degree =<1 in Vol®™, To define u, we prescribe the values of each
displacement at the nine element nodes (corner nodes, midside nodes, and the center node). We
start with the corner nodes and require for these nodes i = 1, 2, 3, 4,

wi = u); eight conditions (b)

Then we adjust the values at the midside nodes j = 5, 6, 7, 8 in such a way that
f (um—wuw) nds = f m—uw)7dS=0 eight conditions (c)
S S

for every edge S,, . . . , S, of the element with n the unit normal vector and 7 the unit tangential
vector to the edge.
Next we note that (a) in particular implies, for every constant g,

f { div(u — w)g, dVol™ = g, E (u—w) - ndS (d)

Sl ..... S4 SJ

We are left to use the two degrees of freedom at the element center node. We choose these in such
a way that

f div(u — u)x dVol™ = f diviu — u)y dVol™ = 0 e
VYol{m) Yol(m)

We note now that (d) and (e) imply (a) and that u,, constructed element by element through (b)
and (c), will be continuous from element to element. Finally, note that clearly if u is a (vector)
polynomial of degree =2 on the element, we obtain u, = u and this ensures optimal bounds for
lw — w, || and implies the condition || w, || = ¢ || u || in (4.176) for all u.

While in the u/p formulation the projection (4.180) is carried out for each element
individually, in the u/p-c formulation a continuous pressure interpolation is assumed and
then (4.181) and (4.182) are applied. The relation (4.182) with the continuous pressure
interpolation gives a set of equations coupling the displacements and pressures for adjacent
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elements. In this case the inf-sup condition is still given by (4.183), but now the pressure
space corresponds to the nodal point continuous pressure interpolations.

In dealing with the inf-sup condition, we recognize that the ability to satisfy the
condition depends on how the space P,(D,) relates to the space of displacements V,. Here
again, P, is the projection operator onto the space Q, [see (4.180) and (4.182)], and, in
general, the smaller the space Q,, the easier it is to satisfy the condition. Of course, if for
a given space V, the inf-sup condition is satisfied with Q, smaller than necessary, we have
a stable element but the predictive capability is not as high as possible (namely, as high as
it would be using the larger space Q, but still satisfying the inf-sup condition).

For example, consider the nine-node isoparametric element (see Section 4.4.3). Using
the u/p formulation with P, = I (the identity operator), the displacement-based formula-
tion is obtained and the element locks. Reducing the constraint to obtain the 9/3 element,
the inf-sup condition is satisfied (see Example 4.36) and optimal convergence rates are
obtained for the displacements and the pressure; that is, the convergence rate for the
displacements is o(h’) and for the stress is o(h?), which is all that we can expect with a
parabolic interpolation of displacements and a linear interpolation of pressure. Reducing the
constraint further to obtain the 9/1 element, the inf-sup condition is also satisfied, and while
the element behavior for the interpolations used is still optimal, the predictive capability of
this nine-node element is not the best possible (because a constant element pressure is
assumed, whereas a linear pressure variation could be used).

This observation (about the quality of the solution) is explained by the error bounds
(see, for example, F. Brezzi and K. J. Bathe [B]). Let u, € V, be an interpolant of u
satisfying

J. [diV(u - u;)]q;, dVol = 0 \v/ Gh = Ph(Dh)
VYol

(4.184)
and lw || = ¢ uf
If (4.184) holds for all possible solutions u, then
o —w | = a(fu-w|+]|d - P)p|) (4.185)
and | p + kPy(div w) | = cp(ju = w,| + || ¢ - PP (4.186)
where p = —« div u and c,, c; are constants independent of 2 and «. We note of course that

(4.184) is the inf-sup condition with the weakened constraint g, € P,(D,) [see (4.176)] and
that the right-hand sides of (4.185) and (4.186) are smaller the closer P, is to /.

4.5.2 The Inf-Sup Condition Derived from
the Matrix Equations

Further insight into the inf-sup condition is obtained by studying the governing algebraic
finite element equations. Let us consider the case of total incompressibility (it being the

most severe case),
(Kuu)h (Kup)h Uh _ Rh
[(Kpu),, 0 ][P,,] - [ 0] (+.187)

where U, lists all the unknown nodal point displacements and P, lists the unknown pressure
variables. Since the material is assumed to be totally incompressible, we have a square null
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matrix equal in size to the number of pressure variables in the lower right of the coefficient
matrix.

The mathematical analysis of the formulation resulting in (4.187) consists of a study

of the solvability and the stability of the equations, where the stability of the equations
implies their solvability.

The solvability of (4.187) simply refers to the fact that (4.187) can actually be solved
for unique vectors U, and P, when R, is given.
The conditions for solvability (see Exercise 4.54) are

Condition i.
VIK,): V. > 0 for all V, satisfying (K,.),Vs = 0 (4.188)
Condition ii.

(Kip):Qr =0 implies that Q, must be zero (4.189)

The space of displacement vectors V, that satisfy (K,.)»V, = 0 represents the kernel of

(Kpu)ho
The stability of the formulation is studied by considering a sequence of problems of
the form (4.187) with increasingly finer meshes. Let S be the smallest constant such that

[ Auall + | Apall _ | AF? oy
Twly e~ TP

(4.190)

for all wy, ps, £, Au,, Ap,, AfZ, where || * ||vand|| - || are the norms defined in (4.153), || * |lov
means the dual norm of || « ||v (see Section 2.7), and Af?, Aw,, and Ap, denote a prescribed
perturbation on the load function £ and the resulting perturbations on the displacement
vector W, and pressure p,. Of course, we have

(Ku)s  (Ku)e || AU, _ | AR,

o o e = [ @150
where AR, corresponds to the load variation Af? and the norms of the finite element variables
in (4.190) are given by the nodal point values listed in the solution vectors. Hence (4.190)
expresses that for a given relative perturbation in the load vector, the corresponding relative
perturbation in the solution is bounded by S times the relative perturbation in the loads.

For any given fixed mesh, satisfying the conditions of solvability (4.188) and (4.189)
implies that (4.190) is satisfied for some S, the value of which depends on the mesh.

The formulation is stable if for any sequence of meshes the stability constant S is
uniformly bounded. Hence, our question of stability reduces to asking for the conditions on
the matrices (K..)» and (K..,)» that ensure that S remains uniformly bounded when using any
sequence of meshes.

