Hl CHAPTER FIVE I

Formulation and Calculation
of Isoparametric
Finite Element Matrices

5.1 INTRODUCTION

A very important phase of a finite element solution is the calculation of the finite element
matrices. In Chapter 4 we discussed the formulation and calculation of generalized coordi-
nate finite element models. The aim in the presentation of the generalized coordinate finite
elements was primarily to enhance our understanding of the finite element method. We have
already pointed out that in most practical analyses the use of isoparametric finite elements
is more effective. For the original developments of these elements, see 1. C. Taig [A] and
B. M. Irons [A, B].

Our objective in this chapter is to present the formulation of isoparametric finite
elements and describe effective implementations. In the derivation of generalized coordi-
nate finite element models, we used local element coordinate systems x, y, z and assumed
the element displacements u(x, y, z), v(x, y, z), and w(x, y, z) (and in the case of mixed
methods also the element stress and strain variables) in the form of polynomials in x, y, and
z with undetermined constant coefficients a;, B;, and y;,i = 1, 2, . . . , identified as gener-
alized coordinates. It was not possible to associate a priori a physical meaning with the
generalized coordinates; however, on evaluation we found that the generalized coordinates
determining the displacements are linear combinations of the element nodal point displace-
ments. The principal idea of the isoparametric finite element formulation is to achieve the
relationship between the element displacements at any point and the element nodal point
displacements directly through the use of interpolation functions (also called shape func-
tions). This means that the transformation matrix A~ [see (4.57)] is not evaluated; instead,
the element matrices corresponding to the required degrees of freedom are obtained di-
rectly.
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5.2 ISOPARAMETRIC DERIVATION OF BAR
ELEMENT STIFFNESS MATRIX

Consider the example of a bar element to illustrate the procedure of an isoparametric
stiffness formulation. In order to simplify the explanation, assume that the bar lies in the
global X-coordinate axis, as shown in Fig. 5.1. The first step is to relate the actual global
coordinates X to a natural coordinate system with variable r, —1 < r =< 1 (Fig. 5.1). This
transformation is given by

X=301-nNX;+3i(1 + nNX, (5.1)
2

or X=2hX . (5.2)
i=1

where by = 3(1 — r)and h, = (1 + r) are the interpolation or shape functions. Note that
(5.2) establishes a unique relationship between the coordinates X and r on the bar.
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The bar global displacements are expressed in the same way as the global coordinates:

2
U=2hU (5.3)
i=]
where in this case a linear displacement variation is specified. The interpolation of the
element coordinates and element displacements using the same interpolation functions,
which are defined in a natural coordinate system, is the basis of the isoparametric finite
element formulation.

For the calculation of the element stiffness matrix we need to find the element strains
€ = dU/dX. Here we use

dU dr
€= & ax G4)
d —
where, from (5.3), £=“2“ (5.5)

and using (5.2), we obtain

PR R (5.6)
where L is the length of the bar. Hence, as expected, we have
€ = v — Uy (5.7)

L



340 Formulation and Calculation of Isoparametric Finite Element Matrices Chap. 5

The strain-displacement transformation matrix corresponding to (4.32) is therefore
1
B=-[-1 1 5.
S[-1 1] 58

In general, the strain-displacement transformation matrix is a function of the natural
coordinates, and we therefore evaluate the stiffness matrix volume integral in (4.33) by
integrating over the natural coordinates. Following this general procedure, although in this
example it is not necessary, we have

AE ('

K =
L2 |

—1
[ 1][-—1 1}1J dr (5.9)
where the bar area A and modulus of elasticity E have been assumed constant and J is the
Jacobian relating an element length in the global coordinate system to an element length in
the natural coordinate system; i.e.,

dX = Jdr (5.10)

From (5.6) we have J = % (5.11)

Then, evaluating (5.9), we obtain the well-known matrix

AE| 1 -1
= T[—l 1] (5.12)

As stated in the introduction, the isoparametric formulation avoids the construction of
the transformation matrix A™'. In order to compare this formulation with the generalized
coordinate formulation, we need to solve from (5.1) for  and then substitute for  into (5.3).
We obtain

_ X~ [(X + X,)/2]

r= 172 (5.13)
and then U=a+aX (5.14)
where
X, + X ]
a = (Ui + U) = == — U)
| (5.15)
1
o = z(Uz — Uy) J
1. X+X 1 _X+X
2 2 2 2
or a = L L (5.16)
_1 1
i L L i
where ol = [ap a); UT=[U, U} (5.17)

and the matrix relating a to U in (5.16) is A™'. It should be noted that in this example the
generalized coordinates ao and «; relate the global element displacement to the global
element coordinate [see (5.14)].
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5.3 FORMULATION OF CONTINUUM ELEMENTS

For a continuum finite element, it is in most cases effective to calculate directly the element
matrices corresponding to the global degrees of freedom. However, we shall first present the
formulation of the matrices that correspond to the element local degrees of freedom because
additional considerations may be necessary when the element matrices that correspond to
the global degrees of freedom are calculated directly (see Section 5.3.4). In the following
we consider the derivation of the element matrices of straight truss elements; two-
dimensional plane stress, plane strain, and axisymmetric elements; and three-dimensional
elements that all have a variable number of nodes. Typical elements are shown in Fig. 5.2.

We direct our discussion to the calculation of displacement-based finite element ma-
trices. However, the same procedures are also used in the calculation of the element
matrices of mixed formulations, and in particular of the displacement/pressure-based for-
mulations for incompressible analysis, as briefly discussed in Section 5.3.5.

~

{a) Truss and cable elements
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(b) Two-dimensional elements
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’ |
|

Figure 5.2 Some typical continuum elements

(c) Three-dimensional elements
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5.3.1 Quadrilateral Elements

The basic procedure in the isoparametric finite element formulation is to express the
element coordinates and element displacements in the form of interpolations using the
natural coordinate system of the element. This coordinate system is one-, two-, or three-
dimensional, depending on the dimensionality of the element. The formulation of the
element matrices is the same whether we deal with a one, two-, or three-dimensional
element. For this reason we use in the following general presentation the equations of a
three-dimensional element. However, the one- and two-dimensional elements are included
by simply using only the relevant coordinate axes and the appropriate interpolation func-
tions.

Considering a general three-dimensional element, the coordinate interpolations are

q q q
x =2 hx; y = 2 hiy;; 7= hz (5.18)

i=] i=1 i=1

where x, y, and z are the coordinates at any point of the element (here local coordinates) and
Xi, Yi» %i, = 1, ..., q, are the coordinates of the g element nodes. The interpolation
functions A; are defined in the natural coordinate system of the element, which has variables
r, s, and ¢ that each vary from —1 to +1. For one- or two-dimensional elements, only the
relevant equations in (5.18) would be employed, and the interpolation functions would
depend only on the natural coordinate variables r and r, s, respectively.

The unknown quantities in (5.18) are so far the interpolation functions A;. The
fundamental property of the interpolation function 4; is that its value in the natural coordi-
nate system is unity at node i and zero at all other nodes. Using these conditions, the
functions A; corresponding to a specific nodal point layout could be solved for in a systematic
manner. However, it is convenient to construct them by inspection, which is demonstrated
in the following simple example.

EXAMPLE 5.1: Construct the interpolation functions corresponding to the three-node truss
element in Fig. ES.1.

0.3L

Node 1 Node 3 -I
ra-1 raQ r=+1 r=-1
xX=a0 x=0.3L x=1L
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ra-1 r=0 r=+1

r=-1 r=0 r=+1

hy=2(1+r) -3(1-r?)

Figure ES.1 One-dimensional interpolation functions of a truss element
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A first observation is that for the three-node truss element we want interpolation polyno-
mials that involve 72 as the highest power of r; in other words, the interpolation functions shall
be parabolas. The function A, can thus be constructed without much effort. Namely, the parabola
that satisfies the conditions to be equal to zero at r = *1 and equal to 1 at » = 0 is given by
(1 — r?). The other two interpolation functions h, and h; are constructed by superimposing a
linear function and a parabola. Consider the interpolation function k3. Using $(1 + 7), the
conditions that the function shall be zero at r = —1 and 1 at r = +1 are satisfied. To ensure
that h; is also zero at r = 0, we need to use 3 = 4(1 + r) — (1 — r?). The interpolation
function A, is obtained in a similar manner.

The procedure used in Example 5.1 of constructing the final required interpolation
functions suggests an attractive formulation of an element with a variable number of nodes.
This formulation is achieved by constructing first the interpolations corresponding to a basic
two-node element. The addition of another node then results in an additional interpolation
function and a correction to be applied to the already existing interpolation functions.
Figure 5.3 gives the interpolation functions of the one-dimensional element considered in
Example 5.1, with an additional fourth node possible. As shown, the element can have from
two to four nodes. We should note that nodes 3 and 4 are now interior nodes because nodes
1 and 2 are used to define the two-node element.

0.3L 0.5L 0.2L
Node 1 [ Node 3 I Node 4 | —lNode 2
ra-1 ra=0 ra+1... 3-node case
ra-1 ra—% r=+% r=+1... 4-node case

(a) 2 to 4 variable-number-nodes truss element

Include only if
nodes 3 and 4 are present

Include only if
node 3 is present

h=3(1-r) -301-r +5-97 + 2 4+9r-1)
hy=3(1+1) : +30rP3+ 2-9r-1)
hy = (1-r?) +5(271R3 472 -27r-7)

- ey e e e St S e ——
I
|
——
—
I
e
L X R R

hy= (2772 8r2 + 27r +9)
(b} Interpolation functions

Figure 5.3 Interpolation functions of two to four variable-number-nodes one-dimensional
element

This procedure of constructing the element interpolation functions for one-
dimensional analysis can be directly generalized for use in two and three dimensions.
Figure 5.4 shows the interpolation functions of a four to nine variable-number-nodes
two-dimensional element, and Fig. 5.5 gives the interpolation functions for three-
dimensional 8- to 20-node elements. The two- and three-dimensional interpolations have
been established in a manner analogous to the one-dimensional interpolations, where the
basic functions used are, in fact, those already employed in Fig. 5.3. We consider in Figs.
5.4 and 5.5 at most parabolic interpolation, but variable-number-nodes elements with
interpolations of higher order could be derived in an analogous way.
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(a) 4to 9 variable-number-nodes two-dimensional element

Include only if node i is defined

i=5 =6 i=7 i=8 =9
hm=|11+n+s) | -3hs “lng | -2
= Y1-n1+s | -1hs ~1hg -1
hy=|3(1-n(1-9) ~lhg | -1im -1
hy=| 2(1+n(1-5) = T -1mg | -1
hs=| 3(1-r3)(1+5) - -1
he=| 3(1-59(1-n e ~Lho
h=|301-rA-9 -1y
hg=]3(1-82(1+1 ~1lhg
hg =] (1-r%) (1-5%

(b) Interpolation functions

Figure 5.4 Interpolation functions of four to nine variable-number-nodes two-dimensional
element

Node 8

r
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(a) 8 to 20 variable-number-nodes three-dimensional
X element

Figure 5.5 Interpolation functions of eight to twenty variable-number-nodes three-
dimensional element
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hy = g1-(gg + G2 + G17)/2 he = gg— (@13 + G14 + G18)/2
hy = g3 - (gg + g10 + G18)/2 hy = g7—-(g14 + @15 + G19)/2
h3 = g3-(g10 + g11 + G19V/2 hg = gg - (g1s + g16 + G20)/2
hy = gs=(g11 + G12 + G20)/2 h;= g;forj=9, ..., 20

hs = g5 - (g13 + G16 + G17)/2

gi= 0 if node iis not included; otherwise,
g;= Glr, ) Gis, s;) Glt, t;)

GB, Bt = 3 (1+B;B) for By= +1

iB=rst
GB, B = (1 - B?) for B;=0

(b} Interpolation functions

Figure 5.5 (continued)

The attractiveness of the elements in Figs. 5.3 to 5.5 lies in that the elements can have
any number of nodes between the minimum and the maximum. Also, triangular elements
can be formed (see Section 5.3.2). However, in general, to obtain maximum accuracy, the
variable-number-nodes elements should be as nearly rectangular (in three-dimensional
analysis, rectangular in each local plane) as possible and the noncorner nodes should, in
general, be located at their natural coordinate positions; e.g., for the nine-node two-
dimensional element the intermediate side nodes should, in general, be located at the
midpoints between the corner nodes and the ninth node should be at the center of the
element (for some exceptions see Section 5.3.2, and for more details on these observations,
see Section 5.3.3).

Considering the geometry of the two- and three-dimensional elements in Figs. 5.4
and 5.5 we note that by means of the coordinate interpolations in (5.18), the elements can
have, without any difficulty, curved boundaries. This is an important advantage over the
generalized coordinate finite element formulation. Another important advantage is the ease
with which the element displacement functions can be constructed.

In the isoparametric formulation the element displacements are interpolated in the
same way as the geometry; 1.€., we use

q q q
u= 2 hiui; v = 2 hiv;; w = 2 hiw; (5.19)
i=1 i=1 i=1

where u, v, and w are the local element displacements at any point of the element and «;,
v, andw;, i = 1, .. .,q,arethe corresponding element displacements at its nodes. There-
fore, it is assumed that to each nodal point coordinate necessary to describe the geometry
of the element, there corresponds one nodal point displacement.'

To be able to evaluate the stiffness matrix of an element, we need to calculate the
strain-displacement transformation matrix. The element strains are obtained in terms of

'In addition to the isoparametric elements, there are subparametric elements, for which the geometry is
interpolated to a lower degree than the displacements (see end of this section) and superparametric elements for
which the reverse is applicable (see Section 5.4).
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derivatives of element displacements with respect to the local coordinates. Because the
element displacements are defined in the natural coordinate system using (5.19), we need
to relate the x, y, z derivatives to the r, s, t derivatives, where we realize that (5.18) is of the
form

x = filr, s, 0); y = filr, s, t); z= filr,s, 0 (5.20)

where f; denotes “function of.” The inverse relationship is
r= falx,y 2); s = fi(x, y, 2); t = folx, % 2) (5.21)

We require the derivatives d/dx, d/dy, and 9/dz, and it seems natural to use the chain rule
in the following form:
o _oor 535 00

+ .
dx odr dx ods dx Ot dx (5.22)

with similar relationships for /9y and d/dz. However, to evaluate d/dx in (5.22), we need
to calculate dr/dx, ds/dx, and 9¢/dx, which means that the explicit inverse relationships in
(5.21) would need to be evaluated. These inverse relationships are, in general, difficult to
establish explicitly, and it is necessary to evaluate the required derivatives in the following
way. Using the chain rule, we have

d dx dy 02 d
ar dr odr or}| lox
| |ax ay oz
as| las as as||ay (523)
d dx dy 9dz} | d
at at ot odt]| |0z
" or, in matrix notation 9 _ J 9 (5.24)
’ ’ or dx )

where J is the Jacobian operator relating the natural coordinate derivatives to the local
coordinate derivatives. We should note that the Jacobian operator can easily be found using
(5.18). We require @/8x and use

0 .0

% J o (5.25)
which requires that the inverse of J exists. This inverse exists provided that there is a
one-to-one (i.e., unique) correspondence between the natural and the local coordinates of
the element, as expressed in (5.20) and (5.21). In most formulations the one-to-one corre-
spondence between the coordinate systems (i.e., to each r, s, and ¢ there corresponds only
one x, y, and z) 1s obviously given, such as for the elements in Figs. 5.3 to 5.5. However, in
cases where the element is much distorted or folds back upon itself, as in Fig. 5.6, the unique
relation between the coordinate systems does not exist (see also Section 5.3.2 for singular-
ities in the Jacobian transformation, Example 5.17).

Using (5.19) and (5.25), we evaluate du/dx, ou/dy, du/dz, 0v/dx, . .., ow/dz and

can therefore construct the strain-displacement transformation matrix B, with

€ = Bi (5.26)
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than 180 degrees
(a) Distorted elemant (b) Element folding upon itself
Figure 5.6 Elements with possible singular Jacobian

where ti is a vector listing the element nodal point displacements of (5.19), and we note that
J affects the elements in B. The element stiffness matrix corresponding to the local element
degrees of freedom is then

K = f B'CB dV (5.27)
| 4

We should note that the elements of B are functions of the natural coordinates r, s, and .
Therefore, the volume integration extends over the natural coordinate volume, and the
volume differential dV need also be written in terms of the natural coordinates. In general,
we have

dV = det J dr ds dt (5.28)

where det J is the determinant of the Jacobian operator in (5.24) (see Exercise 5.6).

An explicit evaluation of the volume integral in (5.27) is, in general, not effective,
particularly when higher-order interpolations are used or the element is distorted. There-
fore, numerical integration is employed. Indeed, numerical integration must be regarded as
an integral part of isoparametric element matrix evaluations. The details of the numerical
integration procedures are described in Section 5.5, but the process can briefly be summa-
rized as follows. First, we write (5.27) in the form

K = f F dr ds dt (5.29)
| 4

where F = B7CB det J and the integration is performed in the natural coordinate system
of the element. As stated above, the elements of F depend on r, s, and ¢, but the detailed
functional relationship is usually not calculated. Using numerical integration, the stiffness
matrix is now evaluated as

K = E o:ku,-,-k (5.30)
i 4.k

where Fj; is the matrix F evaluated at the point (7, s;, t), and a;; is a given constant that
depends on the values of r;, s;, and #. The sampling points (r;, s, i) of the function and the
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corresponding weighting factors a; are chosen to obtain maximum accuracy in the integra-
tion. Naturally, the integration accuracy can increase as the number of sampling points is
increased.

The purpose of this brief outline of the numerical integration procedure was to
complete the description of the general isoparametric formulation. The relative simplicity
of the formulation may already be noted. It is the simplicity of the element formulation and
the efficiency with which the element matrices can actually be evaluated in a computer that
has drawn much attention to the development of the isoparametric and related elements.

The formulation of the element mass matrix and load vectors is now straightforward.
Namely, writing the element displacements in the form

u(r, s, t) = Ha (5.31)
where H is a matrix of the interpolation functions, we have, as in (4.34) to (4.37),
M = J pH™H dV (5.32)
v
[
Rz; = | H'f2 4V (5.33)
Jv
[T
Rs = J H5 £5 dS (5.34)
A
[
R = B+ dV (5.35)
v

These matrices are evaluated using numerical integration, as indicated for the stiffness
matrix K in (5.30). In the evaluation we need to use the appropriate function F. To calculate
the body force vector Ry we use F = H'f? det J, for the surface force vector we use

F = H5"£5 det J*, for the initial stress load vector we use F = B¢ det J, and for the mass
matrix we have F = pH"H det J.

This formulation was for one-, two-, or three-dimensional elements. We shall now
consider some specific cases and demonstrate the details of the calculation of element
matrices.

EXAMPLE 5.2: Derive the displacement interpolation matrix H, strain-displacement interpo-
lation matrix B, and Jacobian operator J for the three-node truss element shown in Fig. ES.2.

r=-1 r=0 r=+1
1 3 2
== - ® -
X, U
-l X] ot e o L/2 S < R i — L/2—————D—~

Figure E5.2 Truss element with node 3 at center of element

The interpolation functions of the element were given in Fig. ES.1. Thus, we have

H = [—%(1 ~ 7 %(1 +r a- r2)] @




Sec. 5.3 Formulation of Continuum Elements 343

The strain-displacement matrix B is obtained by differentiation of H with respect to r and
premultiplying the result by the inverse of the Jacobian operator,

B=J'[(-i+r ¢&+r -2 (b)

To evaluate J formally we use

X = -L(l —rx + —r-(l +r)(x + L)+ (1 - rz)(xl + é)
2 2 2
L L
hence, x=xmt oo ©)

where we may note that because node 3 is at the center of the truss, x is interpolated linearly
between nodes 1 and 2. The same result would be obtained using only nodes 1 and 2 for the
geometry interpolation. Using now the relation in (c), we have

i- |4 @

and J ! = [2], det J =

N | I~

L

With the relations in (a) to (d), we can now evaluate all finite element matrices and vectors given
in (5.27) to (5.35).

EXAMPLE 5.3: Establish the Jacobian operator J of the two-dimensional elements shown in
Fig. ES.3.

2 y* 1 Tcm

X
. 1cm J% cm
)\ Qi ¢ ¢
3 4 3 4
e 6 CM ~———r v 2 CM ——=
Element 1 Element 3
y
2 4 1 X
x /w60° ‘i"“
3 4
e tom— ]
Element 2

Figure E5.3 Some two-dimensional elements
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The Jacobian operator is the same for the global X, Y and the local x, y coordinate systems.
For convenience we therefore use the local coordinate systems. Substituting into (5.18) and
(5.23) using the interpolation functions given in Fig. 5.4, we obtain for element 1:

x = 3r; y =2s

-5 2l
Similarly, for element 2, we have
x=HA+ A+ 9B+ 1/QVI]+ (1 —nNA + -3 - 1/2V3))]
+(1 =901 - 96 + 1/@V3I)] + 1+ (1 - 93 - 1/2V3)]}
y=i{Q+nNQ+93+ Q-1 +9@ + Q-1 - 9H(—3)
+ (1 + N1 - 9(—p}

and hence,

-
Il
[
b
<|IH LTS
(TS
N O

Also, for element 3,

x=3[Q+NA+95D+ A -NA+9(-1)+ A -1 - H(-1)
+ (1 + (A — s)(+1)]
y=4:Q+nNA+9@+ Q-0 +9% + Q-1 -3
+ (1 + N — 8)(-3)]
_ 1[4 1+
therefore, J= 4[0 (3 + r)]

We may recognize that the Jacobian operator of a 2 X 2 square element is the identity matrix,
and that the entries in the operator J of a general element express the amount of distortion from
that 2 X 2 square element. Since the distortion is constant at any point (r, s) of elements 1 and
2, the operator J is constant for these elements.

EXAMPLE 5.4: Establish the interpolation functions of the two-dimensional element shown in

Fig. ES.4.
% cm % cm g' cm
e e
2 6 l 5 ’ 1
9
S

* ®

2¢cm $7

we
IS

(a) Figure E5.4 A seven-node element
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=
™

(b) Construction of h,

Figure E5.4 (continued)
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The individual functions are obtained by combining the basic linear, parabolic, and cubic
interpolations corresponding to the r and s directions. Thus, using the functions in Figure 5.3, we

obtain

hs = [£(=27r = 9r2 + 27r + 913 (1 + s)]

he =[(1 —r) + Q73+ 772 - 27r — DIEA + §)]
h=0G0-9-301-r)+ &9 +r+9r - DU + 9]

hs =31 —-n(1 — 9

ho=11Z (1 + )

he =301 + (1 — ) — 3hy

=31+ N + ) — 2hs — Lk — L,

where A, is constructéd as indicated in an oblique/aerial view in Fig. E5.4.

EXAMPLE 5.5: Derive the expressions needed for the evaluation of the stiffness matrix of the
isoparametric four-node finite element in Fig. ES.5. Assume plane stress or plane strain condi-

tions.