We considered briefly in Section 2.7 the stability conditions as related to a formulation
that leads to a general coefficient matrix A [see (2.169) to (2.179)]. If we specialize these
considerations to the specific coefficient matrix used in the displacement/pressure formula-
tions, we will find a rather natural result (see F. Brezzi and K. J. Bathe [B]), namely, that
the stability conditions are an extension of the solvability conditions (4.188) and (4.189) in
that stability in the use of these relations with increasingly finer meshes must be preserved.



314 Formulation of the Finite Element Method Chap. 4

The stability condition corresponding to the solvability condition (4.188) is that there
is an @ > 0 independent of the mesh size such that

VIEK.D Ve = a || va]} for all V, € kernel [(K,,)x] (4.192)

This condition is the ellipticity condition already mentioned briefly in Section 4.5.1.
The relation states that, for any fineness of mesh, the Rayleigh quotient obtained with any
vector V, satisfying (K,.)»V, = 0, will be bounded from below by the constant « (which is
independent of element mesh size). This ellipticity condition is always (i.€., for any choice
of element interpolation) fulfilled by our displacement/pressure formulations. We elaborate
upon this fact in the following example.

EXAMPLE 4.37: Consider the ellipticity condition in (4.192) and discuss that it is satisfied for
any (practical) displacement/pressure formulation.

To understand that the ellipticity condition is fulfilled, we need to recall that (4.187) is the
result of the finite element discretization in (4.179). Hence,

b (Kuan Vis Vi € kernel (K;.)» (a)

corresponds to twice the strain energy stored in the finite element discretization when v, corre-
sponds to an element in V, that satisfies Px(div v,) = 0. However, unless we select the pressure
space Q» = {0}, that is, unless we totally remove the incompressibility constraint and the
formulation does not contain strain energy due to compression—an impractical and trivial
case—the expression in (a) will always be greater than zero (and bounded from below).

If (4.192) is not satisfied, we could easily stabilize the solution. This is achieved by
considering the almost incompressible case and using the variational formulation

K — k*

2

x
min {l a(vy, vi) + £ f (div v»)* dVol +
VREVy 2 2 Vol

f [P.(div v»)]* dVol — f

Yol

fB * Vi dVO]}

where «* is a bulk modulus of the order of the shear modulus and does not lead to locking. Of
course, we could now assume (k — «k*) — o,

This procedure amounts to evaluating a portion of the bulk energy as in the displacement
method and using a projection for the remaining portion. Note that when « is equal to «*, the
part to be projected is zero. Hence the essence of the scheme is that a well-behaved part of
the term that is difficult to deal with has been moved to be evaluated without the projection. This
kind of stabilization to satisfy the ellipticity condition can be important in the design of formu-
lations (see F. Brezzi and M. Fortin [A]). The procedure has been proposed to stabilize a
displacement/pressure formulation for the analysis of inviscid fluids (see C. Nitikitpaiboon and
K. J. Bathe [A]) and for the development of plate and shell elements (see D. N. Arnold and
F. Brezzi [A]). However, the difficulty with this approach can be in selecting the portions of
energies to be evaluated with and without projection, in particular when the various kinematic
actions are fully coupled as, for instance, in the analysis of shell structures (see Section 5.4.2).

The stability condition corresponding to the solvability condition (4.189) is that there
is a B > 0 independent of the mesh size A such that

Q{(K"“)"vl" =B>0 (4.193)

inf su
& Vi lgall [l

for every problem in the sequence.
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Note that here we take the sup using the elements in V, and the inf using the elements
in Q,. Of course, this relation is our inf-sup condition (4.183) in algebraic form, but we now
have g, € Q., where Q; is not necessarily equal to Py(Dy).

We note that a simple test consisting of counting displacement and pressure variables
and comparing the number of such variables is not adequate to identify whether a mixed
formulation is stable. The above discussion shows that such a test is certainly not sufficient
to ensure the stability of a formulation and in general does not even ensure that condition
(4.189) for solvability is satisfied (see also Exercises 4.60 and 4.64).

4.5.3 The Constant (Physical) Pressure Mode

Let us assume in this section that our finite element discretization contains no spurious
pressure modes (which we discuss in the next section) and that the inf-sup condition for
gr € Pu(D,) is satisfied.

We mentioned earlier (see Section 4.4.3) that when our elasticity problem corre-
sponds to total incompressibility (i.e., we consider g = div u = 0) and all displacements
normal to the surface of the body are prescribed (i.€., S, is equal to S), special considerations
are necessary. Actually, we can consider the following two cases.

Casei: Alldisplacements normal to the body surface are prescribed to be zero. In this case,
the pressure is undetermined unless it is prescribed at one point in the body. Namely, assume
that po is a constant pressure. Then

f po div v, dVol = pofv;,-ndS= 0 Vv, €EV, (4.194)
Yol S

where n is the unit normal vector to the body surface. Hence, if the pressure is not prescribed
at one point, we can add an arbitrary constant pressure pp to any proposed solution. A
consequence is that the equations (4.187) cannot be solved unless the pressure is prescribed
at one point, which amounts to eliminating one pressure degree of freedom [one column in
(K.,)» and the corresponding row in (K,,),]). If this pressure degree of freedom is not elimi-
nated, Q, is larger than Py(D,), the solvability condition (4.189) is not satisfied, and the
inf-sup value including this pressure mode is zero. For a discussion of the case Q) larger that
P,(D») but pertaining to spurious pressure modes, see Section 4.5.4.

Of course, instead of eliminating one pressure degree of freedom, it may be more
expedient in practice to release some displacement degrees of freedom normal to the body
surface,

Case ii: All displacements normal to the body surface are prescribed with some nonzero
values. The difficulty in this case is that the incompressibility condition must be fulfilled

f mvthol=fvh-nde0 Vv, EVy (4.195)
Yol A

A constant pressure mode will also be present, which can be eliminated as discussed for
Case i. If the body geometry is complex, it can be difficult to satisfy exactly the surface
integral condition in (4.195). Since any error in fulfilling this condition can result in a large
error in pressure prediction, it may be best in practice to leave the displacement(s) normal to
the surface free at some node(s).
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Let us next consider that the body is only almost incompressible, that « is large but
finite, and that the u/p formulation is used. In Case i, the arbitrary constant pressure p, will
then automatically be set to zero (in the same way as spurious modes are set to zero; see
Section 4.5.4). This is a most convenient result because we do not need to be concerned
with the elimination of a pressure degree of freedom. Of course, in practice we could also
leave some nodal point displacement degree(s) of freedom normal to the body surface free,
which would eliminate the constant pressure mode.