Using the interpolation function h,, hy, hs, and hs defined in Fig. 5.4, the coordinate

interpolation given in (5.18) is, for this element,
=:1+ N0 +9)x+3:(1 -1 + 9)x + (1 — N(l
y=:1+01+ 9y +1(1 - N1+ 9y + (1 — N1

The displacement interpolation given in (5.19) is
=11+N0+ D +30 =N +Duw + (1 = N
v=31+00 + v+ ;1 —-rQ + v, + L1 — N1

-+ 3(1+ 00
-8y + :(1 + Q@

~ Sus + 3(1 + (1
— §vs + 1(1 + Q1

$) X4

S) Y4

S) Us

$)v4
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°}  Node1

Y, Vi

Y4 [~~~ e e e =S Node 4

» Figure E5.5 Four-node two-dimensional
X, X, U element

The element strains are given by
€ =le. & ¥l

where € = %, € - % _6u+a+v
” 78y’ T 5y T ax

To evaluate the displacement derivatives, we need to evaluate (5.23):

o] [ex ay|[e]
or or or||ox 0 0
= or — J_.....-.
d ax dyl{| o or ox
| 95 | ds  as]|dy]
ax 1 1 1 1
Zel+ 99— +9n—=-0-9x+-01 -
where ™ 4(l $) X1 4( §)Xx2 4( §)X3 4( ) X4
1 1 1 1
%x; = Z(l + rx + Z(l - r)x; — Z(l — r)x; — Z(l + r)x4
ay 1 1 1 1
D0+ 9 —-0+ )y —-(1— 9y +=(1 —
o= 71T 9y = 7L+ 9y = 2(1 = 5)ys + 2 (1 = 5)ys
ay 1 1 1 1
—= == +=1=-Nyp—-101-Py— -1+
3 PRGN 4(1 r)y: = 7(1 r)ys 21+ )ys

Therefore, for any value rand s, -1 = r < +1and —1 = 5 = +1, we can form the Jacobian
operator J by using the expressions shown for dx/or, dx/as, and dy/or, dy/ds. Assume that we
evaluate J at r = r;and s = s; and denote the operator by J; and its determinant by det J;;. Then
we have

9 9
ox R Ko
5] 710
a_ at r=r; -a_. at r=r;
| y_ s#sj | S_ 5=y
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To evaluate the element strains we use

ou 1 1 1 1
— =1+ 8w — (1 + Juz — (1 = us + —(1 —
Py 4( S)uy 4(1 S)ut2 4( s)us 4(1 §)u4
ou 1 1 1 1
=+ P +-(1=Puy~~(1 — Pus — -
= 4( r)u 4(1 r)u; 4(1 rus 4(1 + rug
v 1 1 1 1
Z =1+ - =+ v, — -1 — ~a -
Py 4( §)v1 4( §)v2 4(l s)vs + 4(1 §)v4
v 1 1 1 1
Frie Z(l + rjoy + Z(l — rjv; — Z(l — ru; — Z(l + r)v,
Therefore,
—2‘_‘_7
ox _ lJ,-‘-"[l +s 0 -(1+s) 0 —(1—-s5) 0 11—y O]ﬁ
Ou 4" l1+r 0 1-—n 0 ~-1-r) 0 —-(1+r) O
K2 (a)
and
I_QE-
ox 3 11-1[0 1+s 0 —-(1+s) 0 -(1-5) 0 1-g ]ﬁ
v 4°V 10 1+rn O 1~-p 0 -1—-ry 0 —-(1+r)
oy}t (b)
where 0" =[u, v w2 v2 ws V3 Us V4

Evaluating the relations in (a) and (b), we can establish the strain-displacement transfor-
mation matrix at the point (r;, s;); i.e., we obtain
€; — B,jﬁ

where the subscripts / and j indicate that the strain-displacement transformation is evaluated at
the point (r;, s;). For example, if x = r, y = s (i.e., the stiffness matrix of a square element is
required that has side lengths equal to 2), the Jacobian operator is the identity matrix, and hence

hence
1 + s 0 —(1 + s) 0 (1 — s;) 0 1 — 5 0

BU ='4t' 0 1 +r ) 1 — r; 0 _(1 — F;) 0 "(1 + r!’)
1 + r, 1+s 1 -—r —(1+s) -A—r) -Q-5) —(1+r) 1 —

The matrix F;; in (5.30) is now simply

where the material property matrix C is given in Table 4.3. In the case of plane stress or plane
strain conditions, we integrate in the r, s plane and assume that the function F is constant through
the thickness of the element. The stiffness matrix of the element is therefore

K= 2 t;ja!-,-Fi,-
i, j
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where t; is the thickness of the element at the sampling point (r;, 5;) (f; = 1.0 in plane strain
analysis). With the matrices F; as given and the weighting factors oy available, the required
stiffness matrix can readily be evaluated.

For the actual implementation it should be noted that in the evaluation of J; and of the
matrices defining the displacement derivatives in (a) and (b), only the eight possible derivatives
of the interpolation functions A, . . ., hs are required. Therefore, it is expedient to calculate
these derivatives corresponding to the pomt (i, 5;) once at the start of the evaluation of B,, and
use them whenever they are required.

It should also be realized that considering the specific point (r;, s;), the relations in (a) and
(b) may be written, respectively, as

d i
ou _yom
ox i=1 ox X (C)
du i oh;
= —u
0y =1 0y
) 4
dv oh;
= 2"
and 'T e (d)
v _ >,
0y =1 0y ‘)
Hence, we have
oh ok o dhs o ke
0x 0x ax ax
oh oh oh oh
B=|0o — 0 — o0 —= o = ©
ay ay ay ay
ohy, oh, oh, oh, ohy 0hs ohs ohy
ay dx dy dx dy dx ay ax

where it is implied that in (¢) and (d), the derivatives are evaluated at pomt (r:, 8;), and therefore
in (¢), we have, in fact, the matrix B;;.

EXAMPLE 5.6: Derive the expressions needed for the evaluation of the mass matrix of the
element considered in Example 5.5.
The mass matrix of the element is given by

M= 2 autijfj
i, 5

where F; = p;HIH;; det J;;

and Hj; is the displacement interpolation matrix. The displacement interpolation functions for u
and v of the four-node element have been given in Example 5.5, and we have

o _[(1 + r)(1 + ) 0 (1 — (A +5) 0
V= 4 0 1+ rQd +s) 0 (I —rmA +s)
(l - r,-)(l - Sj) 0 (1 + r,-)(l - .S'j) 0 ]
0 (1 =r)Q1 -3 0 (1 +r)d -y
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The determinant of the Jacobian matrix, det J;, was given in Example 5.5, and p; is the mass
density at the sampling point (r;, s;). Therefore, all required variables for the evaluation of the
mass matrix have been defined.

EXAMPLE 5.7: Derive the expressions needed for the evaluation of the body force vector R;
and the initial stress vector R, of the element considered in Example S.5.

These vectors are obtained using the matrices Hy, B;;, and J; defined in Examples 5.5 and
5.6; i.e., we have :

Rs = 2 oty HIEP det J,
L]

R, = E a;;th:’;"l'{j det J;;
i, f

where f} and 7/ are the body force vector and initial stress vector evaluated at the integration
sampling points.

EXAMPLE 5.8: Derive the expressions needed in the calculation of the surface force vector R
when the element edge 1-2 of the four-node isoparametric element considered in Example 5.5
is loaded as shown in Fig. ES.8.

fy
Node 1
2
8 + f f
‘ — |
AT ——— . .
Y. v} | ""-r
|
|
3
4
. Figure ES5.8 Traction distribution along
X, u edge 1-2 of a four-node element

The first step is to establish the displacement interpolations. Since s = +1 at the edge 1-2,
we have, using the interpolation functions given in Example 5.5,

1A+ Puy + 10 = PNu
v =121+ Noy + (1 — o,

uS

Hence, to evaluate R in (5.34) we can use

Hs=[%(1+r) 0 -»n_. 0 0 0 o0 o]
0 i1+rn 0 f1-H0 0 0 O

AY
and fS = [ x]
5
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where f$ and f$ are the x and y components of the applied surface force. These components may
have been given as a function of r.

For the evaluation of the integral in (5.34), we also need the differential surface area dS
expressed in the r, s natural coordinate system. If ¢, is the thickness, dS = ¢, dI, where dl is a
differential length,

2 27)1/2
dl = det J° dr; det J¥ = [(ﬂ) + (a_y_)]
or or

But the derivatives dx/6r and dy/dr have been given in Example 5.5. Using s = +1, we have,
in this case,

0x X1 — X2 ay N~y

or 2’ or 2

Although the vector R could in this case be evaluated in a closed-form solution (provided that
the functions used in f* are simple), in order to keep generality in the program that calculates Rs,
it is expedient to use numerical integration. This way, variable-number-nodes elements can be
implemented in an elegant manner in one program. Thus, using the notation defined in this
section, we have

R = 2 a;t.F;

F, = HF ff det J}

It is noted that in this case only one-dimensional numerical integration is required because s is
not a variable.

EXAMPLE 5.9: Explain how the expressions given in Examples 5.5 to 5.7 need be modified
when the element considered is an axisymmetric element.

In this case two modifications are necessary. First, we consider 1 radian of the structure.
Hence, the thickness to be employed in all integrations is that corresponding to 1 radian, which
means that at an integration point the thickness is equal to the radius at that point:

4
ly = 2 hx Xk (2)
k=1

r‘i,Sj

Second, it is recognized that also circumferential strains and stresses are developed (see
Table 4.2). Hence, the strain-displacement matrix must be augmented by one row for the hoop
strain #/R; i.e., we have

B=1 h h, h3 ha (b)

where the first three rows have already been defined in Example 5.5 and ¢ is equal to the radius.
To obtain the strain-displacement matrix at integration point (i, j) we use (a) to evaluate ¢ and
substitute into (b).

EXAMPLE 5.10: Calculate the nodal point forces of the four-node axisymmetric finite element

shown in Fig. ES.10 when the element is subjected to centrifugal loading.
Here we want to evaluate

Rz = f H'f? dv
v



Sec. 5.3 Formulation of Continuum Elements
"4
| eetf—
et
o Density p
(rad/sec)
where fz = pw*R; f& =
R=31(1—-1rR +1(1 + R,
H=[h1 0 b, 0 h 0 hy 0]; J =
0 hl 0 h2 0 h3 0 h4

and the A; are defined in Fig. 5.4. Also, considering 1 radian,
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Figure E5.10 Four-node axisymmetric
element rotating at angular velocity w

If weletA = R, + Ry and B = R, — R, we have

2(64? + 4AB + 2B?)

0
2(6A%> — 4AB + 2B?

pw?B 0

R; = )

64 |%(6A> — 4AB + 2B?
0 |
2(6A% + 4AB + 2B?)

i 0

Rl_"RU R1+R0 Rl—Rg
dV=detJdrdsR=( 2 )drds( Tt r)
Hence,
1+ (1 + ) 0 i
0 (1 +r( +5s)
(1 — (1 + s) 0
_po*Ri— Ry [T T 0 (1 -9 + s
Rs = 64 j=—1 J;=—1 (1 —r(1 —5s) 0
0 (1 —r1 —ys)
(1 + (1 —5s) 0
] 0 (1+ (1 — s)_

[R: + Ro) + (R — Ro)r]z[(l)] dr ds
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EXAMPLE 5.11; The four-node plane stress element shown in Fig. ES5.11 is subjected to the
given temperature distribution. If the temperature corresponding to the stress-free state is 6,
evaluate the nodal point forces to which the element must be subjected so that there are no nodal
point displacements.

Element thickness = 1 cm
Young's modulus E
Poisson’s ratio v
Thermal coefficient

of expansion a

1 t t
+20°C
T 32 1.+40°C Ry sl @ @ =P f,
3cm -
r
) 4 o
+10°C 4cm t t
Re Rs

Figure E5.11 Nodal point forces due to initial temperature distribution

In this case we have for the total stresses, due to total strains € and thermal
strains €™,

T =C(e — ") (a)

where € = a(0 — &), €, = a(@ — 6), ¥§ = 0.If the nodal point displacements are zero, we
have € = 0, and the stresses due to the thermal strains can be thought of as initial stresses. Thus,
the nodal point forces are

R;=J’BTTIdV
v ¢
1 » 0 J[1
4
IR SN [ I
10 o 2” 0|\ V!

and the h; are the interpolation functions defined in Fig. 5.4. Also,

_ 12 0 o |3 0]. _
J_[o 1.5]’ [0 [ eI =3

1 +s 1 +s 1 —s 1 —s |

8 0 -3 0 -8 0 8 0
1 +r 1 —r 1 —r 1 +r

B = 0 6 0 6 0 € 0 6
1 +r 1 + &5 1 —r _l+.s' _l—r _l—s _l+r 1 —=s
6 8 6 8 6 8 6 8J
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Hence,
1+ 1 + r]
8 0 6
1 +r 1 + s
0
: 6 8
1 + s 1 —r
8 0 6
1 —r 1l +s| 1 + 7
+1 pr+1 0 -
_ 6 8 1+ v]| Ea
R, = | 1- | —
-1 J - s 0 _ "TL 0 1 -2
8 6
1 —r 1] — s
0 —_ —
6 8
1l — & 1 +r
8 0~
1 +r 1 — s
. 0 6 8 |
[2.5(s + 3)(r + 3) — &3 drds
7375 — 1.56,
50 — 26,
~37.5 + 1.56
Ea 40 — 26,
R;=_
1 —-v»)]-30+ 1.56
—40 + 26,
+30 — 1.56,
l_—-50+260_

The calculation of the initial stress force vector as performed here is a typical step in a
thermal stress analysis. In a complete thermal stress analysis the temperatures are calculated as
described in Section 7.2, the element load vectors due to the thermal effects are evaluated as
illustrated in this example, and the solution of the equilibrium equations (4.17) of the complete
element assemblage then yields the nodal point displacements. The element total strains € are
evaluated from the nodal point displacements and then, using (a), the final element stresses are
calculated.

EXAMPLE 5.12: Consider the elements in Fig. ES.12. Evaluate the consistent nodal point
forces corresponding to the surface loading (assuming that the nodal point forces are positive
when acting in the direction of the pressure).

Here we want to evaluate

R5=J‘H5Tf5dS
A
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p2 P1
2 I 5 x 1
A
S T /Thickness =1cm
2cm 6¢ 8 P

———— 2 e —

(a) Two-dimensionel element subjected to {b) Flat surface of three-dimensional element
linearly varying pressure along one side subjected to constant pressure p

Figure ES.12 Two- and three-dimensional elements subjected to pressure loading

Consider first the two-dimensional element. Since s = +1 at the edge 1-2, we have, using the
interpolation functions for the eight-node element (see Fig. 5.4),

hs =3(1 — r)(1 + =1 = 1 — 72
hM=301+0 +)0Fr +s— Dyer1 =3r(1 + 1)
A=A+ —r— Deerr=—3r(1 — 1)

l—ul—
U]
[uS:I _ [%r(l + r) 0 —3r(l — 7) 0 (1 — r? 0 ] U,
¥ 0 3r(1 + 1) 0 —3r(l = r) 0 (1 = r3)lfv.
Us
| Vs
- 0
Also, fs=["C|= ; det J5 = 1
¥ [ff] [%(1 + rp +3(1 - r)Pz] J
Hence,
r(l1 + r) 0
0 r(l + 7
+1
t|—r(1 —r) 0 1[ 0 ]
- hd - d
Rs I_l 2 0 —r(1 =21 +rp.+ 1 — rp, r
2(1 — r? 0
0 2(1 = r?»
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0

I 451
0

P2
0

2(p1 + )

For the three-dimensional element we proceed similarly. Since the surface is flat and the
loading is normal to it, only the nodal point forces normal to the surface are nonzero [see also
(a)]. Also, by symmetry, we know that the forces at nodes 1, 2, 3, 4 and 5, 6, 7, 8 are equal,
respectively. Using the interpolation functions of Fig. 5.4, we have for the force at node 1,

1

+1 p+1
R, = p[_l J‘*l -}‘:(1 + (1 +s)(r+s—1Ddrds = —-ép

z
i

(a)

W] —

and for the force at node S,

+1 +1 1 4
Rs:Pf j (1 =7rd(1 + s)drds =-p
-1 1 2 3
The total pressure loading on the surface is 4 p, which, as a check, is equal to the sum of all the
nodal point forces. However, it should be noted that the consistent nodal point forces at the
corners of the element act in the direction opposite that of the pressure!

EXAMPLE 5.13: Calculate the deflection u, of the structural model shown in Fig. ES.13.
z T
U, A Uz
Z Z

Us Uy E

/ 0.1cm
/
/
Bar with ;
6cm cross-sectional ;
1 Us area = 1 cm? Ug ’
/
’
\ = {4 /
At i

Us | Y P=6000 N / 0.5 cm?

; each
/
6cm ;
4
’

4 0.1cm
) l :

//4 //4 Section AA
e 8cm »  E=30x 10%N/cm?
v=03
Figure ES.13 A simple structural model
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Because of the symmetry and boundary conditions, we need to evaluate only the stiffness
coefficient corresponding to u4. Here we have for the four-node element,

4 0 1 3=
i —4(1 + r) |

+1 +1 1 2 E i 3(1 _ S) ]
k» = I I (48) 1 = .2 [3(1 = .S') E 0 i —4(1 + r)] 3V(1 - S)

- It =2(1 = »)(1 + 1) |

(12)(0.1) dr ds
or k7 = 1,336,996.34 N/cm
Also, the stiffness of the truss is AE/L, or
X 6
k = (1)(308 107 = 3,750,000 N/cm

Hence kot = 6.424 X 10° N/cm
and uy, = 934 X 1074 cm

EXAMPLE 5.14: Consider the five-node element in Fig. ES.14. Evaluate the consistent nodal
point forces corresponding to the stresses given.

-t i cm ——
2 1
1 1
1cm Thickness = 1 cm
i By
1cm
Y & ®
Yi 3 4
Txx=0

>~ Tay = Tyx = 20 Nfcm?

Figure E5.14 Five-node element with stresses given

Using the interpolation functions in Fig. 5.4, we can evaluate the strain-displacement
matrix of the element:

{ T (1 + ) 0 —s(1 + 5) 0 s(1 — )
B = § 0 2(1 + r) 0 2(1 = (1 + 2s) 0
21+ (Q+s 2(1—nd+2) —s(1 + ) -2(1 — r)(1 — 2s)
0 (1 -y5%) 0 -2(1 = 5?) 0
-2(1 = (1 — 2s) 0 -2(1 + r) 0 -8(1 — r)s
s(1 — 3) —2(1 + r) (1-5) —-81-rs —2(1-sH]
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2
where we used J = [ 0]
0 1
The required nodal point forces can now be evaluated using (5.35); hence,
+1 p+l [ 0
R;=f f B”| 10 H(2) dr ds
-1 —1 “20_I
which gives
RT=1[40 40 40 ¥ —-40 -3 -40 0 0 —-%
It should be noted that the forces in this vector are also equal to the nodal point consistent
forces that correspond to the (constant) surface tractions, which are in equilibrium with the
internal stresses given in Fig. E.5.14,

Earlier we mentioned briefly the possible use of subparametric elements: here the
geometry is interpolated to a lower degree than the displacements. In the above examples,
the nodes corresponding to the higher-order interpolation functions (nodes 5 and higher for
the two-dimensional elements) were always placed at their “natural” positions so that the
Jacobian matrix would be the same if, for the geometry interpolation, only the “basic”
lower-order functions were used. Hence, in this case the subparametric two-dimensional
element, using only the four corner nodes for the interpolation of the geometry, gives the
same element matrices as the 1soparametric element. For instance, in Example 5.14, the
Jacobian matrix J would be the same using only the basic four-node interpolation functions,
and hence the vector R, for the subparametric element (using the four corner nodes for the
geometry interpolation and the five nodes for the displacement interpolation) would be the
same as for the isoparametric five-node element.

However, while the use of subparametric elements decreases somewhat the computa-
tional effort, such use also limits the generality of the finite element discretization and in
addition complicates the solution procedures considerably in geometrically nonlinear anal-
ysis (where the new geometry of an element is obtained by adding the displacements to the
previous geometry; see Chapter 6).

5.3.2 Triangular Elements

In the previous section we discussed quadrilateral isoparametric elements that can be used
to model very general geometries. However, in some cases the use of triangular or wedge

elements may be attractive. Triangular elements can be formulated using different ap-
proaches, which we briefly discuss in this section.

Triangular Elements Formulated by Collapsing Quadrilateral Elements

Since the elements discussed in Section 5.3.1 can be distorted, as shown for example in
Fig. 5.2, a natural way of generating triangular elements appears to be to simply distort the
basic quadrilateral element into the required triangular form (see Fig. 5.7). This is achieved

in practice by assigning the same global node to two corner nodes of the element. We
demonstrate this procedure in the following example.
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Node 1
2 Nodes 2 and 3
___. 4?
3
4
{a) Degeneration of 4-node to 3-node two-
dimensional element
2 Node 1
i
| t
| t
| [
| :
3 f f § Nodes 1
t
6 1 and 4
» 5 A
,/ // \‘
J/ 4 \
V4 /7 A
,/ // A
&« & 3
7 8 Nodes 5 Nodes 5 and 8
and 8
Nodes 2 <7~ Nodes 1 Nodes 1, 2, 3, and 4
and 3 s~ /| and 4
/3
// \
/, \‘
¢ ® Nodes 5 and 8 Nodes 5 and 8

(b} Degenerate forms of 8-node three-
dimensional element

Figure 5.7 Degenerate forms of four- and eight-node elements of Figs. 5.4 and 5.5

in Fig. E5.15 a constant strain triangle is obtained.
Using the interpolation functions of Fig. 5.4, we have

y=:i1+n0+9n+i(1 -1+ 9y +3(1 = N1 — 9y + (1 + n(1
Thus, using the conditions x, = x; and y, = y,, we obtain
x=11+x+i(1 —rN1 —Hx3+ 71 + N ~ x4
y =31+ 8y + i1 =n1 -5y +i01+n1 =9y

Chap. 5

EXAMPLE 5.15: Show that by collapsing the side 1-2 of the four-node quadrilateral element

x=31+NQ+ 9 +i(1-nNA+)x2+;0 =1 —9Hx3 + (1 + ({1 — 9Hxs

- S))’4
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/|
|
# £ 1]
2cm - |=$
3 4
A Sy — -
X X
ft—— 2 CM — t— 2 cm——'
Figure E5.15 Collapsing a plane stress four-node element to a triangular element
and hence with the nodal coordinates given in Fig. ES.15,
x =31+ N1 —ys)
y=1+s
It follows that
ax 1 3 [ 2 |
ar 2 ar . J-—l[ (1 -y 0]_ i = 1 -5
ax 1 d ’ 2L-(1 +r) 2]1° 1+ r
—=—-—=(1+r ==1 1
as 2 as 1 - i

Using the isoparametric assumption, we also have

u=3(1+Nuw+11 -1 —Dus + 11 + N — su,
v =3(1 + )z + (1 — (1 = s)vs + (1 + (1 = s)v,
du 1 1 av 1 1
ol --Z(l — Sus + Z(l ~ S)us; ol —-Z(l — S)vs + Z(l = SV,
du 1 1 1 av 1 1 1
i d Z(l —~ Nus — Z(l + g 02T Z(l — rvs — Z(l + rvg
r‘_(—,j_— r‘_(?_—
ax| _ __,|or
af= e
| dy | 35 |
Hence, 5]
[ ou | [ 2 17 1 1 1 v2
— o[{fo 0 —-(1 — §) -(1 —
ax| |1=5s s 79 AR | Y
du 1 +r 1 1 1 03
= 1z 0 ~—a=-» 0 —-1+
| Ay 1-5 ]2 4( ") 4( r) 0__ Us
| D4
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ou| [ 1 1
Z1 oo -0 = 0™
ax 2 2 .
and au| |1 1 u
u 4
— - 0 —= 0 0 O
] (2 2 . 11
- - _ -
ad 1 1
Zl fooo -2 0 2™
.y ax 2 21} -
Similarly, = -
av 0 1 0 — 1 0 0 Us
_ay_ i 2 2 | __‘D4_
ur
_ )
0 0 - 0 % 07 ;
So we obtain e=|0 4+ 0 -1 00 03
1 1 1 1 3
a 0 —a S § 0 a
| 2 2 2 2 _] Us
For any values of u;, va, us, v3, and us, v, the strain vector is constant and independent of r, s.
Thus, the triangular element is a constant strain triangle.

In the preceding example we considered only one specific case. However, using the
same approach it is apparant that collapsing any one side of a four-node plane stress or
plane strain element will always result in a constant strain triangle.

In considering the process of collapsing an element side, it is interesting to note that
in the formulation used in Example 5.15 the matrix J is singular at s = +1, but that this
singularity disappears when the strain-displacement matrix is calculated. A practical conse-
quence is that if in a computer program the general formulation of the four-node element
is employed to generate a constant strain triangle (as in Example 5.15), the stresses should
not be calculated at the two local nodes that have been assigned the same global node.
(Since the stresses are constant throughout the element, they are conveniently evaluated at
the center of the element, i.e., at r = 0, s = 0.)

The same procedure can also be employed in three-dimensional analysis in order to
obtain, from the basic eight-node element, wedge or tetrahedral elements. The procedure
is 1llustrated in Fig. 5.7 and in the following example.

EXAMPLE 5.16: Show that the three-dimensional tetrahedral element generated in Fig. E5.16
from the eight-node three-dimensional brick element is a constant strain element.

Here we proceed as in Example 5.15. Thus, using the interpolation functions of the brick
element (see Fig. 5.5) and substituting the nodal point coordinates of the tetrahedron, we obtain
;1 + N1 —9H(1 -9

y=3(1+s5(1-19
z=1+1¢

X
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Figure ES.16 Collapsing an eight-node brick element into a tetrahedral element

- 11— 91— ) 0 0
Hence, J=1-10+nn1 -9 s(1—-8 0};
| —i 1+ N1 =5 —3(1+s 1,
_ . -
i-9a-5 ° °
J = 2(1 + r) 2 0 @

1-51—-9 1—1¢
2(1 + r) 1 + s
1-9(1 -1 1—¢

Using the same interpolation functions for #, and the conditions that u, = u, = us = us and
Us = ug, we obtain

U= hfu, + h¥us + h¥u; + h¥ug
with
=51 + 1) hE =31 + 91 — o)
(1 — (1 — (1 — ), hf =51 + (1 - 51 -0
Similarly, we also have

v = h¥v, + h¥os + h¥vs + h¥vs

wW.= hfW4 + h?Ws + h-’;W? + h:ngS

Evaluating now the derivatives of the displacements u, v, and w with respect to r, s, and ¢, and
using J~! of (a), we obtain
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ou ' | _1 : 1 (U4 |
Py 0 00 E 0 00 L T3 0 0 i > 0 0 o,
8v T B 1 i W
3 0 00 i 0 ) 0 E 0 > 0 i 0 0O o
on % a 1 “
oz . 0 0 > i 0 0 O i 0 0 > i 0 00 o5
du v | E 11 | 1 Ws
oy T ax 0 0O . 2 0 0 i > > 0 i 0 > 0 ___
v ow 1 1] 11 ”
3z dy Oioiooziozziooom
ou ow| |1 i b1 1 1| [w
|9z x| |2 00 | 0 004 2 0 2 00 2] [---
Usg
Usg
Hence, the strains are constant for any nodal point displacements, which means that the element
can represent only constant strain conditions.

The process of collapsing an element side, or in three-dimensional analysis a number
of element sides, may directly yield a desired element, but when higher-order two- or
three-dimensional elements are employed, some special considerations may be necessary
regarding the interpolation functions used. Specifically, when the lower-order elements
displayed in Fig. 5.7 are employed, spatially isotropic triangular and wedge elements are
automatically generated, but this is not necessarily the case when using higher-order ele-
ments.

As an example, we consider the six-node triangular two-dimensional element obtained
by collapsing one side of an eight-node element as shown in Fig. 5.8. If the triangular
element has sides of equal length, we may want the element to be spatially isotropic; i.e.,

s
I\ s
A
o ® ey
2 5 1
6 8
———— e - I
|
|
I
3 17 4
® ®
i
Square element Equilateral triangle

Figure 5.8 Collapsing an eight-node element into a triangle
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we may wish the internal element displacements u and v to vary in the same manner for each
corner nodal displacement and each midside nodal displacement, respectively. However,
the interpolation functions that are generated for the triangle when the side 1-2-5 of the
square is simply collapsed do not fulfill the requirement that we should be able to change
the numbering of the vertices without a change in the displacement assumptions. In order
to fulfill this requirement, corrections need be applied to the interpolation functions of the
nodes 3, 4, and 7 to obtain the final interpolations 4 of the triangular element (see
Exercise 5.25),

h =30 +5) —1(1 - 59

=11 -N1-5—-30-s5A - —-10 - r)1 — s) + Ah

b =50 +rN1—s—50A—=r1 -5 — 30 =51 +7r) + Ah

hE =31 = (1 = 1) (3.36)

R =11 - r)(1 — 5) — 2Ak

he =3(1 — s + 1)

where we added the appropriate interpolations given in Fig. 5.4 and

(1 =rH(1 -3
B 8

Ah (5.37)

Thus, to generate higher-order triangular elements by collapsing sides of square elements,
it may be necessary to apply a correction to the interpolation functions used.

Triangular Elements in Fracture Mechanics

In the preceding considerations, we assumed that a spatially isotropic element was desirable
because the element was 1o be employed in a finite element assemblage used to predict a
somewhat homogeneous stress field. However, in some cases, very specific stress variations
are 1o be predicted, and in such analyses a spatially nonisotropic element may be more
effective. One area of analysis in which specific spatially nonisotropic elements are em-
ployed is the field of fracture mechanics. Here it is known that specific stress singularities
exist at crack tips, and for the calculation of stress intensity factors or limit loads, the use
of finite elements that contain the required stress singularities can be effective. Various
elements of this sort have been designed, but very simple and attractive elements can be
obtained by distorting the higher-order isoparametric elements (see R. D. Henshell and
K. G. Shaw [A] and R. S. Barsoum [A, B]). Figure 5.9 shows two-dimensional isoparamet-
ric elements that have been employed with much success in linear and nonlinear fracture
mechanics because they contain the 1/ V'R and 1/R strain singularities, respectively. We
should note that these elements have the interpolation functions given in (5.36) but with
Ah = 0. The same node-shifting and side-collapsing procedures can also be employed with
higher-order three-dimensional elements in order to generate the required singularities. We
demonstrate the procedure of node shifting to generate a strain singularity in the following
example.
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Shift nodes 5

and 7 to quarter-

points; collapse

8 side 2-6-3 to

one node 2: 6: 3

Natural space Actual physical space

(a) Quarter-point triangular element with 1/V/R strain singulerity at node 2-6-3

and 7 to quarter-
points; collapse

S
I\
)
2 I ’\ ?1 Shift nodes 5

8 side 2-6-3 but
6¢ ¢— r retainthree nodes , ¢
corresponding to ‘e
2,6,and 3
[
3 \ 4 o4
Natural space Actual physical space

(b) Quarter-point triangular element with 1/VR and 1/R strain singularities et nodes 2, 6, and 3

Figure 5.9 Two-dimensional distorted (quarter point) isoparametric elements useful in
fracture mechanics. Strain singularities are within the element for any angle 6. [Note that in
(a) the one node (2-6-3) has two degrees of freedom, and that in (b) nodes 2, 3, and 6 each
have two degrees of freedom.]

EXAMPLE 5.17: Consider the three-node truss element in Fig. ES.17. Show that when node
3 is specified to be at the quarter-point, the strain has a singularity of 1/ Vx at node 1.

e
2 1 3 2
- € | »
S - :
L/4 3L/4

Natural space Actual physical space

1 3

[ N
r=-1 I—»r r

Figure ES.17 Quarter-point one-dimensional element
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We have already considered a three-node truss in Example 5.2. Proceeding as before, we

now have
r L
=—=(1+rL + (1 —r?)-
2(1 r) ( r)4
L
or = —(1 + r)? (a)
4
H )= [£+1L]
ence, > >

and the strain-displacement matrix is [using (b) in Example 5.2]

5 [L/z ; rL/2][(’% o) () ~—2r] ®

To show the 1/ Vx singularity we need to express r in terms of x. Using (a), we have

X
=2,/5-1
r J;

Substituting this value for r into (b), we obtain

"= [(%_2\3/2\1/}) (%_2\1/2\1/}) (%L%_%)]

Hence at x = 0 the quarter-point element in Fig. ES.17 has a strain singularity of order 1/Vx.

Triangular Elements by Area Coordinates

Although the procedure of distorting a rectangular isoparametric element to generate a
triangular element can be effective in some cases as discussed above, triangular elements
(and in particular spatially isotropic elements) can be constructed directly by using area
coordinates. For the triangle in Fig. 5.10, the position of a typical interior point P with
coordinates x and y is defined by the area coordinates

A A A
Li==;  Ly=-; :

Ly =2 .
As 3 A (538)

0,1

o -
X (0, 0) {(1,0) r
Isoparametric coordinates

Cartesian coordinates

Figure 5.10 Description of three-node triangle
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where the areas A;,i = 1, 2, 3, are defined in the figure and A is the total area of the triangle.
Thus, we also have

Ll + Lz 4+ Ly = 1 (539)
Since element strains are obtained by taking derivatives with respect to the Cartesian

coordinates, we need a relation that gives the area coordinates in terms of the coordinates
x and y. Here we have

X = lel + szz + L3x3 (5.40)
y = Llyl + Lzyz + L3y3 (541)

because these relations hold at points 1, 2, and 3 and x and y vary linearly in between. Using
(5.39) to (5.41), we have

1] 1 1 1QIL,]
xl=1x1 x2 x3|| L» (5.42)
yl Ly » ¥y ]LLs]
. . 1 :
which gives L; = 7A (a; + bix + ¢iy); =123
where 2A = xy Y2+ X2y3 + Xay1 — Yixa — YaX3 — yax
a = x2y3 - x3y2; a, = x3y1 - x1y3; a = xl)"z - x2yl (5 43)
b1=)'2")'3; bz“—‘ya‘“)‘l; b3=)’1—y2
Ci = X3 — X2 C2 = X1 — X3, Cy = X2 — X

As must have been expected, these L; are equal to the interpolation functions of a constant

strain triangle. Thus, in summary we have for the three-node triangular element in
Fig. 5.10,

(5.44)

where h; = L;, i = 1, 2, 3, and the A; are functions of the coordinates x and y.

Using the relations in (5.44), the various finite element matrices of (5.27) to (5.35) can
be directly evaluated. However, just as in the formulation of the quadrilateral elements
(see Section 5.3.1), in practice, it is frequently expedient to use a natural coordinate space
in order to describe the element coordinates and displacements. Using the natural coordi-
nate system shown in Fig. 5.10, we have

h=1—-r—us hy = r; hy = s (5.45)

and the evaluation of the element matrices now involves a Jacobian transformation. Further-
more, all integrations are carried out over the natural coordinates; i.e., the r integrations go
from O to 1 and the s integrations go from 0 to (1 — r).
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EXAMPLE 5.18: Using the isoparametric natural coordinate system in Fig. 5.10, establish the
displacement and strain-displacement interpolation matrices of a three-node triangular element
with
x = 0 Xy = 4; x =1
y1 = 0; y2 = 0; y3 =3
In this case we have, using (5.44),
x=4r + s
y = 3s
Hence, using (5.23), = [T g]
and 9 _ -1—[ > 0]£
dx 12| -1 4]ér
It follows that
Hz[(l—r—s) 0 O | I 0]
0 I—-r—s) ! 0 r ' 0 s
1 -3 0 E 3 0 i 0 0]
and B=-1—2 0 -3 0 -1 .0 4
-3 -3 ) -1 3 14 0

By analogy to the formulation of higher-order quadrilateral elements, we can also
directly formulate higher-order triangular elements. Using the natural coordinate system in
Fig. 5.10, which reduces to

Li=1-r—us L, =r; Ly=ys (5.46)

where the L; are the area coordinates of the “unit triangle,” the interpolation functions of
a 3 to 6 variable-number-nodes element are given in Fig. 5.11. These functions are con-
structed in the usual way, namely, A, must be unity at node i and zero at all other nodes (see
Example 5.1). The interpolation functions of still higher-order triangular elements are
obtained in a similar manner. Then the “cubic bubble function” L,L,L, is also employed.
Using this approach we can now also directly construct the interpolation functions of
three-dimensional tetrahedral elements. First, we note that in analogy to (5.46) we now
employ volume coordinates
Li=1-r—s-—1t L=r (5.47)
Ly =s; Ly=1

where we may check that L, + L, + L, + L, = 1. The L, in (5.47) are the interpolation
functions of the four-node element in Fig. 5.12 in its natural space. The interpolation

21t is interesting to note that the functions of the six-node triangle in Fig. 5.11 are exactly those given in
(5.36), provided the variables 7 and s in Fig. 5.11 are replaced by (1 + r)(1 — s) and 3(1 + s), respectively, in
order to account for the different natural coordinate systems. Hence, the correction A in (5.36) can be evaluated
from the functions in Fig. 5.11.
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Figure 5.11 Interpolation functions of three to six variable-number-nodes two-dimensional
triangle
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(a) Coordinate system and nodal points

Include only if node iis defined

i=5 i=6 i=7 i=8 i=9 i=10
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he = | 4rs
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hg = | 4st

ho= [4t{(1-r-s-1)

(b) Interpolation functions

Figure 5.13 Interpolation functions of four to ten variable-number-nodes three-
dimensional tetrahedral element

functions of a 4 to 10 three-dimensional variable-number-nodes element are given in
Fig. 5.13.

To evaluate the element matrices, it is necessary to include the Jacobian transforma-
tion as given in (5.24) and to perform the r integrations from O to 1, the s integrations from
Oto (1 — r), and the ¢ integrations from O to (1 — r — s). As for the quadrilateral elements,
these integrations are carried out effectively in general analysis using numerical integration,

but the integration rules employed are different from those used for quadrilateral elements
(see Section 3.5.4).
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EXAMPLE 5.19: The triangular element shown in Fig. ES5.19 is subjected to the body force
vector f? per unit volume. Calculate the consistent nodal point load vector.

Ny /K §8 = f]. 10 N/cm?3
fB 20
5cm y

Element thickness t=2.0cm

Figure ES.19 Six-node triangular element

Let us use the displacement vector
@' =y, vy w va ws vy ... vg]

Hence, the load vector corresponding to the applied body force loading is

he f2
h ‘B

R; = f ‘,f” dv
1% :

b £

6 0
Wi ——
e have J [ 0 8]

and note that the Jacobian matrix is diagonal and constant and that det J is equal to twice the
area of the triangle. The integrations involve the following term for node i:

1 1—r
fi= J’ J’ h;t det J ds dr
r=0 Js=0

which gives fi = f, = f; = 0, whereas s = f5; = fs = (¢/6) det J. Hence, we obtain
RI=[0 ... 0 160 320 160 320 160 320] (a)

with the consistent nodal forces at the corner nodes equal to zero. Note that the total applied load
is of course statically equivalent to the nodal forces listed in (a).

5.3.3 Convergence Considerations

We discussed in Section 4.3 the requirements for monotonic convergence of a finite element
discretization. Since isoparametric elements are used very widely, let us address some key
issues of convergence specifically for these elements.
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Basic Requirements for Convergence

The two requirements for monotonic convergence are that the elements (or the mesh) must
be compatible and complete.

To investigate the compatibility of an element assemblage, we need to consider each
edge, or rather face, between adjacent elements. For compatibility it is necessary that the
coordinates and the displacements of the elements at the common face be the same. We note
that for the elements considered here, the coordinates and displacements on an element face
are determined only by nodes and nodal degrees of freedom on that face. Therefore,
compatibility is satisfied if the elements have the same nodes on the common face and the
coordinates and displacements on the common face are in each element defined by the same
interpolation functions.

Examples of adjacent elements that do and do not preserve compatibility are shown
in Fig. 5.14.

3-node edge:
coordinates vary linearly but
displacements vary parabolically

Coordinates and displscements
vary parabolically along both
element edges

\ —9
2-node edge:
| coordinates end
displacements
linearl
2 vary linearly

(a) Compatible element assemblage (b) Incompatible element assemblage

Figure 5.14 Compatible and incompatible two-dimensional element assemblage

In practice, mesh grading is frequently necessary (see Section 4.3), and the isopara-
metric elements show particular flexibility in achieving compatible graded meshes (see
Fig. 5.15).

Completeness requires that the rigid body displacements and constant strain states be
possible. One way to investigate whether these criteria are satisfied for an isoparametric
element is to follow the considerations given in Section 4.3.2. However, we now want to
obtain more msight into the specific conditions that pertain to the isoparametric formulation
of a continuum element. For this purpose we consider in the following discussion a three-
dimensional continuum element because the one- and two-dimensional elements can be
regarded as special cases of these three-dimensional considerations. For the rigid body and
constant strain states to be possible, the following displacements defined in the local element
coordinat¢ system must be contained in the isoparametric formulation

u=a +bx+cy+dz)

¥

v =ay + byx + cay + d»z (5.48)

w=as+ bix + ¢y + dsz



378 Formulation and Calculation of isoparametric Finite Element Matrices Chap. 5
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(a) 4-node to 8-node element (b} 4-node to 4-node element transition;
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» o ® °
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(c) 9-node to 9-node element transition region;
from one to two layers

Figure 5.15 Some transitions with compatible element layouts

where the a;, b, ¢j, and d;, j = 1, 2, 3, are constants. The nodal point displacements
corresponding to this displacement field are

U;: — ai + ble + C1Y¥i + dlz,'-‘

v; = Gy + baxi + G2y + daz; (5.49)

L

w; = as + b3x,- + C3Yi + d3Z,f)

wherei = 1, ..., g and ¢ = number of nodes.

The test for completeness is now as follows: show that the displacements in (5.48) are
in fact obtained within the element when the element nodal point displacements are given
by (5.49). In other words, we should find that with the nodal point displacements in (5.49),
the displacements within the element are actually those given in (5.48).

In the isoparametric formulation we have the displacement interpolation

q q q
u = 2 h,-u,-; v = 2 h;‘U;‘; w = 2 h,-w.-
i=1 i=1 i=1

which, using (5.49), reduces to

~

q q q q
u=612hi+blzhfxs"‘clzhsys'i‘dlzhia
i=1 i=1

=1 i=1

v

q q q q
V=@ 2 hi+ by 2 hx > by + dy D bz (5.50)
=1 i=1 i=1

i=1
q

q q q
W = as h,‘ + b3 2 h,-.lff + ¢3 2 hiy,- + d3 2 hle'
' i=1

i=1 i=1 i=1

J
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Since in the isoparametric formulation the coordinates are interpolated in the same way as
the displacements, we can use (5.18) to obtain from (5.50),

q )
u=a12h,-+b1x+c1y+dlz

i=1

q
v=a22h;+b2x+c2y+dzz

i=1

(5.51)

"y

q
w-‘=a32h,-+b3x+c3y+d3z

i=1 y

The displacements defined in (5.51), however, are the same as those given in (5.48),
provided that for any point in the element,

- hi =1 (5.52)

i=1

The relation in (5.52) is the condition on the interpolation functions for the completeness
requirements to be satisfied. We may note that (5.52) is certainly satisfied at the nodes of
an element because the interpolation function A; has been constructed to be unity at node i
with all other interpolation functions A;, j # i, being zero at that node; but in order that an
isoparametric element be properly constructed, the condition must be satisfied for all points
in the element.

In the preceding discussion, we considered a three-dimensional continuum element,
but the conclusions are also directly applicable to the other isoparametric continuum element
formulations. For the one- or two-dimensional continuum elements we simply include only
the appropriate displacement and coordinate interpolations in the relations (5.48) to (5.52).
We demonstrate the convergence considerations in the following example.

EXAMPLE 5.20: Investigate whether the requirements for monotonic convergence are
satisfied for the variable-number-nodes elements in Figs. 5.4 and 5.5.

Compatibility is maintained between element edges in two-dimensional analysis and
element faces in three-dimensional analysis, provided that the same number of nodes is used on
connecting element edges and faces. A typical compatible element layout is shown in Fig. 5.14(a).

The second requirement for monotonic convergence is the completeness condition. Con-
sidering first the basic four-node two-dimensional element, we recognize that the arguments
leading to the condition in (5.52) are directly applicable, provided that only the x and y
coordinates and u# and v displacements are considered.

Evaluating Z;_, h; for the element, we find

i(1+N0+9)+30-N0+9)+:0-N1 -9 +:0+nN1 -9 =1

Hence, the basic four-node element is complete. We now study the interpolation functions given
in Fig. 5.4 for the variable-number-nodes element and find that the total contribution that is
added to the basic four-node interpolation functions is always zero for whichever additional node
is included. Hence, any one of the possible elements defined by the variable number of nodes in
Fig. 5.4 is complete. The proof for the three-dimensional elements in Fig. 5.5 is carried out in
an analogous manner.

It follows therefore that the variable-number-nodes continuum elements satisfy the re-
quirements for monotonic convergence.
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Order of Convergence, the Effect of Element Distortions

The basic requirements for monotonic convergence, namely, compatibility and complete-
ness, are satisfied by the isoparametric elements, as discussed above, when these elements
are of general (but admissible) geometric shape. Therefore, the elements always have the
capability to represent the rigid body modes and constant strain states, and convergence is
guaranteed.

We discussed in Section 4.3.5 the rates of convergence of sequences of finite element
discretizations with the assumptions that the elements are based on polynomial expansions
and that uniform meshes of elements with characteristic dimension s are used. For the
discussion we used the Pascal triangle to display which polynomial terms are present in
various elements. The complete polynomial of highest order in the Pascal triangle deter-
mines the order of convergence. Let this degree (now for r, s, 1) be k. Then if the exact
solution u is sufficiently smooth and uniform meshes are used, the rate of convergence of
the finite element solution v, is given by [see (4.102)]

fu =, = c &t (5.53)

where k is the order of convergence. The constant ¢ is independent of 4 but depends on the
exact solution of the mathematical model and the material properties.

In general practical finite element analysis, the exact solution of the mathematical
model is not smooth (e.g., because of rapid load variations, changes in material properties),
and with uniform meshes the order of convergence is much reduced. Therefore, mesh
grading must be employed with fine discretizations in regions of nonsmooth stress distribu-
tions and coarse discretizations in the other regions. The meshes will therefore be nonuni-
form and based on geometrically distorted elements using, for example, in two-dimensional
analysis general quadrilateral and triangular elements; see Fig. 5.16 for an example of a
nine-node quadrilateral element.

The aim in such mesh constructions is then to use meshes in which the density of
solution error is (nearly) constant over the domain considered and to use regular meshes.”
When regular meshes are used, the rate of convergence is still given by a form such as (5.53)
[see (4.101c)], namely,

lu — w|? = c2 hZ | ulZein
m

where h, denotes the largest dimension of element m (see Fig. 5.16). We note that, in
essence, in this relation the interpolation errors over all elements are added to obtain the
total interpolation error, which then gives us the usual bound on the actual error of the
solution.

The (nearly) constant density of solution error can of course be achieved, in general,
only by proper mesh grading and adaptive mesh refinement because the mesh to be used
depends on the exact (and unknown) solution. In practice, a refinement of a mesh is
constructed on the basis of local error estimates computed from the solution just obtained
(with a coarser mesh).

3 In referring to a “regular mesh,” we always mean “a mesh from a sequence of meshes that is regular.”
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(a) Undistorted configuration (b} Aspect-ratio distortion
used in uniform meshes

—1- 9
(e} Curved-edge distortion (f} Midnode distortion

Figure 5.16 - Classification of element distortions for the 9-node two-dimensional element;
all midside and interior nodes are placed at their “natural” positions for cases (a) to (). The
value of A should be smaller than h2 for (5.53) to be applicable. An actual distortion in
practice would be a combination of those shown.

To introduce a measure of mesh regularity, the element geometric parameter o, 1s
used,
Bym

o, = 2
Prm

where k., is the largest dimension and p.. is the diameter of the largest circle (or sphere) that

can be inscribed in element m (see Fig. 5.16). A sequence of meshes is regular if o, = oo

for all elements m and meshes used, where oy is a fixed positive value. In addition, when

using meshes of quadrilateral elements in two-dimensional analysis and hexahedral ele-
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ments in three-dimensional analysis, we also require that for each element the ratio of the
largest to the smallest side lengths (h;/h; in Fig. 5.16) is smaller than a reasonable positive
number. These conditions prevent excessive aspect ratios and geometric distortions of the
clements. Referring to Fig. 5.16, the elements in (b), (c), and in particularly (d) are used
extensively in regular meshes.*

The above described mesh grading can in general be achieved with straight-sided
elements, and the noncorner nodes can usually be placed at their natural positions (i.e., at
the physical x, y, z locations in proportion to the r, s, ¢ distances from the corner nodes); and
the most typically used element in Fig. 5.16 is the quadrilateral in Fig. 5.16(d). However,
when curved boundaries need to be modeled, the element sides will also be curved [see
Fig. 5.16(¢)], and we must ask what effect all these geometric distortions will have on the
order of convergence.

Whereas the cases in Figs. 5.16(a) to (e) are used extensively in mesh designs, we note
that the element distortion shown in Fig. 5.16(f) is avoided, unless specific stress effects
need to be modeled, such as in fracture mechanics [where even larger distortions than those
shown in Fig. 5.16(f) are used; see Fig. 5.9]. However, the distortion in Fig. 5.16(f) may
also arise in geometrically nonlinear analysis.

P. G. Ciarlet and P. -A. Raviart [A] and P. G. Ciarlet [ A] have shown in their mathe-
matical analyses that the order of convergence of a sequence of regular meshes with straight
element sides is still given as in (5.53) (even though, for example, in two-dimensional
analysis, general straight-sided quadrilaterals are used instead of square elements) and that
the order of convergence is also still given as in (5.53) with curved element sides and when
the noncorner nodes are not placed at their natural positions provided these distortions are
small, measured on the size of the element. For the element in Fig. 5.16 the distortions must
be o(h?). The element distortions due to curved sides and due to interior nodes not placed
at their natural positions must therefore be small, and in the refinement process the distor-
tions must decrease much faster than the element size. The order of convergence in (5.53)
is reached directly when the exact solution u is smooth, whereas when the exact solution is
nonsmooth, mesh grading is necessary (to fulfill the requirement that the density of solution
error be (almost) constant over the solution domain). We present some solutions to illustrate
a few of these results in Section 5.5.5 (see Fig. 5.39).°

Of course, the actual accuracy attained with a given mesh is also determined by the
constant ¢ in (5.53). This constant depends on the specific elements used (all with the
complete polynomial of degree k) and also on the geometric distortions of the elements. We
should note that if the constant is large, the order of convergence may be of little interest
because the h* term may decrease the error sufficiently only at very small values of A.

These remarks pertain to the order of convergence reached when element sizes are
small. However, interesting observations also pertain to a study of the predictive capability
of elements when the element sizes are large. Namely, element geometric distortions can
affect the general predictive capabilities to a significant degree.