With the constant pressure mode present in the model, Q» is (by one basis vector)
larger than P.(D,) and the inf-sup value corresponding to this mode is zero. Nevertheless,
we can solve the algebraic equations and obtain a reliable solution (unless « is so large that
the ill-conditioning of the coefficient matrix results in significant round-off errors, see
Section 8.2.6).

In Case ii, it is probably best to proceed as recommended above, namely, to leave some
nodal displacement(s) normal to the surface free, in order to give the material the freedom
to satisfy the constraint of near incompressibility. Then the constant pressure mode is not
present in the finite element model.

An important point in these considerations is that if all displacements normal to the
surface of the body are prescribed, the pressure space will be larger than Pix(D;), but only
by the constant pressure mode. This mode is of course a physical phenomenon and not a
spurious mode. If the inf-sup condition for g, € P.(Ds) is satisfied, then the solution is
rendered stable and accurate by simply eliminating the constant pressure mode (or using the
u/p formulation with a not too large value of « to automatically set the value of the constant
pressure to zero). We consider in the next section the case of Qs larger than Px(D;) as a result
of spurious pressure modes.

4.5.4 Spurious Pressure Modes—The Case of Total
Incompressibility

We consider in this section the condition of total incompressibility and, merely for simplic-
ity of discussion, that the physical constant pressure mode mentioned earlier is not present
in the model. If it were actually present, the considerations given above would apply in
addition to those we shall now present.

With this provision, we recall that in our discussion of the inf-sup condition we
assumed that the space Qs is equal to the space Pi(D») [see (4.183)], whereas in (4.193) we
have no such restriction. In an actual finite element solution we may well have Pi(D,) & O,
and it is important to recognize the consequences.

If the space Q, is larger than the space Pi(D:), the solution will exhibit spurious
pressure modes. These modes are a result of the numerical solution procedure only, namely,
the specific finite elements and mesh patterns used, and have no physical explanation.

We define a spurious pressure mode as a (nonzero) pressure distribution p, that
satisfies the relation

J. Ds div Vu dVol = 0 \v/ v, € Vh (4196)
Yol
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In the matrix formulation (4.187) a spurious pressure mode corresponds to the case
(Kp)wPs = 0 (4.197)

where P; is the (nonzero) vector of pressure variables corresponding to p,. Hence, the
solvability condition (4.189) is not satisfied when spurious pressure modes are present, and
of course the inf-sup value when testing over the complete space Q, in (4.193) is zero.

Let us show that if Q, is equal to P.(D,), there can be no spurious pressure mode.
Assume that p, is proposed to be a spurious pressure mode. If Q» = Pi(D;), there is always
a vector ¥, such that p, = —P, (div ¥,). However, using ¥, in (4.196), we obtain

—f P div ¥, dVol = —f PrPi(div ¥;) dVol = f p? dVol > 0 (4.198)
Vol Vol

Vol

meaning that (4.196) is not satisfied. On the other hand, if Q, is greater than Px(D;), notably
P.(Dx) & Qh, then we can find a pressure distribution in the space orthogonal to P,(D;), and
hence for that pressure distribution (4.196) is satisfied (see Example 4.38).

Hence, we now recognize that in essence we have two phenomena that may occur
when testing a specific finite element discretization using displacements and pressure as
variables:

1. The locking phenomenon, which is detected by the smallest value of the inf-sup
expression not being bounded from below by a value B > 0 [see discussion following
(4.156)]

2. The spurious modes phenomenon, which corresponds to a zero value of the inf-sup
~ expression when we test with g, € Q.

Of course, when a discretization with spurious modes is considered, we might still be
interested in the smallest nonzero value of the inf-sup expression, and we can focus on this
value by only testing with g, € P.(D»), in other words, by ignoring all spurious pressure
modes.

The numerical inf-sup test described in Section 4.5.6 actually gives the smallest
nonzero value of the inf-sup expression and also evaluates the number of spurious pressure
modes.

Let us note here, as a side remark, that the spurious pressure modes have no relation-
ship to the spurious zero energy modes mentioned in Section 5.5.6 (and which are a result
of using reduced or selective numerical integration in the evaluation of element stiffness
matrices). In the displacement/pressure formulations considered here, each element stiff-
ness matrix is accurately calculated and exhibits only the correct physical rigid body modes.
The spurious pressure modes in the complete mesh are a result of the specific displacement
and pressure spaces used for the complete discretization.

One way to gain more insight into the relation (4.193) is to imagine the matrix (K,,)x
[or (K,)» = (K.,)7 ]in diagonalized form (choosing the appropriate basis for displacements
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and pressure variables), in which case we would have

Kernel (K},
! N\

_ 1k
Vi, |
Vi1
[ nu
L ] . |
I 7 7 R
0 '
I e .
(Kup)h = 0
I (4.199)
r Kernel (Kp,);
Elements |
not shown
are zeros 0
— L -
— >
Np

t We call the elements ¥4, in anticipation of our discussion in Section 4.5.6.

In this representation the zero columns define the kernel of (K.,)» and each zero column
corresponds to a spurious pressure mode. Also, since for any displacement vector U, we

need R
(Kp)aUs = 0 (4.200)

and (K,.)» = (K.,)#, the size of the kernel of (K,.)» determines whether the solution is
overconstrained. Whereas, on one hand, we want the kernel of (K,,), to be zero (no spurious
pressure modes), on the other hanq\, we want the kernel of (K,.), to be large so as to admit
many linearly independent vectors U, that satisfy (4.200). Our actual displacement solution
to the problem (4.187) will lie in the subspace spanned by these vectors, and if that subspace
is too small, as a result of the pressure space (J, being too large, the solution will be
overconstrained. The theory on the inf-sup condition [see the discussion in Section 4.5.1
and (4.193)] showed that this overconstraint is detected by VA decreasing to zero as the
mesh is refined. Vice versa, if VA= B > 0, for any mesh, as the size of the elements is
decreased, with 8 independent of the mesh, the solution space is not overconstrained and
the discretization yields a reliable solution (with the optimal rate of convergence in the
displacements and pressure, provided the pressure space is largest without violating the
inf-sup condition; see Section 4.5.1).

4.5.5 Spurious Pressure Modes—The Case of Near
Incompressibility

In the above discussion we assumed conditions of total incompressibility, and the use of
either the u/p or the u/p -c formulation. Consider now that we have a finite (but large) « and
that the u/p formulation with static condensation on the pressure degrees of freedom (as is
typical) is used. In this case, the governing finite element equations are, for a typical element
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(or the complete mesh),

(Kuu)h (Kup)h] [Uh] _ -Rh]
[(Kpu)h (Kop)n$ L Pa K (4.201)
or [(Kudr — (Kip)a(Kpp) ' (Kp)sJUr = Ry, (4.202)

So far we have assumed that no nonzero displacements are prescribed. It is an
important observation that in this case any spurious pressure mode has no effect on the
predicted displacements and pressure. The reason can be shown by considering (K.,): in
(4.199) with some zero columns. Since (K,,), is, in the same basis, diagonal with the bulk
modulus — ™! as diagonal elements and the corresponding right-hand-side is a zero vector,
the solution for the spurious pressure mode values is zero (see also Example 4.39).

A different observation is that the coefficient matrix in (4.201) contains a large bulk
modulus which, when ! is close to zero, results in ill-conditioning—but this ill-
conditioning 1s observed whether or not spurious pressure modes are present.

The spurious pressure modes can, however, have a drastic effect when nonzero dis-
placements are prescribed. In this case, we recognize that the right-hand side corresponding
to the pressure degrees of freedom may not be zero (see Section 4.2.2 on how nonzero
displacements are imposed), and a large spurious pressure may be generated.

Clearly, a reliable element should not lock and ideally should not lead to any spurious
pressure mode in any chosen mesh.

The elements listed in Tables 4.6 and 4.7 are of such a nature—except for the 4/1
two-dimensional u/p element (and the analogous 8/1 three-dimensional element). Using
the 4/1 element, specific meshes with certain boundary conditions exhibit a spurious
pressure mode, and the 4/1 element does not satisfy the inf-sup condition (4.183) unless
used in special geometric arrangements of macroelements (see P. Le Tallec and V. Ruas [A]
for an example). However, because of its simplicity, the 4/1 element is quite widely used in
practice. We examine this element in more detail in the following example.

EXAMPLE 4.38: Consider the finite element discretization of 4/1 elements shown in
Fig. E4.38 and show that the spurious checkerboard mode of pressure indicated in the figure
exists.

We note that for this model all tangential displacements on the boundary are set to zero.
In order to show that the pressure distribution indicated in Fig. E4.38 corresponds to a spurious

pressure mode, we need to prove that (4.196) holds. Consider a single element as shown in
Fig. E4.38(a). We have

jp"idivvidVol=p‘i[1 -1 -1 1 : 1 1 -1 -1]d
Vol

where p°® is the constant pressure in the element and

If a patch of four adjacent elements is then considered, we note that for the displacement &, shown
in Fig. E4.38(b) we have

f p div vs dVol = [pi(1) + pa(1) + p(=1) + ps(~1)] s = O @

provided the pressure distribution corresponds top1 = —p© = p® = — p°®4, Similarly, for any
displacement v; we have

j p div v4 dVol = [pe1(—1) + p°2(1) + p*(1) + p*4(—1)]v; =0 (b)




¢ ¢ ¢ (d) Checkerboard pressure distribution. + and ~ mean
(b) Patch of four equal elements +Ap and -Ap, where Ap is an arbitrery velue.

Figure E4.38 4/1 elements

For the normal displacement v; on an edge of the patch, we similarly obtain

J p div v, dVol = [pa(1) + p2(1)]}v; = 0 ()
Vol
On the other hand, for a tangential displacement u;, the integral
J pdivv,dVol # 0
vol

However, in the model in Fig. E4.38(c) all tangential displacements are constrained to zero.
Hence, by superposition, using expressions (a) to (c), the relation (4.196) is satisfied for any nodal
point displacements when the pressure distribution is the indicated checkerboard pressure.

Note that the same checkerboard pressure distribution is also a spurious pressure mode
when more nodal point displacements than those given in Fig. E4.38(c) are constrained to zero.
Also note that the (assumed) pressure distribution in Fig. E4.38(d) cannot be obtained by any
nodal point displacements, hence this pressure distribution does not correspond to an element in
Py(Dy).

In the above example, we showed that a spurious pressure mode is present when the

4/1 element is used in discretizations of equal-size square elements with certain boundary
320
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conditions. The spurious pressure mode no longer exists when nonhomogeneous meshes are
employed or at least one tangential displacement on the surface is released to be free.

Consider now that a force is applied to any one of the free degrees of freedom in
Fig. E4.38(c). The solution is then obtained by solving (4.201) and, as pointed out before,
the spurious pressure mode will not enter the solution (it will not be observed).

The spurious pressure mode, however, has a very significant effect on the calculated
stresses when, for example, one tangential boundary displacement is prescribed to be
nonzero while all other tangential boundary displacements are kept at zero.'® In this case
the prescribed nodal point displacement results in a nonzero forcing vector for the pressure
degrees of freedom, and the spurious pressure mode is excited. Hence, in practice, it is
expedient to not constrain all tangential nodal point displacements on the body considered.

Let us conclude this section by considering the following example because it illus-
trates, in a simple manner, some of the important general observations we have made.

EXAMPLE 4.39:° Assume that the governing equations (4.187) are

“cxl 0O O E B 0— ul— “r;
0 & 0 ! 0 Blluw "
0.0 a ! 0 ofu]|=|r @
B 0o o0 o ollp]| la
LO Bl 0 i 0 0 P2 | 82

Of course, such simple equations are not obtained in practical finite element analysis, but the
essential ingredients are those of the general equations (4.187). We note that the coefficient
matrix corresponds to a fully incompressible material condition and that the entries g; and g-
correspond to prescribed boundary displacements.

These equations can also be written as

a;u; + Bip: = ri; Biu; = gi; =1, 2 Qs3lU3 = I3

Assume that o; > 0 for all i (as we would have in practice). Then, us = r;3/as, and we need
only consider the typical equations

ou+Bp=r, Pu=g b
(where we have dropped the subscript i).
When the material is considered almost incompressible, u, is unchanged but (b) becomes

au. + Bp. = r; Bu. — ep. = g (©
where € = 1/« (eis very small when the bulk modulus « is very large) and u., p. is the solution
sought. Equations (c) give
er + Bg _ Br — ag
ea + B*’ Pe ea + 37
We can now make the following observations.
First, we consider the case of a spurious pressure mode, i.e., 3 = 0.