4 In addition, we can also define a sequence of meshes that is guasi-uniform. In such sequence we also have,
in addition to the regularity condition that the ratio of the maximum #,, encountered in the mesh over the minimum
hn encountered in that same mesh remains for all meshes below a reasonable positive number. Hence, whereas
regularity allows that the ratio of element sizes becomes any value, quasi-uniformity restricts the relative sizes that
are permitted. Therefore, the error measure in (4.101¢) is also valid when a quasi-uniform sequence of meshes is
used.

>These solutions are given in Section 5.5.5 because the element matrices of the distorted elements are
evaluated using numerical integration and the effect of the numerical integration error must also be considered.
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Figure 5.17 Example demonstrating effect of element distortions on predictive capability of

elements

As an example to demonstrate a possible loss of predictive capability when an isopara-
metric element is geometrically distorted, consider the results given in Fig. 5.17. The single
undistorted eight-node element gives the exact (beam theory) solution for the beam bending
problem. However, when two elements of distorted shape are used, significant solution
errors are obtained. On the other hand, when the same problem is analyzed with nine-node
elements, the mesh of two distorted elements gives the correct result.

This example shows that in coarse meshes the stress predictive capability of certain
elements can be significantly affected by element geometric distortions. Since, in practice,
frequently rather coarse meshes are used and complete convergence studies are not per-
formed, surely it is preferable to use those elements that are least sensitive to element

geometric distortions.
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On studying the cause of loss of predictive capability, we find that this effect is due to
the elements no longer being able to represent the same order of polynomials in the physical
coordinates x, y, z after the geometric distortion as they did without the distortion. For
example, the general quadrilateral nine-node element, shown in Fig. 5.16(d), is able to
represent the x?, xy, y* displacement variations exactly, whereas the corresponding eight-
node quadrilateral element is not able to do so. Hence, the general quadrilateral eight-node
element does not contain the quadratic terms in the Pascal triangle of the physical coordi-
nates.

This observation explains the results in Fig. 5.17, and an investigation into this
phenomenon for widely used elements and common distortions is of general interest. In
such a study, we can measure the loss of predictive capability by identifying which terms in
the physical coordinates of the Pascal triangle can no longer be represented exactly, (see
N. S. Lee and K. J. Bathe [A]).

Let us consider the two-dimensional element in Fig. 5.16 as an example. For elements
with undistorted configurations or with aspect ratio distortions only, the physical coordi-
nates x, y are linearly related to the isoparametric coordinates r, s; i.e., we have x = ¢r,
y = cas, where ¢, and c; are constants. Hence, the Pascal triangle terms in physical coordi-
nates are simply the r, s terms obtained from the interpolation functions A replaced by x
and y, respectively.

The effects of the parallelogram, general angular, and curved edge distortions shown
in Figs. 5.16(c) to () can be studied by establishing the physical coordinate variations for
these specific cases with the coordinate interpolations (5.18) and then asking what polyno-
mial terms in x and y are contained in the r, s polynomial terms of the displacement
variations given in (5.19) (see Example 5.21).

Table 5.1 summarizes the results obtained in such a study for two-dimensional quadri-
lateral elements (see N. S. Lee and K. J. Bathe [A]). The first column in Table 5.1 gives the
terms in the Pascal triangle when the element is undistorted or is subjected to an aspect ratio
or parallelogram distortion only. The terms below the dashed line are present only when the
element is undistorted, or subjected only to an aspect ratio distortion, and also unrotated.
Table 5.1 in particular shows that a general angular distortion significantly affects the
predictive capability of 8- and 12-node elements; i.e., with such distortions the elements can
represent only linear displacement variations in x and y exactly, whereas the 9- and 16-node
elements can in distorted form still represent the parabolic and cubic displacement fields
exactly.

On the other hand, curved edge distortions reduce the order of displacement polyno-
mials that can be represented exactly for all the elements considered in Table 5.1, and
indeed with such distortions only the biquartic 25-node element can still represent the
parabolic displacement field exactly.

While the information given in Table 5.1 shows clearly that the Lagrangian elements
are preferable to the 8- and 12-node elements in terms of predictive capability, of course,
we also need to recall that the Lagrangian elements are computationally slightly more
expensive, and for fine meshes the order of convergence is identical [although the constant
c in (5.53) is different].

We demonstrate the procedure of analysis to obtain the information given in Table 5.1
in the following example.
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TABLE 5.1 Polynomial displacement fields in physical coordinates that can be solved exactly by
various elements in their undistorted and distorted configurations?

Fields for undistorted
configuration, aspect ratio
and/or parallelogram

- - ih Etc_)rf.lo_ni ———— Quadratic
Type of Additional fields if also Angular curved-edge
element unrotated distortion distortion
1 1 1
8-node Xy Xy x 'y
element x2 xy y?
x%y xy?
1 1 1
Xy Xy Xy
12-node x2 xy y?
element x3 x%y xy* y?
xy oz’
1 1 1
9-node Xy Xy Xy
Lagrangian x* xy y? x* xy y?
element . T T
x%y xy
xy?
1 1 1
Xy Xy Xy
16-node x2 xy y? x2 xy y?
Lagrangian x* x%y xy* y? x> x?y xy* y?
element T T . T Ty
xy xy* xy
x3y2  x2y3
x3y?
1 1 1
Xy Xy Xy
x> xy y? x* xy y? x? xy y?
25-node x3 x%y xy* y? x3 x%y xy* y?
Lagrangian x* xdy xly? xyd oyt x* xdy x?y? xyd oy

4 3,,2 24,3 4
x%y x*y? x%y? xy
x4y2 x3y3 x2y4
x4y3 x3y4
x4y4

element

' Two-dimensional quadrilateral elements are considered.

EXAMPLE 5.21: Consider the general angularly distorted eight-node element in Fig. E5.21.
Evaluate the Pascal triangle terms in x, y for this element.

The physical coordinate variations are obtained by using the interpolation functions in
Fig. 5.4, which give for this element with its midside nodes placed halfway between the corner
nodes, x =y + %r + Y5 + Yars (a)

y = 6 + &ir + 85 + burs (b)
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y
t r
Figure ES.21 Eight-node isoparametric
X element, with angular distortion
with y, ..., ysand &, . . . , 65 constants. We use (a) and (b) to identify which x and y terms

are contained in the displacement interpolations

(©)
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where the h; are again those in Fig. 5.4.

Consider the u-displacement interpolation. The constant and x and y terms in (a) and (b)
are clearly contained in (c) because (c) interpolates u in terms of the functions (1, r, s, r?, rs, 5%
r2s, rs*) multiplied by constants. We discussed this fact earlier when considering the require-
ments for convergence.

However, if we next consider the term x? we notice that the term r?s? [obtained by
squaring the right-hand side of (a)] is not present in (c). Similarly, the terms xy, y?, x%y, and xy?
are not present in the displacement interpolation (c).

The analysis for the v-displacement interpolation is of course identical. Hence, when an
eight-node isoparametric element is subjected to a general angular distortion, the predictive
capability is diminished in that quadratic displacement variations in x and y can no longer be
represented exactly (see Table 5.1).

This analysis also shows that the quadratic displacement variations in x and y are retained
when the nine-node displacement-based element is subjected to the same angular distortions.
These conclusions explain the results shown in Fig. 5.16.

5.3.4 Element Matrices in Global Coordinate System

So far we have considered the calculation of isoparametric element matrices that corre-
spond to local element degrees of freedom. In the evaluation we used local element coordi-
nates x, y, and z, whichever were applicable, and local element degrees of freedom w;, v;, and
w;. However, we may note that for the two-dimensional element considered in Examples 5.5
to 5.7 the element matrices could have been evaluated using the global coordinate variables
X and ¥, and the global nodal point displacements U; and V;. Indeed, in the calculations
presented, the x and y local coordinates and u and v local displacement components simply
needed to be replaced by the X and Y global coordinates and U and V global displacement
components, respectively. In such cases the matrices then would correspond directly to the
global displacement components.

In general, the calculation of the element matrices should be carried out in the global
coordinate system, using global displacement components if the number of natural coordi-
nate variables is equal to the number of global variables. Typical examples are two-
dimensional elements defined in a global plane and the three-dimensional element in
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Fig. 5.5. In these cases the Jacobian operator in (5.24) is a square matrix, which can be
inverted as required in (5.25), and the element matrices correspond directly to the global
displacement components.

In cases where the order of the global coordinate system is higher than the order of the
natural coordinate system, 1t is usually most expedient to calculate first the element matrices
in the local coordinate system and corresponding to local displacement components. After-
ward, the matrices must be transformed in the usual manner to the global displacement
system. Examples are the truss element or the plane stress element when they are oriented
arbitrarily in three-dimensional space. However, alternatively, we may include the transfor-
mation to the global displacement components directly in the formulation. This 1s accom-
plished by introducing a transformation that expresses in the displacement interpolation the
local nodal point displacements in terms of the global components.

EXAMPLE 5.22: Evaluate the element stiffness matrix of the truss element in Fig. E5.22 using
directly global nodal point displacements.

Y, Vi
Yy bommmmm e e e
i Node 2
|
J
|
:
a |
Y. L ———————— ]
1 Node 1 {\g/ E
| f
! !
' Young's modulus £ !
|
{ Y Cross section A E
| i o
Xy X2 X U

Figure ES5.22 Truss element in global coordinate system

The stiffness matrix of the element is given in (5.27); ie.,
K = f B'CB dV
Vv

where B is the strain-displacement matrix and C is the stress-strain matrix. For the truss element
considered we have

10 -nU +3(1 + r)Uz]

u = [cos a@ sin a]L‘-(l B R

Then, using € = du/ox, expressed in the natural coordinate system as € = (2/L) ou/dr (see
Section 5.2), we can write the strain-displacement transformation corresponding to the displace-
ment vector UT = (U, vV, U, V,]as

p— —

1 , , -1 zeros
B = z[cos a sina cosa sin ]
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Also, as given in Section 5.2, we have

dV=é£l-'dr and C=E

Substituting the relations for B, C, and 4V and evaluating the integral, we obtain

cos? a cos a sin a —cos? a —cos a sin a
K = AE | sin a cos a sin® —sin a cos a —sin’ «
T L —cos? a —cos a sin a cos? o cos a sin a
—sin a cos a —sin’ a sin & cos sin @

5.3.5 Displacement/Pressure Based Elements
for Incompressible Media

We discussed in Section 4.4.3 the fact that pure displacement-based elements are not
effective for the analysis of incompressible (or almost incompressible) media and introduced
two displacement/pressure formulations. In the u/p formulation, the pressure is interpo-
lated individually for each element and can (in the almost incompressible case) be statically
condensed out prior to the element matrix assemblage, whereas in the u/p-c¢ formulation
the element pressures are defined by nodal variables which, as for the displacements, pertain
to adjacent elements. Various effective elements of these formulations were given (see
Tables 4.6 and 4.7) and discussed (see Section 4.5).

As for the pure displacement-based elements, we assumed in Chapter 4 that the
displacement and pressure interpolation matrices are constructed using the generalized
coordinate approach. However, it is now apparent that these matrices can be obtained
directly using the isoparametric formulation.

In the u/p formulation, we use the same coordinate and displacement interpolations
for an element as in the pure displacement formulation [see (5.18) and (5.19)], and we
interpolate the pressure using

p=po+ pr+ ps+pst+--. (5.54)

where py, p1, P2, P3, - - - are the pressure parameters to be calculated and r, s, and ¢ are the
isoparametric coordinates. Of course, as an alternative, we could also interpolate the
pressure using

P=Ppot phx+ paytpszt .-

where x, y, and z are the usual Cartesian coordinates.
In the u/p-c formulation we also use the displacement and coordinate interpolations
as in the pure displacement formulation, and

p
i=1
where the A, i = 1, . . ., g, are the nodal point pressure interpolation functions and the p;

are the unknown nodal pressures. We note that the A; are different from the h; which are
used for the displacement and coordinate interpolations. For example, for the 9/4-c two-
dimensional element, the displacement and coordinate interpolations are the functions
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corresponding to the nine element nodes in Table 5.4, whereas the h; are the functions
corresponding to the four element corner nodes.

In practice, the isoparametric formulation of the u/p and u/p-c elements is effective
because the generality of nonrectangular and curved elements is then also available (see
Fig. 4.21 and T. Sussman and K. J. Bathe [A, B)).

5.3.6 Exercises

5.1. Use the procedure in Example 5.1 to prove that the functions in Fig. 5.3 for the four-node truss
element are correct.

5.2. Use the procedure in Example 5.1 to prove that the functions in Fig. 5.4 for the two-dimensional
element are correct.

5.3. Use the functions in Fig. 5.4 to construct the interpolation functions of the six-node element
shown. Plot the interpolation functions in an oblique/aerial view (as in Example 5.4).

5]

2 5 1

—t—1
et | r

: B!

3 4

5.4. Prove that the construction of the interpolation functions in Fig. 5.5 gives the correct functions
for the three-dimensional element.

5.5. Determine the interpolation function A; for the element shown for use in a compatible finite
element mesh.

2 61585 1
¢—o——o——9

2

47 13

2

13

$8

2

. 4 3
3 4

5.6. In the computation of isoparametric element matrices, the integration is performed over the
natural coordinates r, s, ¢, which requires the transformation (5.28). Derive this transformation
using the elementary volume dV = (r dr) X (s ds) + (t dt) shown.
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r, scor\lstant t, rconstant

dV=(rdr)x(sds)+(tdt) S fconstant

Here the vectors r, s, t are given by

[ dx | [9x “y_
ar s ot
dy dy dy

== =]~ ft =|—

"7 1% > %5 ot
2% i 2%
x4 | ds | | dt |

6

6 4
———~ 6"
¢ ®
4
v A 30° 4 30°
¢ ¢
Element 1 Element 2 Element 3
x

Show explicitly that the Jacobian matrices of elements 2 and 3 contain a rotation matrix
representing a 30-degree rotation.

5.8. Calculate the Jacobian matrix of the element shown for all r, s. Identify the values of r, s for
which the Jacobian matrix is singular.

y A 1

(6, 4) -
2

(3, 2) (9, 2) 36 ¢4

xY
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5.9. Evaluate the Jacobian matrices J for the following four-node elements.

5.10.

5.11.

vi "1 1+ 538,203
2 2
(8, 6)
(3, 5) 5v3 9
(3 + —2"—- ’ i‘)
30°
(3, 2) —& (8, 2) (3, 2)
Element 1 Element 2
-
X X

Show how the Jacobian matrix J of element 2 can be obtained by applying a rotation
matrix to the Jacobian matrix J of element 1. Give this rotation matrix.

Consider the isoparametric elements given by
(a) Case 1:

8
X = Eh,-x;; X3 =12, x, =4, x3 =4, x4 = 12, xs =9, x6 = 5, x7 = 8§, xzg = 11
i=1

8
y = Ehey.-; Y1 = 12,)’2: 8, y3 = 2,)?4= 2,ys = 8,y = 5,)’7: Ly =17
i=1
(b) Case 2:

6
X = Eh?-xi; X1=8,x=2,x3=1Lx=9,xs =35,x =35

=1
6
y=2hfy: »=10,%=8y:=3, =1,y =9,y = 2

i=1

Draw the elements accurately on graph paper and show the physical locations of the lines r = 3,
1

r = —gz

i,5 = 3,and s = — 3 for each case. (You may also write a small program to perform this
task.)

Consider the isoparametric finite elements shown. Sketch the following for each element.
(8) The lines, s as the variable and constant » = —%, —1, 0,1, %.

(b) The lines, r as the variable and constant s = —%, —4,0, {, 4.

(¢) The determinant of the Jacobian over element 1 (in an oblique aerial view).

y A 2 \
Vi
t 1
- (6, 6)
2
(3, 4 (7.9
(5, 3) 2
3 4 3 4
(2,2) (4,2 (2, 2) (6, 2)
Element 1 Element 2
o= P
X X
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5.12. Prove that for any parallelogram-shaped isoparametric element the Jacobian determinant is
constant. Also, prove that the Jacobian determinant always varies with  and/or s whenever the
element is not square, rectangular, or parallelogram-shaped.

5.13. Consider the isoparametric element shown. Calculate the coordinates x,. y of any point in the
element as a function of r, s and establish the Jacobian matrix.

y &
*s
21 1
T— ¢ ?5 . 4
05 |
i9
| T Rt
i
1¢ b X
1I 7
Y | ——
3 ' | 4 %
2 2

5.14. Calculate the nodal point forces corresponding to the surface loading on the axisymmetric
element shown (consider 1 radian).

p
T
¢
13
3
4 N1 4.
e - 2p
2 2
X

5.15. Consider the five-node plane strain isoparametric element shown.
(a) Evaluate appropriate interpolation functions 4;, i = 1 to 5.
(b) Evaluate the column in the strain-displacement matrix corresponding to the displacement i,
at the point x = 2.5,y = 2.5.

y A
4.0
3.0

25 }
20 t

I
|
1.0 1';
|
|

x Y

1.0 2.5 4.0
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5.16. Consider the isoparametric axisymmetric two-dimensional finite element shown.
(a8) Construct the Jacobian matrix J.
(b) Give an analytical expression of the column in the strain-displacement matrix B(r, s) that
corresponds to the displacement ;.

Axis of
revolution
Y A Uy
1
(5, b)
I e
e 3 \/ x
4
I
- 7 - 3-3

5.17. The eight-node isoparametric element shown has all its nodal point displacements constrained to
zero except for u,. The element is subjected to a concentrated load P into u,.
(a8) Calculate and sketch the displacements corresponding to P.
(b) Sketch all element stresses corresponding to the deformed configuration. Use an
oblique/aerial view for your sketches.

s
® ?—P- e
? u P
21 ¢ '
y f r
® °® —
B o
4
-
X Plane stress condition

(unit thickness)
Poisson's ratiov = (0.25
Young's modulus E

5.18. The eight-node element assemblage shown is used in a finite element analysis. Calculate the

diagonal elements of the stiffness matrix and consistent mass matrix corresponding to the degree
of freedom U,.

- *— -
- °- ® ”
o
U
100 All elements of equal size
—* ¢ ¢ Young's modulus E
Poisson's ratiov =0.3
o ®

Plane stress analysis, thickness = 0.5
Mass density p
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5.19. The problem in Example 5.13 is modeled by two five-node plane stress elements and one
three-node bar element:

. P
=mp— Same data as in Example 5.13

(a) Establish in detail all matrices used in the formulation of the governing equilibrium equa-
tions but do not perform any integrations.

(b) Assume that you have evaluated the unknown nodal point displacements. Present graphi-
cally in an oblique/aerial view all displacements and stresses in the elements.

5.20. The 20-node brick element shown is loaded by a concentrated load at the location indicated.
Calculate the consistent nodal point loads.

10

All dimensions in
centimeters

5.21. The element in Exercise 5.20 is to be used in dynamic analysis. Construct a reasonable lumped
mass matrix of the element; use p = 7.8 X 1073 kg/cm’.

5.22. The 12-node three-dimensional element shown is loaded with the pressure loading indicated.
Calculate the nodal point consistent load vector for nodes 1, 2, 7, and 8.



Sec. 5.3 Formulation of Continuum Elements 395

6 cm

y 9 10

Pressure loading varies linearly
with y and is constant in x

5.23. Evaluate the Jacobian matrix J of the following element as a function of r, s and plot det J “over”
the element (in our oblique/aerial view).

3/2 1/2
2 5 1 : 1
—e
|G 1 12 o
1 8 1/2
8
6¢
3/2
1| dy 32
X
—- o
3 7 4 4
b

5.24. Plot, for node 9, the displacement interpolation functions and their x-derivatives for the nine-node
element and the assemblage of two six-node triangles (formed using the interpolation functions

in Fig. 5.11).
i ¢ ®
4 ] 9
y A & °-
e o e o
4 4
X

5.25. Prove that the interpolation functions in (5.36), with A/ defined in (5.37), define the same

displacement assumptions as the functions in Fig. 5.11 (note that the origins of the coordinates
used in the two formulations are different).
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5.26. Collapse a 20-node brick element into a spatially isotropic 10-node tetrahedron (use the collaps-
ing of sides in Fig. ES5.16). Determine the correction that must be applied to the interpolation
function h;¢ of the brick element in order to obtain the displacement assumption ss of the
tetrahedron (given in Fig. 5.13).

5.27. Consider the six-node isoparametric plane strain finite element shown.

x Y

(a8) Construct the interpolation functions, h{r, s), i = 1, ..., 6, of the element.
(b) Prove in detail that this finite element does (or does not) satisfy all convergence requirements
when used in a compatible finite element assemblage.

5.28. Consider a general isoparametric four-node element used in an assemblage of elements as shown.

R

k

Either plene strein or plene stress condition

(a) Prove that the nodal point forces defined as

Fm = j B(m)T.T(m) dV(M)
v(m)

are in equilibrium for element m, where 7™ = CB™U has been calculated.
(b) Show that the sum of the nodal point forces at each node is in equilibrium with the applied
external loads R, (including the reactions). (Hint: Refer to Section 4.2.1, Fig. 4.2.)

5.29. Consider Table 5.1 and the case of angular distortion. Prove that the terms listed for the 12- and
16-node elements are indeed correct.

5.30. Consider Table 5.1 and the case of curved edge distortion. Prove that the terms listed in the
column for the 8-, 9-, 12-, and 16-node elements are correct.

5.31. Consider the 4/1 isoparametric #/p element shown. Construct all matrices for the evaluation of
the stiffness matrix of the element but do not perform any integrations.
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AT

2~
1 - - 5
Plane strain 3 -
condition
| l_v
3 4
> -
4

Bulk modulus x
Shear modulus G

5.4 FORMULATION OF STRUCTURAL ELEMENTS

The concepts of geometry and displacement interpolations that have been employed in the
formulation of two- and three-dimensional continuum elements can also be employed in the
evaluation of beam, plate, and shell structural element matrices. However, whereas in the
formulation of the continuum elements the displacements u, v, w (whichever are applicable)
are interpolated in terms of nodal point displacements of the same kind, in the formulation
of structural elements, the displacements u, v, and w are interpolated in terms of midsurface
displacements and rotations. We will show that this procedure corresponds in essence to a
continuum isoparametric element formulation with displacement constraints. In addition,
there is of course the major assumption that the stress normal to the midsurface is zero. The
structural elements are for these reasons appropriately called degenerate isoparametric
elements, but frequently we still refer to them simply as isoparametric elements.

Considering the formulation of structural elements, we have already discussed briefty
in Section 4.2.3 how beam, plate, and shell elements can be formulated using the Bernoulli
beam and Kirchhoff plate theory, in which shear deformations are neglected. Using the
Kirchhoff theory it is difficult to satisfy interelement continuity on displacements and edge
rotations because the plate (or shell) rotations are calculated from the transverse displace-
ments. Furthermore, using an assemblage of flat elements to represent a shell structure, a
relatively large number of elements may be required in order to represent the shell geometry
to sufficient accuracy.

Our objective in this section is to discuss an alternative approach to formulating beam,
plate, and shell elements. The basis of this method is a theory that includes the effects of
shear deformations. In this theory the displacements and rotations of the midsurface nor-
mals are independent variables, and the interelement continuity conditions on these quan-
tities can be satisfied directly, as in the analysis of continua. In addition, if the concepts of
isoparametric interpolation are employed, the geometry of curved shell surfaces is interpo-
lated and can be represented to a high degree of accuracy. In the following sections we
discuss first the formulation of beam and axisymmetric shell elements, where we can
demonstrate in detail the basic principles used, and we then present the formulation of
general plate and shell elements.
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dw
dx Neutral
e axis

Deformation of cross section

(a) Beam deformations excluding shear effect

dw

dx 7" B
dw Neutral
dx axis

Beam section

Deformetion of cross section

(b) Beam deformations including shear effect

Elémant 2\\
/

Element 1

X

Boundary conditions between beam
elements

dw dw
w = W ; — = —
- 0 dx -0 dx o
L =—BO)%
=w(x)
Element 2 /
Element 1

X

Boundary conditions between beem
elements

ﬁ'x‘o "ﬁ'x*o

Figure 5.18 Beam deformation assumptions

Chap. 5



Sec. 5.4 Formulation of Structural Elements 399

5.4.1 Beam and Axisymmetric Shell Elements

Let us discuss first some basic assumptions pertaining to the formulation of beam elements.
The basic assumption in beam bending analysis excluding shear deformations is that a
normal to the midsurface (neutral axis) of the beam remains straight during deformation and
that its angular rotation is equal to the slope of the beam midsurface. This kinematic
assumption, illustrated in Fig. 5.18(a), corresponds to the Bernoulli beam theory and leads
to the well-known beam-bending governing differential equation in which the transverse
displacement w is the only variable (see Example 3.20). Therefore, using beam elements
formulated with this theory, displacement countinuity between elements requires that w and
dw/dx be continuous.