(d)

Ue =

Casei: B=g=0
This case corresponds to a spurious pressure mode and zero prescribed displacements.
The solution of (b) gives u = r/a, with p undetermined.
The solution of (c) gives u, = r/a, p. = 0.

I8 We may note that these analysis conditions and results are similar to the conditions and results obtained
when all displacements normal to the surface of a body are constrained to zero, except for one, at which a normal
displacement is prescribed [see (4.195)].

19 This example was presented by F. Brezzi and K. J. Bathe [B].
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Hence, we notice that the use of a finite bulk modulus allows us to solve the equations and
suppresses the spurious pressure.

Caseii: 8=0,g#+0

This case corresponds to a spurious pressure mode and nonzero prescribed displacements
(corresponding to this mode).

Now (b) has no solution for u and p.

The solution of (¢) is ue = r/a, pe = —g/e.
Hence, the spurious pressure becomes large as x increases.

Next we consider the case of 3 very small.
Hence, we have no spurious pressure mode. Of course, the inf-sup condition is not passed
if 38— 0.

Case iii: S is small

Let us also assume that g = 0.

Now (b) gives the solution u = 0, p = r/B.

The solution of (c) is u. — 0 and p. — r/B for e — 0 (8 fixed, and hence we have 8? > €a),
which is consistent with the solution of (b). Hence, the displacement approaches zero and the
pressure becomes large when 3 is small and the bulk modulus increases. Of course, we test for
this behavior with the inf-sup condition. For an actual finite element solution, this observation
may be interpreted as taking a fixed mesh (3 is fixed) and increasing k. The result is that the
pressure in the mode for which $ is small increases while the displacements in this mode
decrease.

However, (c) also gives u — r/a and p. — 0 for 8 — 0 (e fixed, and hence we have
32 < ea), which is the behavior noted earlier in Case i. For an actual finite element solution this
observation may be interpreted as taking a fixed x and increasing the fineness of the mesh. As
3 is decreased as a result of mesh refinement, the pressure corresponding to this mode becomes
small. Hence, the behavior of this pressure mode is when 3 is sufficiently small (which may mean
a very fine mesh when « is large) like the behavior of a spurious mode.

4.5.6 The Inf-Sup Test

The results of analytical studies of the inf-sup characteristics of various displacement/pres-
sure elements are summarized in Tables 4.6 and 4.7 (see also F. Brezzi and M. Fortin [A)).
However, an analytical proof of whether the inf-sup condition is satisfied by a specific
element can be difficult, and for this reason a numerical test 1s valuable. Such a test can be
applied to newly proposed elements and also to discretizations with elements of distorted
geometries (recall that analytical studies assume homogeneous meshes of square elements).
Of course, a numerical test cannot be completely affirmative (as an analytical proof is), but
if a properly designed numerical test is passed, the formulation is very likely to be effective.
The same idea is used when performing the patch test only in numerical form (to study
incompatible displacement formulations and the effect of element geometric distortions)
because an analytical evaluation is not achieved (see Section 4.4.1).

In the following discussion we present the numerical inf-sup test proposed by
D. Chapelle and K. J. Bathe [A].

First consider the u/p formulation. In this case the inf-sup condition (4.183) can be

written in the form o fooy Po(div W) div v, d Vol
WAEV, VhEBh | Puldiv wa) || || va]|

=£8>0 (4.203)
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. b’(whs vh)
or nf s >8>0 4.204
S S o e, w2 ] - P (4.204)

where b'(Wy, vi) = [

Vol

Py, (div w),) P(div v,) d Vol = [ P.(div w,) div v, d Vol (4.205)

Vol

The relation (4.204) is in matrix form

WIiG,V
inf sup adCh

Wy Vi [WIG,W,]/2[VIS,V,]/> =p>0 (4.206)

where W, and V, are vectors of the nodal displacement values corresponding to w, and vy,
and Gy, S, are matrices corresponding to the operator b’ and the norm || * ||v, respectively.
The matrices G, and S, are, respectively, positive semidefinite and positive definite (for the
problem we consider, see Section 4.5.1).

EXAMPLE 4.40: 1n Example 4.34 we calculated the matrix G, of a 4/1 element. Now also
establish the matrix S, of this element.
To evaluate S, we recall that the norm of w is given by [see (4.153)]

fwip = 2

i J

2
aW;'

——

ax;

L2(Vol)

Hence, for our case

i [ LG < GV G () ]ee

where u, v are the components w;, i = 1, 2.
Let us order the nodal point displacements in @ as in Example 4.34,

W' =[uy w w3 us ¥ 01 V2 V3 V4
By definition, || w, ||} = @7S,4. Also, we have

MU~ du i
—_— = 2 hi. U -— = h:’. yU; (b)
ax i=1 ay i=]

-
-3

Substituting from (¢) and (b) into (a) we obtain
r+1 r+l 2

Su(1, 1) = | [(h1.2)? + (h1,)] dx dy = 3

+1 r+l

1
Si(l, 2) = )] [P, xho,x + huyha,] dx dy = T
-1 J-

and so on.

and we write in (a)

(c)
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Similarly, the terms corresponding to the v; degrees of freedom are calculated, and we obtain
4 -1 -2 -1

S, 0 ~ 1l-1 a4 -1 -2
Sh=|:h :|; Sh g

0 §h ""2 '_1 4 '_1
-1 -2 -1 4

Let us now consider the u/p-c¢ formulation. In this case the same expression as in
(4.206) applies, but we need to use G» = (K,.)7 T5 '(K,.)», where T, is the matrix of the L*
norm of p, (see Exercise 4.59); i.e., for any vector of pressure nodal values P,, we have
| pall = PET,P,.

The form (4.206) of the inf-sup condition is effective because we can numerically
evaluate the inf-sup value of the left-hand side and do so for a sequence of meshes. If the
left-hand-side inf-sup value approaches -(asymptotically) a value greater than zero (and
there are no spurious pressure modes, further discussed below), the inf-sup condition is
satisfied. In practice, only a sequence of about three meshes needs to be considered (see
examples given below).

The key is the evaluation of the inf-sup value of the expression in (4.206). We can
show that this value is given by the square root of the smallest nonzero eigenvalue of the
problem

Gh(bh = /\Sh(bh (4207)

Hence, if there are (k — 1) zero eigenvalues (because G, is a positive semidefinite matrix)
and we order the eigenvalues in ascending order, we find that the inf-sup value of the
expression in (4.206) is V'A,. We prove this result in the following example.

EXAMPLE 4.41: Consider the function f(U, V) defined as
U'GvY
(U'GU)HVTSV)!/2

where G is an n X n symmetric positive semidefinite matrix, S is an n X n positive definite
matrix, and U, V are vectors of order n. Show that

fU, V) = (a)

inf sup £(U, V) = VA, (b
where A, is the smallest nonzero eigenvalue of the problem
Gb = ASd (©)
Let the eigenvalues of (c) be
A=A ==l = 0< A= A1 = Ay
and the corresponding eigenvectors be ¢, &2, . . . , D,

To evaluate f(U, V), we represent U and V as

U= 2 ;b V= 2 0:d;
i=1 i=1
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Therefore, for any U,

sup f(U, V) = sup

2 A (@)
i (2 A ﬁ?)m " (2 6?)1/2

|
a
N
=

=1

To evaluate the supremum value in (d), let us define a; = A;#i; then we note that

n n n n
DT =D b < A2 a5 (e
i=|] i=|]

i=1 i=l

(by the Schwarz inequality), and equality is reached when &, = a;. Substituting from (e) into (d)
and using A; = - - - = A, = 0, we thus obtain

sup f(U, V) =

If we now let \/z_\-iﬁ,- = f3;, we can write

i=k
n

DIPNT:
k

inf sup f(U, V) = inf (f)

(@)7=1

The last expression in (f) has the form of a Rayleigh quotient (see Section 2.6), and we know that

the smallest value is VA, achieved for B« # 0and B; = 0, fori # k, which gives the required
result.

In practice, to calculate the inf-sup value V', an eigenvalue solution routine should
be used that can skip over all zero eigenvalues and then calculate A,. A Sturm sequence test
(see Section 11.4.3) will then also give the value of k, and then we can conclude directly
whether the model contains spurious pressure modes. Namely, let n, be the number of

pressure degrees of freedom and n, be the number of displacement degrees of freedom. Then
the number of pressure modes, k,n, is

kom =k — (n, — n, + 1)

If k,» > 0, the finite element discretization contains the constant pressure mode or
spurious pressure modes [the inf-sup value in (4.193) is zero, although A, (the first nonzero
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eigenvalue) may asymptotically approach a value greater than zero). This formula follows
because for there to be no pressure mode, the kernel (K,,); must be zero [see (4.199)].

To demonstrate this inf-sup test, we show in Fig. 4.24 results obtained for the four-
node and nine-node elements. We see that a sequence of three meshes used to calculate VA
for each discretization was, in these cases, sufficient to identify whether the element locks.
We note that, clearly, the four-node and the nine-node displacement-based elements do not
satisfy the inf-sup condition and that the distortions of elements have a negligible effect on
the results. In each of these tests k., was zero, hence, as expected, the idealizations do not
contain any pressure modes. Of course, a spurious pressure mode would be found for the
4/1 element if the boundary conditions of Example 4.38 were used. That is, in the general
testing of elements for spurious modes the condition of zero displacements on the complete
boundary should be considered [the smaller the dimension of V,, for a given O, the greater
the possibility that (4.196) is satisfied].

The solutions in Fig. 4.24 are numerical results pertaining to only one problem and
one mesh topology. However, if the inf-sup condition is not satisfied in these results, then
we can conclude that it is not satisfied in general.
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N ’
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/
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{a) Problem considered in inf-sup test. N = number of elements along each side;
we show N = 4, plane strain case
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(b) Elements used

Figure 4.24 The inf-sup test applied in a simple problem
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Figure 4.25 shows results pertaining to the three-node triangular constant pressure
element, formulated as a u/p element (see Exercise 4.50). The results show that the inf-sup
condition is not satisfied by this element. Further, it is interesting to note that the meshes
with pattern B do not contain spurious pressure modes, whereas the other meshes in general
do contain spurious pressure modes.

log(1/N)
-1.2 -1.0 0.8 0.6 0.4 -0.2
{ ! | J ! ! | J | J 0.0
— 0.2
- -0.4
- -06

]

)
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|

|
-
o

- -1.2

Figure 4.25 Inf-sup test of triangular elements, using problem of Fig.4.24(a). The patterns
A and C result in spurious modes.

Additional results are given in Table 4.8 (see D. Chapelle and K. J. Bathe [A]). This
table gives a summary of the results of the numerical evaluations of the inf-sup condition
and analytical results, given, for example, by F. Brezzi and M. Fortin [A]. The numerical
evaluation is useful because the same procedure applies to all #/p and u/p-c elements, in
uniform or distorted meshes, and elements can be evaluated for which no analytical results
are (yet) available. Also, the effects of constructing macroelements from the basic elements
can be easily evaluated (see D. Chapelle and K. J. Bathe [A] for some results regarding the
4/1 element used in a macroelement).

A similar numerical evaluation of the inf-sup condition for other constraint problems,
in particular mixed formulations, can be performed (see, for example, Exercise 4.63).

Finally, we recall that in the derivation of the inf-sup condition (see Section 4.5.1),
we showed that if (4.166) holds, then the inf-sup condition (4.175) follows. However, as we
pointed out, the equivalence of (4.166) and (4.175) also requires that we prove that if
(4.175) holds, then (4.166) follows. We deferred this proof to Example 4.42, which we
present next.
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TABLE 4.8 Inf-sup numerical predictions

Inf-sup condition

Analytical Numerical
Element! proof prediction Remarks
B 371t Fail Fail See Fig. 4.25
X a/1Y Fail Fail See Fig. 4.24
*—-0—.
$ S 83 Fail Fail
>—o—o
X o 81 Pass Pass
! X X |
o 9/4 Fail Fail
X X
X
? %y 9/3 Pass Pass See Example 4.36,
Fig. 4.24
O
L 4/3-c Pass Pass
@ O
OamOpa O
ono 9/9-c Fail Fail
@—(@e)—e
[@)—(@)—(®
O”O 9/8-c Fail Fail
[@)—(e)—{(e)
O O
9/5-c ? Fail
O O
O O
9/4-c Pass Pass
O O
9/(4-c + 1) ? Pass For the element see P. M.

Gresho, R. L. Lee, S. T. Chan,
and J. M. Leone, Jr. [A]

t O, Continuous pressure degree of freedom; X, discontinuous pressure degree of freedom.
f 3/1 and 4/1 element discretizations can contain spurious pressure modes.
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EXAMPLE 4.42: Assume that the inf-sup condition (4.175) holds. Prove that (4.166) follows.