Considering now beam bending analysis with the effect of shear deformations, we
retain the assumption that a plane section orginally normal to the neutral axis remains
plane, but because of shear deformations this section does not remain normal to the neutral
axis. As illustrated in Fig. 5.18(b), the total rotation of the plane originally normal to the
neutral axis of the beam is given by the rotation of the tangent to the neutral axis and the
shear deformation, :

dw

B = = (5.56)

where v is a constant shearing strain across the section. This kinematic assumption corre-
sponds to Timoshenko beam theory (see S. H. Crandall, N. C. Dahl, and T. J. Lardner [A]).
Since the actual shearing stress and strain vary over the section, the shearing strain vy in
(5.56) is an equivalent constant strain on a corresponding shear area A,,

1%

-
= . =—: k== 5.57
iy Y=g (5.57)

where V is the shear force at the section being considered. Different assumptions may be
used to evaluate a reasonable factor k (see S. Timoshenko and J. N. Goodier [A] and
K. Washizu [B]). One simple procedure is to evaluate the shear correction factor using the
condition that when acting on A;, the constant shear stress in (5.57) must yield the same
shear strain energy as the actual shearing stress (evaluated from beam theory) acting on the
actual cross-sectional area A of the beam. Consider the following example.

EXAMPLE 5.23: Evaluate the shear correction factor & for a beam of rectangular cross section,
width b, and depth h.
The shear strain energy U of the beam per unit length is

_ L,
GILHJ;zGra dA (a)

where 7, is the actual shear stress, G is the shear modulus, and A is the cross-sectional area,
A = bh.

In our finite element model, by assumption, the shear strain is constant over the cross-
sectional area of the beam [see (5.56)]. Since in reality the shear strain varies over the beam cross
section, we want to find an equivalent beam cross-sectional area A; for our finite element model.
This equivalency will be based on equating shear strain energies.
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Hence using AU, given in (a), with the actual shear stress distribution, we can calculate A;

from
1, 1 (V)2
— 1.0 dA = — | — ] dA, b
L 2G " L 2G \4, (b)
where V is the total shearing force at the section,
i/-—— f T. dA ©)
A
If we use k = A,/A, we obtain from (b),
V2
k = >
Af, ©.° dA

We now use (b) and (c) for the rectangular cross-section beam. Elementary beam theory gives
(see S. H. Crandall, N. C. Dahl, and T. J. Lardner [A])

_ _3_‘_/[(11/202 = yz]
24l /2y

which gives k = 2.

The finite element formulation of a beam element with the assumption in (5.56) is
obtained using the basic virtual work expressions in (4.19) to (4.22). In the following we
consider first, for illustrative purposes, the specific formulation of the beam element ma-
trices corresponding to the simple element in Fig. 5.19, and we discuss afterward the
formulation of more general three-dimensional beam elements, and the formulation of
axisymmetric shell elements.

Two-Dimensional Straight Beam Elements

Figure 5.19 shows the two-dimensional rectangular cross-section beam considered. Using
the general expression of the principle of virtual work with the assumptions discussed above
we have (see Exercise 5.32)

L d d_ L d d_ _ L L _
EIL (d—f)(d—f) dx + GAkL (ﬁ— )(ﬁ— )dx =Lpﬁdx + L mBdx (5.58)

where p and m are the transverse and moment loadings per unit length. Using now the
interpolations

q q
w = > hw: B =2 hb, (5.59)
i=1 i=1

where g is equal to the number of nodes used and the 4; are the one-dimensional interpola-
tion functions listed in Fig. 5.3, we can directly employ the concepts of the isoparametric
formulations discussed in Section 5.3 to establish all relevant element matrices. Let

W = Hwﬁ; B = H‘gﬁ

ow . P
— = B.u; — = B;i
ox dx P

(5.60)
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(a) Beam with applied loading
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1

E = Young's modulus; G = shear modulus;

3
k=§-: = ;’:Qﬂ-—
5 A= hb 12

(b) 2-, 3-, and 4-node models; 8;=8;i=1,....,q
(Interpolation functions are given in Fig. 5.3)

where

I
3

and B.

B; = J!{0

li

i =
Hw=:h1...

where J = dx/ar; then we have for a single element,

Figure 5.19 Formulation of
two-dimensional beam element

1 1
K= Elf BB, det J dr + GAkf (B, — Hp)(B,, — Hp) det J dr
-1

=1
-1

1 ;
R=J H.ﬁpdet.]dr+Jr Him det J dr

-1 1

401
(5.61)
o
(5.62)
o
ar
(5.63)
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Also, in dynamic analysis the mass matrix can be calculated using the d’ Alembert principle
[see (4.23)]; hence,

. [ pbh 0
Hw T Hw
M = j [ ] pbh> [ ] det J dr (5.64)
qlH] | o B |lH,

In these evaluations we are using the natural coordinate system of the beam because this is
effective in the formulation of more general beam, plate, and shell elements. However,
when considering a straight beam of constant cross section, the integrals can also be
evaluated efficiently without using the natural coordinate system, as demonstrated in the
following example.

EXAMPLE 5.24: Evaluate the detailed expressions for calculation of the stiffness matrix and
the load vector of the three-node beam element shown in Fig. E5.24.

= 2L/3 —r< L/3 —>

Figure E5.24 Three-node beam element

The interpolation functions to be used are listed in Fig. 5.3. These functions are given in
terms of r and yield 5
x = 2 hix;
i=1

Using x; = 0, x; = L, x5 = L/2, we obtain

o | ™

x==(1+r

Hence, the interpolation functions in terms of x are

2x®> 3x
m=" -4
T L
2x% x
B, =2 _Z
T L
4 2
By = x_4x
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Using the notation ( )’ = 9/dx it follows that

4 3
hl=-<—=
LR
4x 1
hy == — =
T2 L
4 8x
hy =~ — —
T LL?

Hence, with the degrees of freedom ordered as in (5.61), we have

— -

0

ER® (*
KL—J [0 0 0 h{ A5 hi)dx

12 Ja

=

lu-‘ B

5Gh (*| h
+....._._

6 . —h1 [hl h, hj "'hl —h "'h3]dx

and RT=-P[-3 3 3 0 0 0]

The element 1n Fig. 5.19 1s a pure displacement-based element (assuming exact inte-
gration of all integrals) and can be employed provided three or four nodes are used (and the
interior nodes are located at the midpoint and third-points, respectively). However, if the
two-node element is employed or the interior nodes of the three- and four-node elements
are not located at the midpoint and third-points, respectively, the use of the element cannot
be recommended because the shearing deformations are not represented to sufficient accu-
racy. This deficiency is particularly pronounced when the element is thin.

In order to obtain some insight into the behavior of these elements when the beam
becomes thin, we recall that the principle of virtual work is equivalent to the stationarity
of the total potential (see Example 4.4). For the beam formulation the total potential is

given by
EI (* (/dB\? GAk (* (d 2 L L
H=—2' ((—ig) dx+—-§—- (-&L:— ) dx—J pw dx—'J' dex (5.65)

0 0 0 0

where the first two integrals represent, respectively, the bending and shearing strain energies
and the last two integrals represent the potential of the loads.
Let us consider the total potential I1

- (" [dBY Gak (* [dw 2
H_L(_&;) dx+-§7' O(E;—B) dx (5.66)
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which is obtained by neglecting the load contributions in (5.65) and dividing by 3 EI. The
relation in (5.66) shows the relative importance of the bending and shearing contributions
to the stiffness matrix of an element, where we note that the factor GAk/EI in the shearing
term can be very large when a thin element is considered. This factor can be interpreted as
a penalty number (see Section 3.4.1); i.e., we can write
L 2 L 2
1= L (j—f) dx +aL (j—:— ﬂ) dx; o =GE—7C (5.67)

where a — © as h — 0. However, this means that as the beam becomes thin, the constraint
of zero shear deformations (i.e., dw/dx = B with y = 0) will be approached.

This argument holds for the actual continuous model which is governed by the station-
arity condition of II.

Considering now the finite element representation, it is important that the finite
element displacement assumptions on 8 and w admit that for large values of a the shearing

7

M

r——0— - p—p—

n equally spaced elements

L=10m

Square cross section; height =0.1 m
2-node beam elements (full integration)
Young's modulus £

a2 A Beam theory solution
0.32°p~

-E- 0.24 - — Finite element solution
2 |
2 016 [
S I
o I
o i
a :
- 0.08 Le+—— Height of element = length of element
I
i
R | | I ] | I L
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Number of elements
A
0.3}
3
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é Finitel element solution
O 01
=
Figure 5.20 Solution of cantilever
beam problem; tip deflection as a number

10 20 30 of elements used, showing locking
Number of elements of elements
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deformations can be small throughout the domain of the element. If by virtue of the
assumptions used on w and B the shearing deformations cannot be small—and indeed
zero—everywhere, then an erroneous shear strain energy (which can be large compared
with the bending energy) is included in the analysis. This error results into much smaller
displacements than the exact values when the beam structure analyzed is thin. Hence, in
such cases, the finite element models are much too stiff.

This phenomenon is observed when the two-node beam element in Fig. 5.19 is used,
which therefore should not be employed in the analysis of thin beam structures, and the
conclusion is also applicable to the pure displacement-based low-order plate and shell
elements discussed in Section 5.4.2. The very stiff behavior exhibited by the thin elements
has been referred to as element shear locking. Figure 5.20 shows an example of locking
using the two-node displacement-based element. We study the phenomenon of shear locking
in the following example (see also Section 4.5.7).

EXAMPLE 5.25: Consider a two-node isoparametric beam element modeling a cantilever
beam that is subjected to only a moment end load (see Fig. ES.25). Determine what values of 6,
w, would be obtained assuming that the shear strain 1s zero.

’ M 1h
w14 wy
61 ” ' 82
S o
r

Figure E5.25 Two-node element representing a cantilever beam

s L =

SOUOUNNONNSNNNNDS

The interpolations for w and S, for the given data, are

1 +r
B = 5 6.
w_1+rw
5 2

Hence, the shearing strain is

__w2_1+r
L 2

&
For an applied moment only, the shearing strain is to be zero. Imposing this condition gtves

W» 1 +r

0=—i‘_ 5 0, (a)

However, for this expression to be zero all along the beam (i.e., for any value —1 = r = +1),
we clearly must have w, = 6, = (. Hence,a Zero shear strain in the beam can be reached only
when there are no deformations!
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Similarly, if we enforce (a) to hold at the two Gauss points r = *1/ V3, (i.e., if we use
two-point Gauss integration), we obtain the two equations,

L _1+UNV3 |- o e
L 2 _

L o_1= V3 0
L 7 R R

Since the coefficient matrix is nonsingular, the only solution is w., = 6, = (. This is of course
the result obtained before, because setting the linearly varying shear strain equal to zero at two
points means imposing a zero shear strain all along the element.

However, we can now also use (a) to investigate what happens when we enforce the shear
strain to be zero only at the midpoint of the beam (i. e., at r = 0). In this case, (a) gives the

relation
6
Wo ~— EL (b)
Hence, if we were to assume a constant shear strain of value
_w_ 6
L 2

a more attractive element might be obtained. We actually used this assumption in Example 4.30.

Various procedures may be proposed to modify this pure displacement-based beam
element formulation—and the formulation of pure displacement-based isoparametric plate
bending elements—in order to arrive at efficient nonlocking elements.

The key point of any such formulation is that the resulting element should be reliable
and efficient; this means in particular that the element stiffness matrix must not contain any
spurious zero energy mode and that the element should have a high predictive capability
under general geometric and loading conditions. These requirements are considerably more
easy to satisfy with beam elements than with general plate and shell elements.

An effective beam element is obtained by using a mixed interpolation of displace-
ments and transverse shear strains. This mixed interpolation is an application of the more
general procedure employed in the formulation of plate bending and shell elements (see
Section 5.4.2).

The discussion in Example 5.25 suggests that to satisfy the possibility of a zero
transverse shear strain in the element, we may assume for an element with g nodes the
interpolations (see also Example 4.30)

i

q
2 h,‘W,‘
i=1

w —_—
, (5.68)
q
8 =2 hb
i=1 )
g—1
y = 2 h¥y|3 (5.69)

[
—_

Here the h; are the displacement and section rotation interpolation functions for g nodes and
the A} are the interpolation functions for the transverse shear strains. These functions are
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associated with the (¢ — 1) discrete values |8, where y|g; is the shear strain at the Gauss
point i directly obtained from the displacement/section rotation interpolations (i.e., by
displacement interpolation); hence,

DI B ( d_w B )

G- dx

!

Y (5.70)

G

Figure 5.21 shows the shear strain interpolations used for the two-, three-, and four-node
beam elements. These mixed interpolated beam elements are very reliable in that they do
not lock, show excellent convergence behavior, and of course do not contain any spurious
zero energy mode. For the solution of the problem in Fig. 5.20 only a single element needs
to be employed to obtain the exact tip displacement and rotation. We can easily prove this
result for the two-node element by continuing the analysis presented in Example 5.25, and
the three- and four-node elements contain the interpolations of the two-node element and
must therefore also give the exact solution. Hence, there is a drastic improvement in element
behavior resulting from the use of mixed interpolation.

4

/

r

2-node element, constant y; Gy correspondsto r=0

Y
i B 1
V3 ro'3

S
4

W2
5

4-node element, parabolically varying y;

G1, Gy, and G3 correspond to r= :!:E andr=20

Figure 5.21 Shear strain interpolations for mixed interpolated beam elements
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In addition, there is an attractive computational feature: the stiffness matrices of these
elements can be evaluated efficiently by simply integrating the displacement-based model
with one-point Gauss integration for the two-node element, two-point Gauss integration for
the three-node element, and three-point Gauss integration for the four-node element.
Namely, using one-point integration in the evaluation of the two-node element stiffness
matrix, the transverse shear strain is assumed to be constant, and the contribution from the
bending deformation is still evaluated exactly. A similar argument holds for the three- and
four-node elements. This computational approach to evaluating the stiffness matrices of the
elements may be called “reduced integration” of the displacement-based element but in fact
is actually full integration of the mixed interpolated element. A mathematical analysis of the
elements is presented in Section 4.5.7.

General Curved Beam Elements

In the preceding discussion we assumed that the elements considered were straight; hence
the formulation was based on equation (5.58). To arrive at a general three-dimensional
curved beam element formulation, we proceed in a similar way but now need to interpolate
the curved geometry and corresponding beam displacements. With these interpolations a
pure displacement-based element is derived that, as for the straight elements, is very stiff
and not useful. In the case of straight beam elements only spurious shear strains are
generated (always for the two-node element, and for the three- and four-node elements
when the interior nodes are not at their natural positions; see Exercise 5.34), but for curved
elements also spurious membrane strains are obtained. Hence, a curved element also
displays membrane lacking (see, for example, H. Stolarski and T. Belytschko [A]).

Efficient general beam elements are obtained by the mixed interpolation already
introduced. However, now, in the case of general three-dimensional action, the transverse
shear strains and the bending and membrane strains are interpolated using the functions in
Fig. 5.21. These strain interpolations are tied to the nodal point displacements and rota-
tions by evaluating the displacement-based strains and equating them to the assumed strains
at the Gauss integration points.

It follows that the mixed interpolated element stiffness matrices can be numerically
obtained by evaluating the displacement-based element matrices with Gauss point integra-
tion at the points given in Fig. 5.21.

Consider the three-dimensional beam of rectangular cross section in Fig. 5.22, and let
us assume first that an accurate representation of the torsional rigidity is not required.

The basic kinematic assumption in the formulation of the element is the same as that
employed in the formulation of the two-dimensional element in Fig. 5.19: namely that plane
sections originally normal to the centerline axis remain plane and undistorted under defor-
mation but not necessarily normal to this axis. This kinematic assumption does not allow
for warping effects in torsion (which we can introduce by additional displacement functions;
see Exercise 5.37).

Using the natural coordinates r, s, ¢, the Cartesian coordinates of a point in the element
with g nodal points are then, before and after deformations,

q
24 by “VE;

q q
"x(r, s, t) = 2 hie ‘xp + 2 achy ¢V +
k=1 k=1

+ 1 s
2 2
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Vectors V], Ov! are normal to

the neutral axis of the beam
{(and normal to each other)

Figure §.22 Three-dimensional beam element

o o o
Y(r, 5, D) = 2 by + = 2 auh TV + = 2 bk CVA, (5.71)
k=1 k=1 k=1

N |~
SYR

q q q
t
TR FRNES SRS Jo

where the h.(r) are the interpolation functions summarized in Fig. 5.3 and
tx, ¢y, ¢z = Cartesian cordinates of any point in the element
*Xe» “yi, *zo = Cartesian coordinates of nodal point k

ax, bx = cross-sectional dimensions of the beam at nodal point &

£ €y/k £
V’t‘x » VI ¥ sz

components of unit vector ¢V ¥ in direction ¢ at nodal point k

tVE, EVE, fVE, = components of unit vector V¥ in direction s at nodal point k; we call ¢V
and “V ¢ the normal vectors or director vectors at nodal point k,

and the left superscript £ denotes the configuration of the element; i.e., £ = 0 denotes the

original configuration, whereas £ = 1 corresponds to the configuration in the deformed
position.
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We assume here that the vectors °V%, °V¥ are normal to the neutral axis of the beam and
are, normal to each other. However, this condition can be relaxed, as is done in the shell

element formulation (see Section 5.4.2).
The displacement components at any point of the element are

u(r,s, t) ='x — %
o(r,s, t) ='y =% (5.72)
wir, s, 1) ="z =%

and substituting from (5.71), we obtain

q q q
u(r, S, t) = 2 oy, + 2 akhk > + 2 bkhk x
k=1 k=1

N|"‘*
(SYE
N"

q t q q
o(r, 5, 1) = 2 s + 3 > ahV % > by VA, (5.73)
kw1 k=1 k=1
q t q s q
W(r, S, t) = 2 thk - 2 akhk - 2 bkhk Vsz
k=1 2 k=1 2 k=1
where Vi = 1yF - OVE; Vi = Iyr — oyt (5.74)

Finally, we express the vectors V§ and Vs in terms of rotations about the Cartesian
axes X, y, 2

Vf=0kX°Vf

(5.75)
Vi = 0 X V¢
where 0, is a vector listing the nodal point rotations at nodal point k (see Fig. 5.22):
re
0, = 9; (5-76)
6:

Using (5.71) to (5.76), we have all the basic equations necessary to establish the
displacement and strain interpolation matrices employed in evaluating the beam element
matrices.

The terms in the displacement interpolation matrix H are obtained by substituting
(5.75) into (5.73). To evaluate the strain-displacement matrix, we recognize that for the
beam the only strain components of interest are the longitudinal strain e, and transverse
shear strains vy, and Yy, Where 7, &, and { are convected (body-attached) coordinates axes
(see Fig. 5.22). Thus, we seek a relation of the form

€
Yot | = 2 Bilk (5.7
k=1
_Yne_
where 0f = [u v wie 6% 6% 6¢] (5.78)
and the matrices B, k = 1, .. ., g, together constitute the matrix B,

=[B: ... B (5.79)
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Following the usual procedure of isoparametric finite element formulation, we have,
using (3.73),

%E M @n @5 @s|[™
r ar o~
a X
3‘;‘. =2\ D @F @ @M)], (5.80)
% e [0 @ @)% @] 6
| dt | i JL |

and the derivatives of v and w are obtained by simply substituting v and w for u. In (5.80)
we have i = 1 for u, i = 2 for v, and i = 3 for w, and we employ the notation

) L e 2 %
@ =5 Vi 0 -V (5.81)
L___Ov?y Ovir 0 -

T o —Oyk Oy
(B) = 5" 0k 0 —OV% (5.82)
—ovy Oyk 0
(8)% = s(®F + (@)% (5.83)

To obtain the displacement derivatives corresponding to the coordinate axes x, y, and
z, we employ the Jacobian transformation

o o

Foial (5.84)

where the Jacobian matrix J contains the derivatives of the coordinates x, y, and z with
respect to the natural coordinates r, s, and ¢. Substituting from (5.80) into (5.84), we obtain

o i o
d doh

du = (e ) R (e7) R (o) ol |

ax ar o~

Ju oh ’

= =21 = 61y (G2 (G (5.85)
ayl k=1 ar 6«

d oh ’

o i — (GDs (G2)s (G3)s

| 9z | or LY

and again, the derivatives of v and w are obtained by simply substituting v and w for «. In
(5.85) we employ the notation

o

(Gmh = [ (@415

+ [J2 (@)% + T (8) kA (5.86)
Using the displacement derivatives in (5.85), we can now calculate the elements of the
strain-displacement matrix at the element Gauss point by establishing the strain compo-
nents corresponding to the x, y, z axes and transforming these components to the local

The corresponding stress-strain law to be employed in the formulation is (using k as
the shear correction factor)
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TABLE 5.2 Performance of isoparametric beam elements in the analysis of the problem in

Fig. 5.23
(@) Okinite clement/Ganatyrical @t tip of beam, one three-node element solution

Midnode at a = 22.5° Midnode at a = 20°
h/R Displacement-based Mixed interpolated Displacement-based Mixed interpolated
0.50 0.92 1.00 091 1.00
0.10 0.31 1.00 0.31 1.00
0.01 0.004 1.00 0.005 1.00
0.001 0.00004 1.00 0.00005 1.00

(b) Ohinite clement/Ganatyricat Gt tip of beam, one four-node element solution

Internal nodes at a; = 15° a; = 30° Internal nodes at aq = 10°, a, = 25°
h/R Displacement-based Mixed interpolated Displacement-based Mixed interpolated
0.50 1.00 1.00 0.97 0.997
0.10 0.999 1.00 0.70 0.997
0.01 0.998 1.00 0.37 0.997
0.001 0.998 1.00 0.37 0.997
Tom E 0 0 || €
Tt | = 0 Gk 0 Yne (587)
_"l'-,,;_I _0 0 Gk_. _‘Y-qu

The stiffness matrix of the element is then obtained by numerical integration, using
for the r-integration the Gauss points shown in Fig. 5.21 and for the s- and ¢-integrations
either the Newton-Cotes or Gauss formulas (see Section 5.5).

Table 5.2 illustrates the performance of the mixed interpolated elements in the anal-
ysis of the curved cantilever in Fig. 5.23 and shows the efficiency of the elements.

As pointed out already, this element does not include warping effects, which can be
significant for the rectangular cross-sectional beam elements and of course for beam ele-

/

45°

Figure 5.23 Curved cantilever problem
to test isoparametric beam elements
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ments of general cross sections. Warping displacements can be introduced by adding
appropriate displacement interpolations to those given in (5.73). If additional degrees of
freedom are also introduced, corresponding to the warping deformations, continuity of
warping between elements can be imposed. However, it may be sufficient to allow for “free”
warping in each element without enforcing continuity of warping between elements. This is
achieved by adding warping deformations to the displacement interpolations and then
statically condensing out the intensity of these deformations (see K. J. Bathe and
A. B. Chaudhary [A] and Exercise 5.37).

In another application of the general curved beam formulation, the cross section is
circular and hollow, that is, a pipe cross section is considered. In this case, ovalization and
warping deformations can be important when the element is curved, and once again the
displacement interpolations given in (5.73) must be amended. In this case it is important
to impose continuity in the ovalization and warping deformations, and for this reason
additional nodal degrees of freedom must be introduced (see K. J. Bathe and C. A. Almeida
[A]).

Considering the basic formulation in (5.71) to (5.87), we recognize that the element
can be arbitrarily curved and that the cross-sectional dimensions can change along its axis.
The beam width and height and the location of the element axis are interpolated along the
cléement. In the given formulation, the axis of the element coincides with the element
geometric midline, but this is not necessary, and more general elements can be formulated
directly (see Exercise 5.38).

In addition to representing a general formulation for linear analysis, this approach is
particularly useful for the nonlinear large displacement analysis of beam structures. As
discussed in Section 6.5.1, in such analyses initially straight beam elements become curved
and distorted, and these deformations can be modeled accurately.

Of course, if linear analysis is pursued and the element is straight and has a constant
cross-sectional area, the formulation reduces to the formulation given in (5.56) to (5.70).
We illustrate this point in the following example.

EXAMPLE 5.26: Show that the application of the general formulation in (5.71) to (5.87) to
the beam element in Fig. E5.24 reduces to the use of (5.58).

For the application of the general relations in (5.71) to (5.87), we refer to Figs. E5.24 and
5.22 and thus have

07 0]
Ve=|[1]; V=[O0, a=1 b=h k=123
_0_ L.l_.

Hence, the relations in (5.71) reduce to

Ox = 2 he °x;
k=1
0 =§"h
y=3
t
0, = -
¢T3
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We next evaluate (5.75) to obtain (see Section 2.4)

e. e e |
VE=det | 8¢ 6 6
0 0 1
or Vi = Gte, — ke, (a)
(e, e e |
and VE=det| ¢ 6 6
0 1 0
or V¢ = —6e, + Oe, (b)

The relations in (a) and (b) correspond to the three-dimensional action of the beam. We
allow rotations only about the z-axis, in which case

Vi =0, Vi = —~6e,

Furthermore, we assume that the nodal points can displace only in the y direction. Hence, (5.73)
yields the displacement assumptions

u(r,s) = —% > hi 0% ©)

o(r) = E_: [T d)

where we note that u« is only a function of r, s and v is only a function of r. These relations are
identical to the displacement assumptions used before, but with the more conventional beam
displacement notation we identified the transverse displacement and section rotation at a nodal
point with w, and 6, instead of v, and 6.

Now using (5.80), we obtain

— - ——

[ du sh dh,
b , |—-==
or 2 dr

= g
E k=1 —ﬁh

| 05 | i 2 « _

90 | -
el I

= E ar Uk
@ =1l g
_as_ - =

These relations could also be directly obtained by differentiating the displacements in (c)
and (d). Since

QN b~
o M

=N CD_I

N> ©
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[ du |
ax
EE
El | -
a0

ox

22

| 9y_ ) )

To analyze the response of the beam in Fig ES.24 we now use the principle of virtual work [see
(4.7)] with the appropriate strain measures:

Il
M
|
o |
b~
T
3|
<
ool

we obtain 0; ()

=~
Il
—

I
MM
[~
QL
~

and Uy (f)

=~
Il
—

+1 p+1 E 0 €
€ s | detJdsdr = —PF|,-
f—l f—l [E 'Y)’]I:O Gk:ll:'ny:I J > ar vl /3 (g)
ou ou
he x T o _xx = -
WIEre € Ix €. I
YT % T ax Y " T ax

Considering the relations in (e), (f), (g), and (5.58), we recognize that (g) corresponds to
(5.58)if weuse B =60,,and w = v.

Transition Elements

In the preceding discussions, we considered continuum elements and beam elements sepa-
rately. However, the very close relationship between these elements should be recognized;
the only differences are the kinematic assumption that plane sections initially normal to the
neutral axis remain plane and the stress assumption that stresses normal to the neutral axis
are zero. In the beam formulation presented, the kinematic assumption was incorporated
directly in the basic geometry and displacement interpolations and the stress assumption
was used in the stress-strain law. Since these two assumptions are the only two basic
differences between the beam and continuum elements, it is apparent that the structural
element matrices can also be derived from the continuum element matrices by degenera-
tion. Furthermore, elements can be devised that act as transition elements between contin-
uum and structural elements. Consider the following example.

EXAMPLE 5.27: Assume that the strain-displacement matrix of a four-node plane stress
element has been derived. Show how the strain-displacement matrix of a two-node beam element
can be constructed.

Figure E5.27 shows the plane stress element with its degrees of freedom and the beam
element for which we want to establish the strain-displacement matrix. Consider node 2 of the
beam element and nodes 2 and 3 of the plane stress element. The entries in the strain-
displacement matrix of the plane stress element are
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{(a) Plane stress element
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(b) Beam element

Figure ES.27 Derivation of beam element from plane stress element

uX of u¥ o¥
S ! o b
E —i(l+s) 0 i —i(l—s) 0 E
B* = E 0 1 (1 ) E 0 : | :
B i 2 i 2t( ") i @
v 1 1 l 1 1 :
o —(1 = -—(1+  ——(1 — -—(1 - |
Bt AU B e B U I
Using now the beam deformation assumptions, we have the following kinematic con-
straints:
t
u’{ = i — "‘2"92
t
uf = w, + -2-02 (b)
07 = 0g; v = 02

These constraints are¢ now substituted to obtain from the elements of B* in (2) the elements of
the strain-displacement matrix of the beam. Using the rows of B*, we have with (b),

|

1 1 t
2L(1 + s)ul 2L(1 s)u3 2L( S)(uz 201)

- ﬁ(l - S)(uz + %01) ©
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1 1 1 1
—(1 — % _ (1 _  — (1 — — (1 -
2t( ")‘Uz 2t(1 ")‘Ua 2t(1 ")‘Uz 2t(1 ")‘Uz (d)

1 1 1 1
E(l — ru¥ — E(l + oy — 5;(1 — ruy — E(l — sjv¥

1 1 1 1
= (1 - ,’)(“2 - %92) — 571+ 902 — 51 = ?')(uz + %92) - E(l — s (o)

The relations on the right-hand side of (c) to (¢) comprise the entries of the beam strain-
displacement matrix

L2 6,
|
A

2L°
0

O O MNl— «— &

|
0
0
1
L

- =30 -

— p—

However, the first- and third-row entries are those that are also obtained using the beam
formulation of (5.71) to (5.86). We should note that the zeros in the second row of B only express
the fact that the strain €,, is not included in the formulation. This strain is actually equal to —-ve,,
because the stress T,, 1s zero. As pointed out earlier, we would use the entries in B at r = 0.

The formulation of a structural element using the approach discussed in Example 5.27
is computationally inefficient and is certainly not recommended for general analysis. How-
ever, it is instructive to study this approach and recognize that the structural element
matrices can in principle be obtained from continuum element matrices by imposing the
appropriate static and kinematic assumptions. Moreover, this formulation directly suggests
the construction of transition elements that can be used in an effective manner to couple
structural and continuum elements without the use of constraint equations [see
Fig. E5.28(a)]. To demonstrate the formulation of transition elements, we consider in the
following example a simple transition beam element.

EXAMPLE 5.28: Construct the displacement and strain-displacement interpolation matrices
of the transition element shown in Fig. E5.28.
We define the nodal point displacement vector of the element as

0 =[w; 01 w vy ws vy 6] (a)

Since at r = +1 we have plane stress element degrees of freedom, the interpolation functions
corresponding to nodes 1 and 2 are (see Fig. 5.4)

h =31+ + s); h, =301 + (1 — )
Node 3 is a beam node, and the interpolation function is (see Fig. 5.3)
h3 = %(1 - r)
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Figure E5.28 Two-dimensional displacement-based beam transition element

The displacements of the element are thus

u(r, s) = huy + hous + haus — %Shg,eg,

Hence, corresponding to the displacement vector in (a) we have

h: 0 hz 0 h3 0 —'E‘Sh3
H = 2

0O i 0 h O hs O

The coordinate interpolation is the same as that of the four-node plane stress element:

x(r, s) = %(1 + r)L

Ay
R = — t
yir, s) =2

Hence, J =

O i~
O ~In

ltoln
1'--csll\-) O

Chap. 5
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Using (5.25), we thus obtain
1 1 1 t l
— + —_— —_ —_——_ ——
i (1 +s) 0 oL (1 — ) 0 T 0 LS
1 1
= —(1 + -—(1 +
B 0 Y (1+7r) 0 Y 1+r) 0 O 0
1 1 1 1 1 1
—(1+r) —=(1+s) —=(1+ —(1 - —— —=(1 -
Ut glre —gU+n =9 0 -7 —30=-n
We may finally note that the last three columns of the B-matrix could also have been derived as
described in Example 5.27.

The isoparametric beam elements presented in this section are an alternative to the
classical Hermitian beam elements (See Example 4.16), and we may ask how these types of
beam elements compare in efficiency. There is no doubt that in linear analysis of straight,
thin beams, the Hermitian elements are usually more effective, since for a cubic displace-
ment description the isoparametric beam element requires twice as many degrees of free-
dom. However, the isoparametric beam element includes the effects of shear deformations
and has the advantages that all displacements are interpolated to the same degree (which for
the cubic element results in a cubic axial displacement variation) and that curved geometries
can be represented accurately. The element is therefore used efficiently in the analysis of
stiffened shells (because the element represents in a natural way the stiffeners for the shell
elements discussed in the next section) and as a basis of formulating more complex ele-
ments, such as pipe and transition elements. Also, the generality of the formulation with all
displacements interpolated to the same degree of variation renders the element efficient in
geometric nonlinear analyses (see Section 6.5.1).

Further applications of the general beam formulation given here lie in the use for
plane strain situations (see Exercise 5.40) and the development of axisymmetric shell
elements.

Axisymmetric Shell Elements

The isoparametric beam element formulation presented above can be directly adapted to the
analysis of axisymmetric shells. Figure 5.24 shows a typical three-node element.

In the formulation, the kinematics of the beam element is used as if it were employed
in two-dimensional action (i.e., for motion in the x, y plane), but the effects of the hoop
strain and stress are also included. Hence, the strain-displacement matrix of the element is
the matrix of the beam amended by a row corresponding to the hoop strain u/x. This
evaluation is quite analogous to the construction of the B-matrix of the two-dimensional
axisymmetric element when compared with the two-dimensional plane stress element. In
that case, also only a row corresponding to the hoop strain was added to the B-matrix of
the plane stress element in order to obtain the B-matrix for the axisymmetric element. In
addition of course the correct stress-strain law needs to be used (allowing for the Poisson
effect coupling between the hoop and the r-direction and for the stress to be zero in the
s-direction), and the integration is performed corresponding to axisymmetric conditions
over 1 radian of the structure (see Example 5.9 and Exercise 5.41). Of course, using the
procedures in Example 5.28, transition elements for axisymmetric shell conditions can also
be designed (see Exercise 5.42).
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| Figure 5.24 Axisymmetric shell element
5.4.2 Plate and General Shell Elements

The procedures we have employed in the previous section to formulate beam elements can
also be directly used to establish effective plate and shell elements. In the following presen-
tation we first discuss the formulation of plate elements, and then we proceed to summarize
the formulation of general shell elements.

Plate Elements

The plate element formulation is a special case of the general shell element formulation
presented later and is based on the theory of plates with transverse shear deformations
included. This theory, due to E. Reissner [B] and R. D. Mindlin [A], uses the assumption that
particles of the plate originally on a straight line that is normal to the undeformed middle
surface remain on a straight line during deformation, but this line is not necessarily normal
to the deformed middle surface. With this assumption, the displacement components of a
point of coordinates x, y, and z are, in the small displacement bending theory,

u= —zB:(x, y); v = —zB/(x, y); w = w(x,y) (5.88)

where w is the transverse displacement and 8, and 3, are the rotations of the normal to the
undeformed middle surface in the x, z and y, z planes, respectively (see Fig. 5.25). Itis
instructive to note that in the Kirchhoff plate theory excluding shear deformations, B; = w,;
and B, = w,, (and indeed we have selected the convention for 8, and 8, so as to have these
Kirchhoff relations).

Considering the plate in Fig. 5.25 the bending strains €., €,y, s, vary linearly through
the plate thickness and are given by the curvatures of the plate using (5.88),

€xx B
dx
d
€yy = —Z ""é%’ (5.89)
0B. = 9B
> [ e
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Figure 5.25 Deformation assumptions in analysis of plate including shear deformations

whereas the transverse shear strains are assumed to be constant through the thickness of the
plate

p— — — —t

ow
ve| |5 B
ol P (5.90)
I_'YyZJ :5; - By‘

We may note that each transverse shear strain component is of the form (5.56) used in the
description of the beam deformations. The state of stress in the plate corresponds to plane
stress conditions (i.e., 7;; = 0). For an isotropic material, we can thus write

e v— pr— — g —

Tex 1 v 0 aali‘
E d
Tyy | = IR B 1 0 % (5.91)
1 —v ap ap
p = + =2
| T | —0 0 2 JdL3y o9x-
L e -
Txz - B.r
E dox
T 2(1 + ) | ow (592)
Ty "5; - By

To establish the element equilibrium equations we now proceed as in the formulation
of the two-dimensional beam element of rectangular cross section [see (5.58) to (5.64)].
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Considering the plate, the expression for the principle of virtual work is, with p equal to the
transverse loading per unit of the midsurface area A,

h/2 Txx h/2 T
f f [éx €, Voll 7y | dzdA + kf f [V Tyz][ H] dz dA = f wp dA (5.93)
A J—h/2 A J—h/2 A

Tyz

where the overbar denotes virtual quantities and & is again a constant to account for the
actual nonuniformity of the shearing stresses (the value usually used is 2; see Example 5.23).
Substituting from (5.89) to (5.92) into (5.93), we thus obtain

f K'Cyk dA + f ¥T'Csy dA = f wp dA (5.94)
A A A
where the internal bending moments and shear forces are C,k and C;+, respectively, and
- B -
0x E" ]
38, P
k=| = | y = (5.95)
> > _p, (596)
0B: 9B, | dy g '
ERE
1 v 0 |
and Cb_12(1—v2) o o L= C"‘_2(1+y)0 1 .97)
2

Let us note that the variational indicator corresponding to (5.93) is given by (see
Example 4.4)

(1 0 | e
1 bz E 1 0 *
2 Jad-up 1 —w 0 0 1 —
2 _‘yxy__,

k h/2 E 'Y ]
4+ = = * dsz——fw dA
2 L f—h/2 Ly ‘Yﬂ] 2(1 + v) ['sz A P

with the strains given by (5.89) and (5.90). The principle of virtual work corresponds to
invoking 611 = 0 with respect to the transverse displacement w and section rotations f;
and SB,.

We emphasize that in this theory w, B., and 8, are independent variables. Hence, in
the finite element discretization using the displacement method, we need to enforce inter-
element continuity only on w, fB;, and 8, and not on any derivatives thereof, which can
readily be achieved in the same way as in the isoparametric finite element analysis of solids.

Let us consider the pure displacement discretization first. As in the analysis of beams,
the pure displacement discretization will not yield efficient lower-order elements but does
provide the basis for the mixed interpolation that we shall discuss afterward.
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In the pure displacement discretization we use
q q
w=2hw;  B=—2 hb
i=1 i=1

@=ihy (5.99)

where the h; are the interpolation functions and g is the number of nodes of the element.
With these interpolations we can now proceed in the usual way, and all concepts pertaining
to the isoparametric finite elements discussed earlier are directly applicable. For example,
some interpolation functions applicable to the formulation of plate elements are listed in
Fig. 5.4, and triangular elements can be established as discussed in Section 5.3.2. Since the
interpolation functions are given in terms of the 1soparametric coordinates r, s, we can also
directly calculate the matrices of plate elements that are curved in their plane (to model, for
example, a circular plate).

We demonstrate the formulation of a simple four-node element in the following
example.

EXAMPLE 5.29: Derive the expressions used in the evaluation of the stiffness matrix of the
four-node plate element shown in Fig. E5.29.

T

<Y

Figure E5.29 A four-node plate element

The calculations are very similar to those performed in the formulation of the two-
dimensional plane stress element in Example 35.5.
For the element in Fig. ES.29 we have (see Example 5.3)

320
_ |2
J_[o 1]
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and then, using the interpolation functions defined in Fig. 5.4,

P i o _
-c:g 1 Z ol |1 +s) —(1+s) —(1-3 (1 — 39 z;
_%_ 4 0 1] _(1 +r 1-rn -Q-r -1+ r)- _:zz_

with similar expressions for the derivatives of 8. and 8,. Thus, if we use the following notation,

Kk(r, s) = B,

y(r, s) = B i
w(r, s) = H,l
where i"=[w 6. 6w ... 6]
0 0 —:(1 +9) —:(1 — 57
we have B.=|0 (1 +7 0 0
0 1l +s) —3(01+7) (1 + 1)
L1 + 5) 0 L1+ A + 9) Y1+ N1 — )]
B, = | | e
1+ —zQA+n1+s) 0 0 1
H,=:;[0+n1+s 00 ... 0]
The element stiffness matrix is then
+1 +1
K = ;—f f (BLC,B, + BJC,;B,) dr ds (a)
-1 J-1
and the consistent load vector is
3 +1 +1
= --f f Hlp dr ds (b)
2 )0 J

where the integrals in (a) and (b) could be evaluated in closed form but are usually evaluated
using numerical integration (see Section 5.5).

This pure displacement-based plate element formulation is of value only when higher-
order elements are employed. Indeed, the least order of interpolation that should be used is
a cubic interpolation, which results in a 16-node quadrilateral element and a 10-node
triangular element. However, even these high-order elements still do not display a good
predictive capability, particularly when the elements are geometrically distorted and used
for stress predictions (see, for example, M. L. Bucalem and K. J. Bathe [A]).

As in the formulation of isoparametric beam elements, the basic difficulty is that
spurious shear stresses are predicted with the displacement-based elements. These spurious
shear stresses result in a strong artificial stiffening of the elements as the thickness/length
ratio decreases. This effect of shear locking is more pronounced for a low-order element and
when the elements are geometrically distorted because, simply, the error in the shear
stresses is then larger.

To arrive at efficient and reliable plate bending elements, the pure displacement-based
formulation must be extended, and a successful approach is to use a mixed interpolation of
transverse displacement, section rotations, and transverse shear strains.
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We should note here that in the above discussion, we assumed that the integrals for the
computation of the element matrices (stiffness and mass matrices and load vectors) are
evaluated accurately; hence, throughout our discussion we assumed and shall continue to
assume that the error in the numerical integration (that usually is performed in practice; see
Section 5.5) is small and certainly does not change the character of the element matrices.
A number of authors have advocated the use of simple reduced integration to alleviate the
shear locking problem. We discuss such techniques briefly in Section 5.5.6.

In the following we present a family of plate bending elements that have a good
mathematical basis and are reliable and efficient. These elements are referred to as the
MITCn elements, where n refers to the number of element nodes and n = 4, 9, 16 for the
quadrilateral and n = 7, 12 for the triangular elements (here MITC stands for mixed
interpolation of tensorial components), (see K. J. Bathe, M. L. Bucalem, and F. Brezzi [A]).
Let us consider the MITC4 element in detail and give the basic interpolations for the other
elements in tabular form.

An important feature of the MITC element formulation is the use of tensorial compo-
nents of shear strains so as to render the resulting element relatively distortion-insensitive.

Figure 5.26 shows a generic four-node element with the coordinate systems used.
2

View of general element

2
A
I
D
g
Y2 r
B
N £ c .
—-l--Xz-i—— 4 X

Special 2 x 2 element A general element in the x, y plane
inthe x, y plane

Figure 5.26 Conventions used in formulation of four-node plate bending element

To circumvent the shear locking problem, we formulate the element stiffness matrix
by including the bending and shear effects through different interpolations. For the section
curvatures in (5.95) we use the same interpolation as in the displacement-based method, as
evaluated using (5.99), but we proceed differently in evaluating the transverse shear strains.
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Consider first the MITC4 element when it is of geometry 2 X 2 (for which the x, y
coordinates could be taken to be equal to the r, s isoparametric coordinates). For this
element we use the interpolation (see K. J. Bathe and E. N. Dvorkin [A}])

Yo = 5(1 + $)yAh + 5(1 — $)v5
=31+ ny2 + 3 - nys

where ¥7., y%, Yo, and ys; are the (physical) shear strains at points A, B, C, and D evaluated
by the displaéement and section rotations in (5.99). Hence,

— 1 2 —_ 4 3
(1 + s)(w1 3%, + 93, + 9,,) _(1 _ s)(W4 Wi 93, + 93,)

(5.100)

L) 2 2 2
(5.101)
1 wi— ws 01 + 63 (Wz—W3 9 + 63
733_2(1 +r)( 2 2 ) (1 r) 2 )

With these interpolations given, all strain-displacement interpolation matrices can be di-
rectly constructed and the stiffness matrix is formulated in the standard manner. Of course,
the same procedure can also be directly employed for any rectangular element.

Considering next the case of a general quadrilateral four-node element, we use the
same basic idea of interpolating the transverse shear strains, but—using the interpolation in
(5.100)—we interpolate the covariant tensor components measured in the r, s, z coordinate
system. In this way we are directly taking account of the element distortion (from the 2 X 2
geometry). Proceeding in this way with the tensor shear strain components, we obtain (see
Example 5.30) the following expressions for the +v,, and +,, shear strains:

Yz = Yrz SIN B — ¥, SiD & (5102)

Yoz = — ¥ COS B + ¥ COS &
where a and B are the angles between the r and x,axes and s and x axes, respectively, and

_VI(C, + mB) + (C, + J"B;,)2

Yo = 8 det J
{(1 + S)[W* ; w2 4 ; 226! + 62) - ; AN LY 1 92)]
B Ws — W —13 N _ Y+ Y3 3]}
+ (1 s)[ > + @ +6 >) 4 @: + 63) (5.103)
- V(Ax + sB))* + (Ay + SBy ?
Ysz 8 det J
{(1 + r)[wl ; W4 4 X1~ ; (91 + 94) ;’ )’4(91 + 94)]
w2 — wy X2 — X3, ., 3 _y32 3
+(1—r)[ st & +6) - (9"'9)]}
In equations (5.103) we have e ay_
or or
| ds 05
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and A = X1 — X2 — X3 + x4
B,=xi— x+ x3— x4
C, = + -~ X3 — X
oma T s (5.105)
Ay=Yi— Y2~ Y+ ¥
B=

y=Y1 = Y2t Y3 — Vs
1+ Y2~ Y3~ Y4

H

We further consider the above relationships in the following example.

EXAMPLE 5.30: Derive the transverse shear strain interpolations of the general MITC4 plate

bending element.
In the natural coordinate system of the plate bending element, the covariant base vectors
are defined as
= 9% _ X
B or’ B as
_h, ®
gz 2 z

where X is the vector of coordinates, and e,, e,, €, are the base vectors of the Cartesian system.
Let us recall that in the natural coordinate system, the strain tensor can be expressed using
covariant tensor components and contravariant base vectors (see Section 2.4)

€ =¢§;g'g; L]=r2512
where the tilde (~) indicates that the tensor components are measured in the natural coordinate

system.
To obtain the shear tensor components we now use the equivalent of (5.100),

&: = 3(1 + )&, + 1(1 — 9&; (b)
& =1(1 + nég +3(1 - nN&; ©)

where &, €, €7, and &5, are the shear tensor components at points A, B, C, and D evaluated
from the displacement interpolations. To obtain these components we use the linear terms of the
general relation for the strain components in terms of the base vectors (see Example 2.28),

0& =3l'g '8 — 8 "al

where the left superscript of the base vectors is equal to 1 for the deformed configuration and
equal to O for the initial configuration. Substituting from (5.99) and (a), we obtain

. 1| A h h )

é, =\Z _E(WI — wy) + 2(11 — x%2)(0; + 63) — Z(yl — y2)(6: + GE)J

and € = 1 -E(W4 - ws) + E(-754 — x3)(6; + 65) — E(ﬂ — y3)(62 + 93)-
2|2 2 R ? |
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Therefore, using (b), we obtain

€, = %(1 + S)[%(Wl — wy) + 'Z'(xl — x2)(6; + 6}) — %()’1 — y2)(6: + 93)]

+ 20 - s>[-’;-<w4 = W)+ 2 = 2O+ 6) = T0u— )6+ es:)]

and in the same way, using (c),

= 31+ | B0n = w) + 50— 206+ ) - 20— 0@ + 09

+ -;—(1 — r)[%(w: — wa) + -Z(xz — x3)(0} + 63) — -g(yz — ¥3)(67 + 93)]

Next we use
é-jg"gj = €€i€ (d)

where the ¢, are the components of the strain tensor measured in the Cartesian coordinate
system. From (d) we obtain

Ve = 28(8 " e)(g - &) + 2€.(g° * e)(g " €)
Ve = 268 e)(g - &) + 2&(g - e,)(g * &)
However (using the standard procedure described in Section 2.4),
g = Vg" (sin Be, — cos Be,)
g = \/F‘(—-sin ae; + cos ae,)
g = Vg=e,
where a and 3 are the angles between the r and x axes and s and x axes, respectively, and

_ (G + B) + (C + 1B)
16(det J)*

_ (A; + sB)?> + (A, + sB,))?
16(det J)?

where A,, B;, C;, A,, B,, and C, are defined in (5.105) and
4

h?
Substituting into (), the relations in (5.102) are obtained.

©

rr

35

gzz —

The MITC4 plate bending element is in rectangular or parallelogram geometric

configurations identical or closely related to other four-node plate bending elements (see
T. J. R. Hughes and T. E. Tezduyar [A] and R. H. MacNeal [A]). However, an important
attribute of the MITC plate element is that it is a special ¢ase of a general shell element for
linear and nonlinear analysis. Specifically, the use of covariant strain interpolations gives
the element a relatively high predictive capability even when it is used with angular geomet-
ric distortions as shown in Fig. 5.31 (see also K. J. Bathe and E. N. Dvorkin[A}]). In practice,
elements with angular distortions are of course widely used.
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Some observations pertaining to the MITC4 element are the following.

The element behaves like the two-node mixed interpolated isoparametric beam ele-
ment (discussed in the previous section) when used in the analysis of two-dimensional
beam action.

The element can be derived from the Hu-Washizu variational principle (see Exam-
ple 4.30).

The element passes the patch test (for an analytical proof see K. J. Bathe and E. N.
Dvorkin [B]).