Let the eigenvectors and corresponding eigenvalues of (4.207) with G, corresponding to
D;, [and not P,(D)) because in (4.175) we consider D,] be ¢;and A;,i = 1,. . ., n. The vectors
¢ form an orthonormal basis of V.. Then we can write any vector w, in V, as

Wy = z whb: (a)
i=1
and we have by use of the eigenvalue and vector properties (see Section 2.5)
[ div walF = 2 A(wi)? (b)
i=1

Let us now pick any g, and any W, satisfying div W, = g, We can decompose W, in the
form of (a),

Wi = i W;,d)i + i w;:d)i (b)

The first summation sign in (b) defines a vector that belongs to Kix(0) and may be a large
component. However, we are concerned only with the component that is not an element of K(0),
which we call w,,

W = z w;:d)i
i=k
o _ 200V
With this w,, we have ” wh “2 = '_i
" 2w
i=k
= l\k
= B2
= B2

and (4.166) follows with ¢’ = 1/B.

4.5.7 An Application to Structural Elements:

The Isoparametric Beam Elements

In the above discussion we considered the general elasticity problem (4.151) and the
corresponding variational discrete problem (4.154) subject to the constraint of (near or
total) incompressibility. However, the ellipticity and inf-sup conditions are also the basic
conditions to be considered in the development of beam, plate, and shell elements that are
subject to shear and membrane strain constraints (see Section 5.4). We briefly introduced
a mixed two-node beam element in Example 4.30 and we consider this and higher-order
elements of the same kind in Section 5.4.1. Let us briefly discuss the ellipticity and inf-sup
conditions for mixed interpolated and pure displacement-based beam elements.
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General Considerations

The variational discrete problem of the displacement-based formulation is

L
min {E’ f B dx + EX f (y) dx — f oW, dx} (4.208)

where EI and GAk are the flexural and shear rigidities of the beam (see Section 5.4.1), L is
the length of the beam, p is the transverse load per unit length, B, is the section rotation,

x is the transverse shear strain,

W

Y = ‘F; — B (4.209)

wj is the transverse displacement, and an element of V, is

Wh
Vp = 4,210
, [ Bh] (4.210)
The constraint to be dealt with is now the shear constraint,
oW,
Y = Py Br—0 (4.211)

In practice, y» is usually very small and can of course also be zero. Hence we have, using
our earlier notation, the spaces

Ki(gw) = {vi | Vi € Vi, m(vi) = qu} 4.212)

Dr = {q | g» = yx(vs) for some v, € Vi} (4.213)
and the norms

2 2
ot () o ]om - oo e

The ellipticity condition is satisfied in this problem formulation because
L
EI j Br)? dx = a | w|P V vi € Kx(0) (4.215)
a

with @ > 0 and independent of h. To prove this relation we need only to note that

N i

and therefore, v, |2 = 2L? f (ag, ) dVol (4.217)
1

Vo
giving a = EI/2L%.
The inf-sup condition for this formulation is

inf sup Jva WL(@wi/0x) — BrldVol _ o (4.218)
YEDh vyEV) [y ll | vl

in which the constant ¢ is independent of A.
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E = 200,000 w
/ﬂ V= 0.3
/
Im
X
A= S ——
L=10 0.1
wh/W |
Bernoulli
1.0 0.829 beam theory

solution = 200

BnlW | 0.117 0.124
Bernoulli

beam theory
solution = 30

0.1

] i | I

-
X

{a) Analysia with pure displacement-based element: w, and 8, vary
linearly over each element, and y, = (dw/dx) - B5; since the values: of
wp, and Bj are very inaccurate, the shear strains are so too

Figure 4.26 Analysis of cantilever beam using two-node beam elements. Four equal length
elements are used. (Shear correction factor k of (5.57) is taken equal to 1.0.)

The two-node element. Let us first consider the two-node displacement-based
element for which w, and B, are assumed linear over each element [see Fig. 4.26(a) for an
example solution]. A comparison of the computed results with the Bernoulli beam theory
solution given in Fig. 4.26 shows that the element performs quite badly. In this case
K,(0) = {0}, and so the inf-sup condition in (4.218) is not satisfied. Refering to (4.164), we
can also see that a good convergence behavior is not possible; namely, d(a, V,) = 0 as we
increase the space V,, whereas d[u, K,(0)] = | u|| (a constant value).

Next, consider the two-node mixed interpolated element for which w;, and B, are linear
and 7y, i1s constant over each element. Figure 4.26(b) shows the results obtained in the
cantilever analysis and indicates the good predictive capability of this element. The elliptic-
ity condition is again satisfied (see Exercise 4.61), and in addition we now need to investi-
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Wh/W |

200 197 _ Bernoulli beam theory
solution = 200
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BrlW }

28.1 30.0
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Bernoulli beam theory
solution = 30

o
X

GJ’h/W+

100 Bernoulli beam theory
solution = 100

I I | ]

o
X

{b}) Analysis with mixed interpolated element; wy and B, vary linearly over
each element, and vy, is constant in each element

Figure 4.26 (continued)

gate whether the following inf-sup condition is satisfied:

Jvo Y[ (3wn/8x) — B4] dVol >c>0 (4.219)

inf su
TEPHD) vhEVi lyell || vl

Now Kx(0) # {0}, and we test for the inf-sup condition by considering a typical vy, (where
y: is thought of as a variable). Then with a typical ys given, we choose

9, = [: ] (4.220)

with Bh = (0 and av‘bh/ax = .

Now consider
o YHL(8W/0x) — ] dVol
Jvor YL ( hﬁ ;:)" Br] dVol _ \/ L l()fh)2 dVol (4.221)
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Hence, we have

Jver Yl (Bwr/0x) — Bx] dVol - v Vil (8W,/0x) — Bh] dVol
- KA

(4.222)
B \/j Vol (‘Yh)z dVol

with v, still a variable. Therefore, for the two-node mixed interpolated beam element we
have

sup

VAEV, ” Vi ”

inf  sup Jva Yol (Own/dx) — Bh] dVol

YREPH(Dr) v EV; " Yr ” " Vi ”

=1 (4.223)

and the inf-sup condition is satisfied.