A mathematical convergence analysis for the transverse displacement and section
rotations has been provided by K. J. Bathe and F. Brezzi [A] (assuming uniform
meshes, i.e., that the element assemblage consists of square elements of sides #).
This analysis gives the results

IB—Beli =ch ; [Vw— Vil = coh (5.106)

where f# and w are the exact solutions, 8, and wy are the finite element solutions
corresponding to a mesh of elements with sides 4, and c,, c; are constants independent
of A. A convergence analysis of the transverse shear strains gave the result that the
L?*-norm of the error is not bounded independent of the plate thickness (see F. Brezzi,
M. Fortin, and R. Stenberg [A]).

The essence of the results of these analytical convergence studies is also seen in
practice for uniform and distorted meshes. The element predicts the transverse dis-
placements and bending strains quite well, but the transverse shear strain predictions
may not be satisfactory, particularly when very thin plates are analyzed.

A most important observation in the mathematical analysis of the MITC4 element
was that this element, in its mathematical basis, is an analog of the 4/1 element of the u/p
element family presented in Section 4.4.3: in the u/p formulation the displacements and
pressure are interpolated to satisfy the constraint of (almost) incompressibility, ey = 0,
whereas in the MITC4 element formulation the transverse displacement, section rotations
and transverse shear strains are interpolated to satisfy the thin plate condition, y = 0. This
analogy between the incompressibility constraint in solid mechanics and the zero transverse
shear strain constraint in the Reissner-Mindlin plate theory resulted in the development of
a mathematical basis aimed at the construction of new plate bending elements (see K. J.
Bathe and F. Brezzi [B]). Since these elements are all based on the mixed interpolation of
the transverse displacement, section rotations and transverse shear strains and for general
geometries use the tensorial components (as for the MITC4 element), we refer to these
elements as MITC elements with n nodes (i.e., MITCrn elements).

The basic difficulty is choosing the orders of interpolations of transverse displacement,
section rotations, and transverse shear strains which together result in nonlocking behavior
and optimal convergence of the element. The mathematical considerations for choosing the
appropriate interpolations were summarized by K. J. Bathe and F. Brezzi [B], K. J. Bathe,
M. L. Bucalem, and F. Brezzi [A], and F. Brezzi, K. J. Bathe, and M. Fortin [A], who
presented the elements in Fig. 5.27 as well as additional ones, and also gave numerical
results.
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Figure 5.27 and Table 5.3 summarize the interpolations of 9- and 16-node quadrilat-
eral elements and 7- and 12-node triangular elements and give the rates of convergence. In
Fig. 5.27 the interpolations are given for the elements in geometrically nondistorted form,
and we use tensorial components, as for the MITC4 element, to generalize the interpola-
tions to geometrically distorted elements. Let us illustrate the use of the interpolations given
in Fig. 5.27 in an example.

MITC4 element: 4 nodes for interpolation of section
rotations and transverse displacement
(2 x 2 Gauss integration)

A
1

® ? \
i
i
|
|
i
!
l

R e X-D
E
|
|
1
|
i
y ¢ ® '
C
4
X Yz = @1 + byy; tying at points Aand C
® Nodes for 8y, . and winterpolation Yyz= @2 + byx; tying at points Bsnd D
MITC9 element: 9 nodes for interpolation of section rotations
and 8 nodes for interpolation of transverse
displacement (3 x 3 Gauss integration)
B ; A

¢ .- 4 26 . >
|
|
i X H
i
|
|

¢ © ¢ A i— ---------- -
i
i X G
i

y :
® *- ® X% : ¥
E ! F
4
X

Yaz= 814+ D1X + C1y + dixy + e1y? ; tying at points A B, E, F
® Nodes for 8, B,. and winterpolation y,; = a; + byx + Q¥ + daXy + exx? ; tying at points C, D, G, H

© Node for B B, interpolation plus integral tying |, (Vw~-f-~y) dA=0

Figure 5.27 Plate bending elements; square and equilateral triangles of side lengths 2 units
are considered.
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MITC16 element: 16 nodes for interpolation of section rotations
and 13 nodes for interpolation of transverse
displacement (4 x 4 Gauss integration)

® ® ® o
y
z
X Yxz= a1+ D1X + Cry + dpx + egxy +
fy? + g1ty + hixy? + hy?;
e Nodes for g8, 8,, and winterpolation tying at points A, B, C, G, H, I;

© Nodes for gy, 8, interpolation

Yz = az + X +czy+d2x2+ezxy+
O Node for winterpolation vz

£, + gox?y + haxy? + ipx3;

tyingatpoints D, E, F, J, K, L;

plus integral tying J’A Vw-B-v)dA =
[AWwW-B-yIxdA=[, (Vw-B-¥)ydA=0

MITC7 element: 7 nodes for interpolation of section
rotations and 6 nodes for interpolation
of transverse displacement (7-point
Gauss integration)

V3
©
E
® > >
4 C D
z Yxz= @1 + D1X + 1y + yldx + ey);
X Yyz= 82 + boX + coy - x{dx + ey);

tyingofyetatA B, C, D, E, F

plus integral tying |, (Vw-8-y) dA=0
® Nodes for 8y, B,, and winterpolation IA B-v

© Node for B, B, interpolation

Figure 5.27 (continued)
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MITC12 element:

® Nodes for 8y, B, and winterpolation

©@ Nodes for B, B, interpolation

O Node for winterpolation

TABLE 5.3 Interpolation spaces and theoretically predicted error estimates for plate bending

ulation of Isoparametric Finite Element Matrices

12 nodes for interpolation of section rotations
and 10 nodes for interpolation of transverse
displacement (13-point Gauss integration)

A%\
b I

B

mXX

Yxz= 31+ D1X + C1y + dp + eyxy +
fiy? + ylgx? + hxy + iy?);

Yyz= a2+ baX + oy + dzm'2 + eXxXy +
fy? - xigx? + hxy + iy?);
tyingofyetatpoints A, B, C, D, E, F, G H, |

Chap. 5

plus integral tying [, (Vw-B~y) dA= [, Vw-B-y)xdA=

[aOVw-B-7lydA=0

Figure 5.27 (continued)

elements
Spaces used for section rotations and
Element transverse displacement’ Error estimates
By € O X O |B"‘Bh|156h
MITC4 Wy e Ql ” vw _ vwh "0 < ch
B, € Q. X O, B — Bul = ch?
MITC9 wy € Qz N P " Vw — vwh "0 < ch?
By € Qs X 0 B — Bulh =k’
MITC16 wi € Qs N P, | Vw — Vwilo < ch?
MITC7 By € (P, ® {L\L,Ls}) X (P, ® {L,L.Ls}) B — Bul < ch?
wy, € P |Vw — Vwallo = ch?
MITC12 Br € (P ®{LiLLs} P) X (Ps ® {LiL,L3} P) B — Bl < oh’
Wi € P | Vw — Vw,|p =< ch?

t For notation used, see Section 4.3.

EXAMPLE 5.31: Show how to establish the strain interpolation matrices for the stiffness
matrix of the MITC9 element shown in Fig. E5.31.
The geometry of the element is the same as for the four-node element considered in
Fig. E5.29; hence the Jacobian matrix is the same.
Since the transverse displacements are determined by the eight-node interpolations, which
are given in Fig. 5.4, we have



Y
Figure E5.31 A nine-node plate
bending element
[ ow o [w
— 1+ 21+ s —(1-—s?
| l[% 0] 1+201+s-(@1-5%) | ws @
ow 410 1 .
—_ + +r—-({1-r 1 -
> A+290+0-0-ry) | ™

The section rotations are determined by the nine-node interpolation functions, which are also
given in Fig. 5.4, and we have

e ] 2 _Tor
) Q+2n0 +s -0 +2n1 -5 |
ox| _ 1 [-,- o] %l ®
aB.|-  4l0 1 :
I+2(1+n—-(0Q+290-7rH | :
L 9 - L2
- - -
3By ) 1 +2nA + -0+ 210 — 57 | i 0;
x| _ 1[3 O] 6 ©
ap, 410 1 .
_—6*)_’-_ (1+29(0 +r)— A+ 2901 - r?) | _ _9.2_‘
Let us use the following ordering of nodal point displacements and rotations
W"=0w 6 6 | ... | wse 6 6 | 6 6)
The transverse displacement interpolation matrix H,, is then given by
H.=[h 0 0| A 0 0] ... | B 0 0 | 0 0]

where the h, to hg are given in Fig. 5.4 and correspond to an eight-node element.
The curvature interpolation matrix B, is obtained directly from the relations (b) and (c),

0
(A +290+n -0+ 25)(1 — r?]
s[(1 +2r(1 +s) - (1 + 2701 - s3]

o]
=
il
o o o

A+ 290 + 95— (1 + 211 - 5s%)]
0
- [+ 2901 +r)— (1 + 281 — r?)]
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The transverse shear strain interpolation matrix is obtained from the shear interpolation
given in Fig. 5.27 and the tying procedure indicated in the same figure. Hence,

Bz[lrerSZIOOOOO]a
000 00 |1 r s rs o r?

where (IT = [al bl Ci dl € I az bz C2 d2 82]

e)

The values in the vector o are expressed in terms of the nodal point displacements and rotations
using the tying relations. For example, since point A is at x = 2[1 + 1/V3), y = 2, we have

Yezla = a1 + bl(g)(l + %) + a(2) + d2(3)(1 + %) + e,(4)

(-8

Of course, dw/dx is given by (a) and the section rotation B, is given by (5.99) with the A
corresponding to nine nodes.

Using all 10 tying relations in Fig. 5.27 as in (f), we can solve for the entries in (€) in terms
of the nodal point displacements and rotations.

(f)

atr= l/'\/i,s==l

The numerical performance of the MITCn elements has been published by K. J.
Bathe, M. L. Bucalem, and F. Brezzi [A]. However, let us briefly note that

The element matrices are all evaluated using full numerical Gauss intégration (see
Fig. 5.27).

The elements do not contain any spurious zero energy modes.
The elements pass the pure bending patch test (see Fig. 4.18)..

To illustrate the performance of the elements and introduce a valuable test problem
consider Figs. 5.28 to 5.32. In Fig. 5.28 the test problem is stated. We note that the
transverse displacement and the section rotations are prescribed along the complete
boundary of the square plate and that in this problem there are no boundary layers (as
encountered in practical analyses; see B. Hédggblad and K. J. Bathe [A]). Therefore, the
numerically calculated orders of convergence should be close to the analytically predicted
values. Figure 5.29 shows results obtained using uniform meshes, and these results compare
well with the analytically predicted behavior (these predictions assume uniform meshes).
Figures 5.30 and 5.31 show results obtained using a sequence of quasi-uniform® meshes,
and we observe that the orders of convergence are not drastically affected by the element
distortions. Finally, the convergence of the transverse shear strains, as predicted numeri-
cally, is shown in Fig. 5.32. In these specific finite element solutions the shear strains are
predicted with surprisingly high orders of convergence (which in general of course cannot
be expected).

8 For the definition of a sequence of quasi-uniform meshes, see Section 5.3.3.
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=1, 1)

xV

(—1r-1) (11—1)

(a) Square plate considered in ad hoc plate bending problem; transverse loading p = 0, nonzero
boundery conditions. A typical 4-node element is shown. The dashed line indicates the
subdivision used for the triangular element meshes; h = 2 /N, where N = number of elements
per side.

(b) Exact transverse displecement and rotations: w = sinkx & + sink e ; 6, = k sinkx " ;

() Test problem: Prescribe the functional values of w, 8,, and 8, on the complete boundary and p= 0,
celculate interior values; k is a chosen constant: we use k=5

Figure 5.28 Ad-hoc test problem for plate bending elements

AMITC7 oMITC4 AMITC7 oMITC4
oMITC12 xMITC9 oMITC12 xMITC9
+MITC16 +MITC16
— 3.0
3.0 |- -
— 2.0
w 2.0 |- wy _
g g
S = 4 1.0
1.0 |- |
— 0.0 3 j
0.0 — - | - .l I
-1.0 0.0 ~-1.0 0.0 0.5 ~1.0 0.0 ~1.0 0.0 -
Log h Log h Log h Log h

(a) (b)

Figure 5.29 (s) Convergence of section rotations in analysis of ad-hoc problem using
uniform meshes. The error measureis E = | B — B, |;. (b) Convergence of gradient of
vertical displacement in analysis of ad-hoc problem using uniform meshes. The error measure

is E = || Vw — Vw]o.
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Figure 5.30 Two typical distorted
meshes used in analysis of ad-hoc
problem,----~ , indicates the subdivision
used for the triangular element meshes.

AMITC7 oMITC4 AMITC? oMITC4
oMITC12 xMITC9 oMITC12 xMITC9
+MITC16 +MITC16
— 3.0
3.0 |- -
"' 20"
w 2.0 uy -
3 g
- N - 1.0
1.0}~ |
— 0.0
oolL—t ) | | 1 L 1
10 00 10 00 O 30 00 10 00
Log h Log h Log h Log h
(a) (b)
Figure 5.31 (a) Convergence of section rotations in analysis of ad-hoc problem using
distorted meshes. The error measureis E = | — B4 [i. (b) Convergence of gradient of
vertical displacement in analysis of ad-hoc problem using distorted meshes. The error measure
is E= || Vw — Vwib.
AMITC7 oMITC4 AMITC7 oMITC4
oMITC12 xMITC9 oMITC12 XMITC9
301 +MITC16 301 +MITC16
2.0 [~ 20
" 1.0~ " 1.0
g I g
- -
0.0 / / 0.0
-1.0 / -1.0
| I I I I | 1 1 |
20730 o0 10 o0 2735 o0 0 oo
Log h Log h Log h Log h
(a) (b}

Figure 5.32 Convergence of transverse shear strains in analysis of ad-hoc problem. The
error measure is E = ||y — y,lb. (@) Uniform meshes. (b) Distorted meshes.
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General Shell Elements

Let us consider next the formulation of general shell elements that can be used to analyze
very complex shell geometries and stress distributions. For this objective we need to
generalize the preceding plate element formulation approach, much in the same way as we
generalized the isoparametric beam element formulation from straight two-dimensional to
curved three-dimensional beams. As in the case of the formulation of beam elements (see
Section 5.4.1), we consider the displacement interpolation which leads to a pure
displacement-based element (see S. Ahmad, B. M. Irons, and O. C. Zienkiewicz [A]), and
we then modify the formulation so as to not exhibit shear and membrane locking.

The displacement interpolation is obtained by considering the geometry interpolation.
Consider a general shell element with a variable number of nodes, g. Figure 5.33 shows a
nine-node element for which g = 9. Using the natural coordinates r, s, and ¢, the Cartesian
coordinates of a point in the element with g nodal points are, before and after deformations,

Shell midsurface

GV Y: v

a ol Oy
X u (2) ovn ' at Gauss =§ 2 hy | atGauss Vo
integration integration
point point

Figure 5.33 Nine-node shell element; also, definition of orthogonal 7, 5, ¢ axes for consti-
tutive relations
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WVn

-~ Top surface

] _.- scoordinate line (r, t are constant)
Gauss point | == 5

w-n-\-r-coordinate line (s, t are constant)
e r

- r, s, t = vectors tangent
Midsurface to r, s, t coordinate lines

s Xt o = t X ez o=
fs x the’ ™°  lt x ezl ™ itll

er =

. Bottom surface

Figure 5.33 (continued)

q
2 aihy 8Vfu

=1

q
t
"'x(r, AR I) = 2 hk '"xk -
k=1 2

b

q q
y(r, s, 1) = 2 b tyx + = 2 achy VE, (5.107)
k=1 k=]

S I

q q
'
82(’., A t) = 2 hk €Zk + 5 2 akhk fvzz

k=1 k=1
where the h(r, s) are the interpolation functions summarized in Fig. 5.4 and
tx, ty, 2z = Cartesian coordinates of any point in the element
X1, ®yi, ‘zx = Cartesian coordinates of nodal point k
a, = thickness of shell in ¢ direction at nodal point k&

tvi,, V%, tVE, = components of unit vector ¢V¥ “normal” to the shell midsurface
in direction ¢ at nodal point k; we call V¥ the normal vector’ or, more

appropriately, the director vector, at nodal point k

and the left superscript € denotes, as in the general beam formulation, the configuration of
the element; i.e., £ = 0 and 1 denote the original and final configurations of the shell
element. Hence, using (5.107), the displacement components are

M

q
t
u(r, s, 1) = 2 hou, + — ach, V&,
k=] 2 k=
q t q
vh&ﬂ=§mm Egmmm (5.108)

q q
w(r, s, 1) = > howy + 2 ahi V5,

!

k=1 2

7We call ‘V¥ the normal vector although it may not be exactly normal to the midsurface of the shell in the
original configuration (see Example 5.32), and in the final configuration (e.g., because of shear deformations).
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where V£ stores the increments in the direction cosines of °V&,
Vf, —_ 1vﬁ —_ Ovﬁ (5.109)

The components of V5 can be expressed in terms of rotations at the nodal point &;
however, there 1s no unique way of proceeding. An efficient way is to define two unit vectors
°V% and °V3 that are orthogonal to °V%:

ka

(1 4.4
Vi = Tl

(5.110a)

where e, is a unit vector in the direction of the y-axis. (For the special case °V% parallel to
e,, we may simply use °Vi equal to e,.) We can now obtain °V3%,

VL = o0V X 'V} (5.110b)

Let a; and B be the rotations of the director vector °V¥ about the vectors °V¥ and °V&.
We then have, because a; and S, are small angles,

Vi = —OVE a + OVEB, | (5.111)

This relationship can readily be proven when °V, = e, °V: = ¢, and °V, = e, but since
these vectors are tensors, the relationship must also hold in general (see Section 2.4).
Substituting from (5.111) into (5.108), we thus obtain

q q
4
u(r, Sy t) = 2 hy w, + —2- 2 k(—ovix oy + OV'fx Bk)
. iy
or, 5, 1) = 2 hioy + 5 . E h(=°Vy & + OV, BY) (5.112)
t q
w(r, 5, t) = 2 hy wi + E 2 k(_ovgz o + vaz Bk)
k=1 k=1

With the element displacements and coordinates defined in (5.112) and (5.107) we
can now proceed as usual to evaluate the element matrices of a pure displacement-based
element. The entries in the displacement interpolation matrix H of the shell element are
given in (5.112), and the entries in the strain-displacement interpolation matrix can be
calculated using the procedures already described in the formulation of the beam element
(see Section 5.4.1).

To evaluate the strain-displacement matrix, we obtain from (5.112),

g —

[ du Bl - ]

—3-; —i[l tgfx tggx] U

d L | ok

2= -——"[1 it 28]l {a (5.113)

as k=1

_(?af P [0 g’fx 85:] Bkﬂ
. t_.l B - -

and the derivatives of v and w are given by simply substituting for 1 and x the variables o,
y and w, z, respectively. In (5.113) we use the notation

ag OVT (5 1 14)

MNp—

gt = — 24 °V5; g: =
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To obtain the displacement derivatives corresponding to the Cartesian coordinates
X, ¥, Z, we use the standard transformation

0 0

— = J 1 — 5.115
ox or ( )
where the Jacobian matrix J contains the derivatives of the coordinates x, y, z with respect

to the natural coordinates r, s, £. Substituting from (5.113) into (5.115), we obtain

N

[ 9u | El/

-(,f; =2 gLGh ghGh |u

ou oh

"a"; = -5;"5 gi:Gs g4 Gyl lax (5.116)
k=1

ou oh

™ ——a; g5.GY g4 G| 1B

and the derivatives of v and w are obtained in an analogous manner. In (5.116) we have

oh oh dh

Tk = Ji'll ke + Ji'zl Tk

ax ar ds (5.117)
oh oh

G = I(Jﬁl — 4 Ji7 '—k) + Ji3'h
or os

where J;! is element (i, j) of J7', and so on.

With the displacement derivatives defined in (5.116) we now directly assemble the
strain-displacement matrix B of a shell element. Assuming that the rows in this matrix
correspond to all six global Cartesian strain components, €.;, €,,, . . . , ¥.:, the entries in
B are constructed in the usual way (see Section 5.3), but then the stress-strain law must
contain the shell assumption that the stress normal to the shell surface is zero. We impose
that the stress in the direction of the vector is zero. Thus, if 7 and € store the Cartesian stress
and strain components, we use

T = Cqhe (5.118)
where
'TT = :Tx x Tyy T2z Txy Tyz TZJF]
ET = :exx eyy €2 ny sz YZI]
(1 » 0 O 0 0 |
1 0 0 0 0
0 0 0 0
E 1 —v
— T
Csh sh(l . V2 2 0 0 )Qsh (5.119)
Symmetric kl ; z 0
1 —v
k
i 2

and Q,;, represents a matrix that transforms the stress-strain law from an r, s, ¢ Cartesian
shell-aligned coordinate system to the global Cartesian coordinate system. The elements of
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the matrix Q,, are obtained from the direction cosines of the 7, 5, f coordinate axes measured
in the x, y, z coordinate directions,

I3 m? n? lim, mn, nil,
13 m3 n3 lom, man, nls
13 m3 n3 lsm; msns nsl;
Qu = (5.120)
2L, 2Zmym, 2mny limy, + Lbmy mun, + mani il + nsl,
2Ll 2mamsy 2mpns loms + Lima mon, + man,  nals + nsls
21311 2m3m1 2?13?!1 l3m1 + l1m'3, msn; + mn; n311 + n113
where
I, = cos (e, &); m; = cos (e, e5); n, = cos (e;, e;)
l, = cos (e, €); m; = cos (e, €;); n, = cos (e,, €;) (5.121)
ls = cos (e,, e); ms = cos (e,, e,); n; = cos (e,, e)

and the relation in (5.119) corresponds to a fourth-order tensor transformation as described
in Section 2.4.

It follows that in the analysis of a general shell the matrix Q,, may have to be evaluated
anew at each integration point that 1s employed in the numerical integration of the stiffness
matrix (see Section 5.5). However, when special shells are considered and, in particular,
when a plate 1s analyzed, the transformation matrix and the stress-strain matrix C,, need
only be evaluated at specific points and can then be employed repetitively. For example, in
the analysis of an assemblage of flat plates, the stress-strain matrix C,, needs to be calcu-
lated only once for each flat structural part.

In the above formulation the strain-displacement matrix 1s formulated corresponding
to the Cartesian strain components, which can be directly established using the derivatives
in (5.116). Alternatively, we could calculate the strain components corresponding to coor-
dinate axes aligned with the shell element midsurface and establish a strain-displacement
matrix for these strain components, as we did in the formulation of the general beam
element in Section 5.4.1. The relative computational efficiency of these two approaches
depends on whether it is more effective to transform the strain components (which always
differ at the integration points) or to transform the stress-strain law.

It is instructive to compare this shell element formulation with a formulation in which
flat elements with a superimposed plate bending and membrane stress behavior are em-
ployed (see Section 4.2.3). To identify the differences, assume that the general shell element
is used as a flat element in the modeling of a shell; then the stiffness matrix of this element
could also be obtained by superimposing the plate bending stiffness matrix derived in (5.94)
to (5.99) (see Example 5.29) and the plane stress stiffness matrix discussed in Section 5.3.1.
Thus, in this case, the general shell element reduces to a plate bending element plus a plane
stress element, but a computational difference lies in the fact that these element matrices
are calculated by integrating numerically only in the r-s element midplanes, whereas in the
shell element stiffness calculation numerical integration is also performed in the z-direction
(unless the general formulation is modified for this special case).

We illustrate some of the above relations in the following example.
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EXAMPLE 5.32: Consider the four-node shell element shown in Fig. E5.32.

(a) Develop the entries in the displacement interpolation matrix.
(b) Calculate the thickness at the midpoint of the element and give the direction in which
this thickness is measured.

Figure E5.32 Four-node shell element

The shell element considered has varying thickness but in some respects can be compared
with the plate element in Example 5.29.

The displacement interpolation matrix H is given by the relations in (5.112). The functions
h. are those of a four-node two-dimensional element (see Fig. 5.4 and Example 5.29). The
director vectors °V{ are given by the geometry of the element:

0 T 0] 0] 07
vi=|-1/V2|; ovZ=|-1/V2|; oyz=1o0|: oyt = | 0
_ 1/\/5 B L 1/\/5 i | 1] 1
EN
Hence, oVl = V2 = oV} = °V¢ = | g
| 0_
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T o ] 0]
Vi=°Vi=|1/V2|; °Vi=°vi=|1

| 1/V2 ] 0]

Also, a = aq; = 0.8\/5; as; = 1.2; a, = 0.8

The above expressions give all entries in (5.112).