We can also apply the inf-sup eigenvalue test to the two-node beam elements. The
equations used are those presented for the elasticity problem, but we use the spaces of the
beam elements (see Exercise 4.63). Figure 4.27 shows the results obtained. We note that in
(4.207) the smallest nonzero eigenvalue of the pure displacement-based discretization
approaches zero as the mesh is refined, whereas the mixed interpolated beam element

meshes give an eigenvalue that equals 1.0 for all meshes [which corresponds to the equal
sign in (4.223)].

log{1/N)

-10 08 06 -04 02 00
L L L LB B

{ 2-node displacement-based element
O 2-node mixed interpolated {linear displacement, linear — -0.4
rotation, constant shear) element
+ 3-node displacement-based element

log(inf-sup value)

+

Figure 4.27 Inf-sup test of beam elements
(a cantilever beam is considered)
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Higher-order mixed interpolated beam elements can be analyzed in the same way as
the two-node elements (see Exercise 4.62). Figure 4.27 also shows the results obtained for
the three-node pure displacement-based element with the numerical inf-sup test.

4.5.8 Exercises
4.47. Prove that |u — w,| =< é d[u, K,(0)] is always true, where u, is the finite element solution and
K(0) is defined in (4.159). Use that
Ja >0 suchthat Vv, € Ky(0), a(vs, v4) = a || val?

dM >0 suchthat YV vy, Vi € V,, |a(th, VM)I = M" Vi "" Va2 "

and the approach in (4.94). Note that the constant ¢ is independent of the bulk modulus.
4.48. Prove that || div (v, — v2)|lo =< c|| vi — v2l]lv. Here vi, V2 € V, and c is a constant.

4.49. Evaluate P,(div v,) for the eight-node element shown assuming a constant pressure field over the
element.

Ay

2 5 1
I T ?
8

26+ #h;
| My o ¢
3 7 4
et 2 Ponr]

4.50. Evaluate the stiffness matrix of a general 3/1 triangular u/p element for two-dimensional

analysis. Hence, the element has three nodes and a constant discontinuous pressure is assumed.

Use the data in Fig. E4.17 and consider plane stress, plane strain, and axisymmetric conditions.

(a) Establish all required matrices using the general procedure for the u/p elements (see Exam-
ple 4.32) but do not perform any matrix multiplications. Consider the case « finite.

(b) Compare the results obtained in Example 4.17 with the results obtained in part (a).

(¢) Give the u/p element matrix when total incompressibility is assumed (hence static conden-
sation on the pressure degree of freedom cannot be performed).

(Note: This element is not a reliable element for practical analysis of (almost) incompressible

conditions but is merely used here in an exercise.)

4.51. Consider the 4/1 element in Example 4.32. Show that using the term Py(div v,) (evaluated in
Example 4.34) in (4.179), we obtain the same element stiffness matrix as that found in Exam-
ple 4.32.

4,52. Consider the 9/3 element in Example 4.36; i.e., assume that Q, = [1, x, y). Assume that
corresponding to Vv, the nodal point displacements are

u = 1; u, = —1; u; = —1; us = 1, ug = —1; ug = 1
n = 1; v, = —1; vy = —1; vs = 1; ve = —1; vg = 1

with all other nodal point displacements zero. Calculate the projection Pu(div v4).
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4.53.

4.54.

4.55.

4.56.

4.57.

4.58.

4.59.

4.60.
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Show that the 8/1 u/p element satisfies the inf-sup condition (and hence discretizations using this
element will not display a spurious pressure mode). For the proof refer to Example 4.36.
Consider the solution of (4.187) and show that the conditions i and ii in (4.188) and (4.189) are
necessary and sufficient for a unique solution.

Consider the ellipticity condition in (4.192). Prove that this condition is satisfied for the 4/1
element in two-dimensional plane stress and plane strain analyses.

The constant pressure mode, po € O, in a two-dimensional square plane strain domain of an
incompressible material modeled using four 9/3 elements with all boundary displacements set to
zero is not a spurious mode (because it physically should exist). Show that this mode is not an
element of P,(D)).

Consider the 4/1 element. Can you construct a two-element model with appropriate boundary
conditions that contains a spurious pressure mode? Explain your answer.

Consider the nine 4/1 elements shown. Assume that all boundary displacements are zero.
(a) Pick a pressure distribution p, for which there exists a vector v, such that
j ﬁh div \ dVol > 0
Vol

(b) Pick a pressure distribution p, for which any displacement distribution v, in V, will give

j ﬁh div Vi dVol = 0
Vol

K¢

Consider the u/p- ¢ formulation.

(a) Show that the inf-sup condition can be written as in (4.206) but that G, = (K, )»T» ' (K,
(b) Also, show that, alternatively, the eigenproblem

G;:Qh = X Tth (a)

can be considered, where G = (K,.,)»S» '(K,,)», and that the smallest nonzero eigenvalues
of (a) and (4.207) are the same.

Here T, is the matrix of the L2-norm of p,; that is, for any vector of nodal pressures
P},, we have ”ph ” = PI T}, P},‘, hCI'ICC T}, = _K(Kpp)h.

Consider the analysis of the cantilever plate in plane strain conditions shown. Assume that the
3/1 u/p element is to be used in a sequence of uniform mesh refinements. Let n, be the number
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4.61.

4.62.

of nodal point displacements and n, the number of pressure variables. Show that as the mesh is
refined, the ratio n,/n, approaches 1. (This clearly indicates solution difficulties.)

~

YYvYYYVYYYYYYY

o
N

Young's modulus £
L Poisson’s ratio v = 0.499
Plane strain conditions

- -

L

Calculate the same ratio when the 9/3 and 9/8-c elements are used (the 9/8-c element is
defined in Table 4.8) and discuss your resulit.
Show that the mixed interpolated two-, three-, and four-node beam elements satisfy the elliptic-
ity condition. The two-node element was considered in Section 4.5.7, and the three- and four-
node elements are discussed in Secton 5.4.1 (see also Exercise 4.62).
Show analytically that the inf-sup condition is not satisfied for the three- and four-node
displacement-based beam elements and that the condition is satisfied for the mixed interpolated
beam elements with v, varying, respectively, linearly and parabolically (see Section 5.4.1).

4.63. Establish the eigenvalue problem of the numerical inf-sup test for the beam elements consid-

4.64,

ered in Section 4.5.7. Use the form (4.207) and define all matrices in detail.

Consider the problem in Fig. 4.24 and the elements mentioned in Table 4.8. Calculate, for each
of these elements, the constraint ratio defined as the number of displacement degrees of freedom
divided by the number of pressure degrees of freedom as the mesh is refined, that is, as A — 0.
Hence note that this constraint ratio alone does not show whether or not the inf-sup condition
1S satisfied.