To evaluate the thickness at the element midpoint and the direction in which the thickness
i1s measured, we use the relation

4
ajl, Qi
= v, = 2 Zhn oV
(2) midpoint k=1 2 ) r=s=0
where a is the thickness and the director vector °V,, gives the direction sought. This expression
gives
~ 0 ] 07 0] [0 ]
0. 1. 0.8
%”V,,=—~—-—8;/§ —1/\/5 +-8—2 0 +—8— 0] =1]-0.2
L 1/V2 1] 1| | 045 |
0.0 ]
which gives Y. = | —0.406 |; a = 0.985
| 0914 ]

This shell element formulation clearly has an important attribute, namely, that any
geometric shape of a shell can be directly represented. The generality is further increased
if the formulation 1s extended to transition elements (similar to the extension for the isopara-
metric beam element discussed in Section 5.4.1). Figure 5.34 shows how shell transition

(a) Shell intersection

(b} Solid-to-shell intersection

Figure 5.34 Use of shell transition elements
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elements can be used to model shell intersections and shell-to-solid transitions using com-
patible element idealizations without the use of special constraint equations. The features
of generality and accuracy in the modeling of a shell structure can be especially important
in the material and geometric nonlinear analysis of shell structures, since particularly in
such analyses shell geometries must be accounted for accurately. We discuss the extension
of the formulation to general nonlinear analysis in Section 6.5.2.

The pure displacement-based formulation has, as in the case of displacement-based
isoparametric beam elements, the disadvantage that the lower-order elements lock as a
result of spurious shear strains, and when the elements are curved, also because of spurious
membrane strains. Indeed, the least order of interpolation that should be used is a cubic
interpolation of displacements (and geometry) leading to 16-node quadrilateral and 10-
node triangular shell elements. But even these elements, when geometrically distorted, show
some shear and membrane locking (for these reasons the MITC16 and MITC12 plate
bending elements are presented in Fig. 5.27). To circumvent the locking behavior, a mixed
interpolation is used, and the use of tensorial components as proposed by E. N. Dvorkin and
K. J. Bathe [A] and K. J. Bathe and E. N. Dvorkin [B] is particularly attractive.

The first step in the mixed interpolation is to write the complete strain tensor at an
integration point as

€ =¢&,gg +é&g¢g + &g +g8)+E(ge + gyt &lge + g (5.122)

' -y

in-layer strains transverse shear strains
where the €., €., ..., are the covariant strain components corresponding to the base
vectors
__0X _ X _ox
& or’ & s’ & t
- (5.123)
x —_
| 2]

and the g’, g°, g’ are the corresponding contravariant base vectors (see Section 2.4). We note
that if we use indicial notation with i = 1, 2, 3 corresponding to r, s, and ¢, respectively,
andrn =r, n=s,r = t, we can define

0&=Q§; : =6(x+u)

; 124
or; & or; (5124

and then the covariant Green-Lagrange strain tensor components are
b€, = 5('g: * 'g; — °g * °g) (5.125)

The strain components in (5.118) are the linear Cartesian components of the strain tensor
given by (5.125) (see Example 2.28).

In the mixed interpolation, the objective is to interpolate the in-layer and transverse
shear strain components independently and tie these interpolations to the usual displace-
ment interpolations. The result is that the stiffness matrix is then obtained corresponding
to only the same nodal point variables (displacements and section rotations) as are used for
the displacement-based elements. Of course, the key is to choose in-layer and transverse
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shear strain component interpolations, for the displacement interpolations used, such that
the resulting element has an optimal predictive capability.

An attractive four-node element is the MITC4 shell element proposed by E. N.
Dvorkin and K. J. Bathe [ A] for which the in-layer strains are computed from the displace-
ment interpolations (since the element is not curved and membrane locking is not present
in the displacement-based element) and the covariant transverse shear strain components
are interpolated and tied to the displacement interpolations as discussed for the plate
element [see (5.101)]. The element performs quite well in out-of-plane bending (the plate
bending) action, and also in in-plane (the membrane) action if the incompatible modes as
discussed in Example 4.28 are added to the basic four-node element displacement interpo-
lations.

A significantly better predictive capability is obtained with higher-order elements,
and Fig. 5.35 shows the interpolations and tying points used for the 9-node and 16-node
elements proposed by M. L. Bucalem and K. J. Bathe [A)]. These elements are referred to
as MITC9 and MITC16 shell elements.

1 1 1 1
| V3 1 V3] | V8 | V3 |
e e et =
L S ) S
i ] I :
) ®---f--1-- i L
IE :
5 v3
Components &, €. . * P;‘—{—— Component &, .
1
I a
® *——-ft--1--
° o——-}--1
The hy ara the G-node alement The h{ are the 4-node element
intarpolation functions interpolation functions
{a) MITC9 shell element
DELLENIBEL B e
! sl | [ s [
! ! s !
6 ﬁ Y - -#- ¢ ¢ &-f---q--
. )| . 0.861...
0.339... | i
Components &, & ry S -I— Component &5 .- f Rl e “‘*
0.339...
d 1 *T 0.861
® [ ] -} X ] ] >~ -1
The h,:" are the 12-node element The h,:f are the 9-node element
interpolation functions interpolation functions

(b) MITC16 shell element

Figure 5.35 MITC shell elements; interpolations of strain components and tying points
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Following our earlier discussion of the mixed interpolation of plate elements, in the
formulation of these shell elements we use

& = ) hiBY |, G (5.126)
k=]

where n; denotes the number of tying points used for the strain component considered, A¢
is the interpolation function corresponding to the tying point k, and BY'|, {1 is the strain
component evaluated at the tying point & by the displacement assumption (by displacement
interpolation). Note that with (5.126) only point tying and no integral tying (as in the
higher-order MITC plate elements) 1s performed.

Unfortunately, a mathematical analysis of the MITC9 and MITCI16 shell elements, as
achieved for the plate elements summarized in Fig. 5.27, is not yet available, although some
valuable insight has been gained by the work of J. Pitkédranta [A]. Hence, the formulation
of the shell elements is so far based on the mathematical and physical insight available from
the formulations and analyses of beam and plate elements, intuition to represent shell
behavior accurately, and well-chosen numerical tests.

Of course, the MITC shell elements presented here do not contain any spurious zero
energy modes. Also, the membrane and pure bending patch tests are passed by these
elements. A further valuable test is the analysis of the problem in Fig. 5.36. This test tells
whether an element locks (as a result of spurious membrane or shear stresses) and indicates
how sensitive the element predictive capability is when the curved element is geometrically
distorted in the model of a curved shell. Table 5.4 gives the analysis results of the problem
in Fig. 5.36 and shows the good performance of the MITC9 and MITC16 elements.

h = variable

L =10 Figure 5.36 Curved cantilever problem
E =2.1%x10% to test curved shell elements

Additional numerical results using the MITC9 and MITC16 shell elements are given
by M. L. Bucalem and K. J. Bathe [A]; similarly formulated elements have been presented
by H. C. Huang and E. Hinton [A], K. C. Park and G. M. Stanley [A], and J. Jang and
P. M. Pinsky [A].
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TABLE 5.4 Performance of MITC9 and MITC16 shell elements in the analysis of the problem in

Fig. 5.36
Ore/BaN
Mesh h/R
MITC9 shell MITC16 shell
element element
(results at point A)! (results at point B)}
1/100 0.9995 1.0001
1/1000 0.9995 1.0001
A 1/100000 0.9995 1.0001
B
1/100 1.0000 1.0000
1/1000 1.0000 1.0000
BA 1/100000 1.0000 0.9999
1/100 0.9956 0.9975
1/1000 0.9913 0.9796
BA 1/100000 0.9883 0.9318
20°
1/100 0.9995 1.0001
1/1000 0.9995 1.0001
A 1/100000 0.9995 1.0001
'Z' 1/100 0.9995 1.0000
1/1000 0.9995 1.0001
37_ B 1/100000 0.9995 1.0001

T Ais the middle of the edge.
t B is the third point of the edge.

Boundary Conditions

The plate elements presented in this section are based on Reissner-Mindlin plate theory, in
which the transverse displacement and section rotations are independent variables. This
assumption is fundamentally different from the kinematic assumption used in Kirchhoff
plate theory, in which the transverse displacement is the only independent variable. Hence,
whereas in Kirchhoff plate theory all boundary conditions are written only in terms of the
transverse displacement (and of course its derivatives), in the Reissner-Mindlin theory all
boundary conditions are written in terms of the transverse displacement and the section
rotations (and their derivatives). Since the section rotations are used as additional kinematic
variables, the actual physical condition of a support can also be modeled more accurately.

As an example, consider the support conditions at the edge of the thin structure shown
in Fig. 5.37. If this structure were modeled as a three-dimensional continuum, the element
idealization might be as shown in Fig. 5.38(a), and then the boundary conditions would be
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Rigidly
built-in

?_ <1 h (small) Rigid

Figure §.37 Knife-edge support for thin structure
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o
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* < on this
’ line, wy =0,
For all nodes on this line, k=..., 0 i+1,i+2 .
Ug=Vr=Wg=0,k=...,0i,i+1,i+2,...
{a) Three-dimensional {b) Plate model using
model using 27-node plate elements

elements

Figure 5.38 Three-dimensional and plate models for problem in Fig. 5.37

those given in the figure. Of course, such a model would be inefficient and impractical
because the finite element discretization would have to be very fine for an accurate solution
(recall that the three-dimensional elements would display the shear locking phenomenon).

Employing Reissner-Mindlin plate theory, the thin structure is represented using the
assumptions given in (5.88) and Fig. 5.25. The boundary conditions are that the transverse
displacement is restrained to zero but the section rotations are free; see Fig. 5.38(b). Surely,
these conditions represent the physical situation as closely as possible consistent with the
assumptions of the theory.

We note, on the other hand, that using Kirchhoff plate theory, the transverse displace-
ment and edge rotation given by dw/dx would both be zero, and therefore the finite element
model would also have to impose 6, = 0. Hence, in summary, the edge conditions in
Fig. 5.37 would be modeled as follows in a finite element solution.
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Using three-dimensional elements:

ontheedge: u=v=w=20 (5.127)
Using Reissner-Mindlin plate theory-based elements (e.g., the MITC elements in Fig. 5.27):
on the edge: w = 0; 6, and 0, are left free (5.128)
Using Kirchhoff plate theory-based elements (e.g., the elements in Example 4.18):
ontheedge: w =6, = 0; 0, is left free (5.129)
where in Kirchhoff plate theory, -
6= - (5.130)

Of course, we could also visualize a physical support condition that, in addition to the
rigid knife-edge support in Fig. 5.37, prevents the section rotation 3. In this case we also
would set 6, to zero when using the Reissner-Mindlin plate theory-based elements, and we
would set all u-displacements on the face of the plate equal to zero when using the
three-dimensional elements.

The boundary condition in (5.128) is referred to as the “soft” boundary condition for
a simple support, whereas when 6, is also set to zero, the boundary condition is of the “hard”
type. Similar possibilities also exist when the plate edge is “clamped”, i.e., when the edge
is also restrained against the rotation 6. In this case we clearly have w = 0 and 6, = O on
the plate edge. However, again a choice exists regarding 6,: in the soft boundary condition
0, is left free, and in the hard boundary condition 6, = 0. In practice, we usually use the
soft boundary conditions, but of course, depending on the actual physical situation, the hard
boundary condition is also employed.

The important point is that when the Reissner-Mindlin plate theory-based elements
are used, the boundary conditions on the transverse displacement and rotations are not
necessarily the same as when Kirchhoff plate theory is being used and must be chosen to
model appropriately the actual physical situation.

The same observations hold of course for the use of the shell elements presented
earlier, for which the section rotations are also independent variables (and are not given by
the derivatives of the transverse displacement).

Since the Reissner-Mindlin theory contains more variables for describing the plate
behavior than the Kirchhoff theory, various interesting questions arise regarding a compari-
son of these theories and the convergence of results based on the Reissner-Mindlin theory
to those based on the Kirchhoff theory. These questions have been addressed, for example,
by K. O. Friedrichs and R. F. Dressler [A], E. Reissner [C], B. Hdggblad and K. J. Bathe
[A], and D. N. Arnold and R. S. Falk [A]. A main result is that when the Reissner-Mindlin
theory is used, boundary layers along plate edges develop for specific boundary conditions
when the thickness/length ratio of the plate becomes very small. These boundary layers
represent the actual physical situation more realistically than the Kirchhoff plate theory
does. Hence, the plate and shell elements presented in this section are not only attractive
for computational reasons but can also be used to represent the actual situations in nature
more accurately. Some numerical results and comparisons using the Kirchhoff and
Reissner-Mindlin plate theories are given by B. Higgblad and K. J. Bathe [A] and
K. J. Bathe, N. S. Lee, and M. L. Bucalem [A].
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5.4.3 Exercises
5.32. Consider the beam of constant cross-sectional area in Fig. 5.19. Derive from (4.7), using the
assumptions in Fig. 5.18, the virtual work expression in (5.58).

5.33. Consider the cubic displacement-based isoparametric beam element shown. Construct all ma-

trices needed for the evaluation of the stiffness and mass matrices (but do not perform any
integrations to evaluate these matrices).

L

- .
Wy wa wy wy  Thickness b
’t\ 6 ,’t\ 63 ’t\ 64 92_¢_h

5.34. Consider the 3-node isoparametric displacement-based beam element used to model the
cantilever beam problem in Fig. 5.20. Show analytically that excellent results are obtained when

node 3 is placed exactly at the midlength of the beam, but that the results deteriorate when this
node is shifted from that position.

W1 = / % we
A ! A ‘ Beam of constant
6,=0 93 eil

Cross section

L

5.35. Consider the two-node beam element shown. Specialize the expressions (5.71) to (5.86) to this
case.

Ov;

Constant thickness b

ng

1.5

Action in x-y plane
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5.36. Consider the three-node beam element shown. Specialize the expressions (5.71) to (5.86) to this
case.

N/
0/.% . .
Action in x-y plane

5.37. Consider the cantilever beam shown. Idealize this structure by one two-node mixed interpolated
beam element and analyze the response. First, neglect warping effects. Next, introduce warping
displacements using the warping displacement function w., = xy(x? — y?) and assuming a linear
variation in warping along the element axis.

— A |

-
-]

Young's modulus E
Shear modulus G

5.38. Consider the two-node mixed interpolated beam element shown. Derive all expressions needed
to calculate the stiffness matrix, mass matrix, and nodal force vector for the degrees of freedom
indicated. However, do not perform any integrations.

Load on beam is p/unit length in
Zdirection on centarline of baam
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5.39. Consider the plane stress element shown and evaluate the strain-displacement matrix of this
element (called B,).
Also consider the two-node displacement-based isoparametric beam element shown and
evaluate the strain-displacement matrix (called B,).
Derive from B,, using the appropriate kinematic constraints, the strain-displacement
matrix of the degenerated plane stress element (called B,y) for the degrees of freedom used in the
beam element. Show explicitly that

j BIC,B, dV = j BZLCB, dv
1’4 1’4

with C, and C to be determined by you.

Vi
s ﬁ o
T 2 1 Vi
0, o
t > 2 7
"k it
. -] Beem element of depth t
L and unit thickness

Plane stress element
{unit thickness)
Young's modulus E
Poisson’'s ratio v

5.40. Consider the problem of an infinitely long, thin plate, rigidly clamped on two sides as shown.
Calculate the stiffness matrix of a two-node plane strain beam element to be used to analyze the
plate. [Use the mixed interpolation of (5.68) and (5.69).]

Young's modulus E
Poisson's ratio v

i 7

/\
h 22— U
A137 T r

5.41. Consider the axisymmetric shell element shown. Construct the strain-displacement matrix as-
suming mixed interpolation with a constant transverse shear strain. Also, establish the corre-
sponding stress-strain matrix to be used in the evaluation of the stiffness matrix.
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5.42.

5.43.

5.44.

5.45.

Young's modulus E
Poisson's ratio v

Assume that in Example 5.28 axisymmetric conditions are being considered. Construct the
strain-displacement matrix of the transition element. Assume that the axis of revolution, i.e. the
y axis, is at distance R from node 3.

Use a computer program to analyze the curved beam shown for the deformations and internal

stresses.

(a) Use displacement-based discretizations of, first, four-node plane stress elements, and then,
eight-node plane stress elements.

(b) Use discretizations of, first, two-node beam elements, and then, three-node beam elements.
Compare the calculated solutions with the analytical solution and increase the fineness of

your meshes until an accurate solution is obtained.

~ h=1.0 E = 200,000
v=203
Unit thickness

NN

4 R = 100
90°
P e———
X P

Perform the analysis in Exercise 5.43 but assume axisymmetric conditions; 1.e., assume that the
figure in Exercise 5.43 shows the cross section of an axisymmetric shell with the centerline at
x = 0, and that P is a line load per unit length.

Consider the four-node plate bending element in Example 5.29. Assume that w; = 0.1 and
6; = 0.01 and that all other nodal point displacements and rotations are zero. Plot the curvatures
k and transverse shear strains 7y as a function of r, s over the midsurface of the element.
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5.46. Consider the four-node plate bending element in Example 5.29. Assume that the element is
loaded on its top surface with the constant traction shown. Calculate the consistent nodal point
forces and moments.

t is acting
in y—-z plane

[ =

0
t=|V3/2 force per unit area
| —1/2_

5.47. Establish the transverse shear strain interpolation matrix B, of the parallelogram-shaped MITC4

element shown.
2 1
y A 2
60°
3 4
» -

2

x 3

5.48. Consider the formulation of the MITC4 element and Example 4.30. Show that the MITC4
element formulation can be derived from the Hu-Washizu variational principle.

5.49. Consider the four-node shell element shown and develop the geometry and displacement interpo-
lations (5.107) and (5.112).

40

5.50. Show explicitly that using the general shell element formulation in (5.107) to (5.118) for a flat
element is equivalent to the superposition of the Reissner-Mindlin plate element formulation in
(5.88) to (5.99) and the plane stress membrane element formulation in Section 5.3.1.
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5.51. Use a computer program to solve the problem shown in Fig. 5.36 with curved shell elements.
First, use a single element, and then, use two geometrically distorted elements for the structure
to study the element distortion sensitivity.

5.52. Consider the following Kirchhoff plate theory boundary conditions at the edge of a plate:
w=0; —=—=0 (a)

Establish a corresponding reasonable choice of boundary conditions for the Reissner-Mindlin
plate theory. Also, discuss and illustrate graphically that the boundary conditions in (a) do not
uniquely determine the boundary conditions for the Reissner-Mindlin plate theory.

5.5 NUMERICAL INTEGRATION

An important aspect of isoparametric and related finite element analysis is the required
numerical integration. The required matrix integrals in the finite element calculations have
been written as

f F(r) dr; f F(r, s) dr ds; f F(r, s, t) dr ds dt (5.131)

in the one-, two-, and three-dimensional cases, respectively. It was stated that these inte-
grals are in practice evaluated numerically using

fF(r) dr = 2 a,-F(r,-) + Rn 1

f F(r,s)drds = 2 a;F(ri,s) + R, ¢ (5.132)

f F(r, S, t) drds dt = 2 a;ij(r,-, S}, tk) + R,,

i, .k 4
where the summations extend over all i, j, and % specified, the a;, a;;, and a;; are weighting
factors, and F(r), F(r, s;), and F(r;, s;, t) are the matrices F(r), F(r, s), and F(r, s, 1)
evaluated at the points specified in the arguments. The matrices R, are error matrices,
which in practice are usually not evaluated. Therefore, we use

f F(r) dr = 2 o; F(r)

~

| ¥e. 9 dras = S aFin s (5.133)

f F(r, S, t) drds dt = 2 (s 772 F(r,-, AYR tk)

iLj,k 4

The purpose in this section is to present the theory and practical implications of

numerical integrations. An important point is the integration accuracy that is needed, i.e.,
the number of integration points required in the element formation.

As presented above, in finite element analysis we integrate matrices, which means that

each element of the matrix considered is integrated individually. Hence, for the derivation
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of the numerical integration formulas we can consider a typical element of a matrix, which
we denote as F.,

Consider the one-dimensional case first, i.e., the integration of [ F(r) dr. In an
isoparametric element calculation we would actually have a = —1 and b = +1.

The numerical integration of [, F(r) dr is essentially based on passing a polynomial
Y(r) through given values of F(r) and then using [ y(r) dr as an approximation to
{2 F(r) dr. The number of evaluations of F (r) and the positions of the sampling points in
the interval from a to b determine how well y(r) approximates F(r) and hence the error of
the numerical integration (see, for example, C. E. Fréberg [A]).

5.5.1 Interpolation Using a Polynomial

Assume that F(r) has been evaluated at the (n + 1) distinct points ro, r1, . . . , 7, to Obtain
Fo, Fu, . . ., F,, respectively, and that a polynomial y(r) is to be passed through these data.
Then there is a unique polynomial () given as

Ylr) = ao + arr + azr* + - -« + a,r" (5.134)

Using the condition )(r) = F(r) at the (n + 1) interpolating points, we have

F = Va (5.135)
-FO— _ao_
F 1 a
where F=|-] a=|. (5.136)
_F n_ L_a,,_
and V is the Vandermonde matrix,
_1 re r3 - r5T
1 2 ... n
v=|. 7 I (5.137)
_i ': n ?: r2: et r :__

Since det V # 0, provided that the r; are distinct points, we have a unique solution for a.

However, a more convenient way to obtain (r) is to use Lagrangian interpolation.
First, we recall that the (n + 1) functions 1, r, r%, .. ., r" form an (n + 1)-dimensional
vector space, say V., in which ¢«(r) is an element (see Section 2.3). Since the coordinates
Qo, ay, Gz, . . ., G, Of Y(r) are relatively difficult to evaluate using (5.135), we seek a
different basis for the space V, in which the coordinates of y/(r) are more easily evaluated,
This basis is provided by the fundamental polynomials of Lagrangian interpolation,
given as

(r=r)r=n) - (r =500 —nr+)---(r— )

(n=r)—nr) (=)= ) (5 — 1)

I(r) = (5.138)

where
Ii(r) = &y (5.139)
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where §; is the Kronecker delta; i.e., §; = 1 for i = j, and 6; = O for i # j. Using the
property in (5.139), the coordinates of the base vectors are simply the values of F(r), and
the polynomial y(r) is

Y(r) = Folo(r) + Fili(r) + - -« 4+ Fol(r) (5.140)
EXAMPLE 5.33: Establish the interpolating polynomial y(r) for the function F(r) = 2" — r
when the data at the points r = 0, 1, and 3 are used. In this case ro = 0, =1, = 3, and
FO = 1,F1 = l,F2 = 5.
In the first approach we use the relation in (5.135) to calculate the unknown coefficients
ao, a1, and a, of the polynomial ¥(r) = ao + a,r + a,r?. In this case we have
1 0 O0|[a] [1]
1 1 1)la]l=1]1
L_l 3 9_ L_az_ _5d
The solution gives ao = 1, a; = —3, a, = %, and therefore Y(r) = 1 — 3r + 3,2,
If Lagrangian interpolation is employed, we use the relation in (5.140) which in this case
gives
r— D(r - 3) (r)(r — 3) rY(ir— 1)
wn) = (1 + (2 50
(—D(=3) (D(=2) (3)(2)
or, as before, Y(r) =1 —2r + 2,2

5.5.2 The Newton-Cotes Formulas
(One-Dimensional Integration)

Having established an interpolating polynomial s(r), we can now obtain an approximation
to the integral f; F(r) dr. In Newton-Cotes integration, it is assumed that the sampling
points of F are spaced at equal distances, and we define

re = a; r. = b, h = (5.141)

Using Lagrangian interpolation to obtain y(r) as an approximation to F(r), we have

f b F(r)dr = > [ f I(r) dr]F.- + R, (5.142)

a i=0

or, evaluated, f F(r)dr = (b — a) > C!'F; + R, (5.143)
a i=0

where R, is the remainder and the C? are the Newton-Cotes constants for numerical
integration with n intervals.

The Newton-Cotes constants and corresponding remainder terms are summarized in
Table 5.5 forn = 110 6. The casesn = 1 and n = 2 are the well-known trapezoidal rule
and Simpson formula. We note that the formulas for » = 3 and n = 5 have the same order
of accuracy as the formulas for n = 2 and n = 4, respectively. For this reason, the even
formulas with n = 2 and n = 4 are used in practice.
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TABLE 5.5 Newton-Cotes numbers and error estimates

Upper bound on
error R, as
Number of a function of
intervals n C3 Cr C3 Cs Ca Cy Ca the derivative of F
I 2 2 10-'(b — a)*FU(r)
2 2
l & l -3 — 5 1V
2 6 6 6 1076 — a)’F™(r)
1 3 3 1 T
3 3 2 2 3 10736 — a)*F™(p)
l 2 E 2 l —6(} _ N\TEVI
4 3 3 5 % % 10 (b. a)’ FV¥(r)
19 5 0 0 15 19 —6(h — TRV
3 288 288 288 288 288 288 107°(b — a)'F¥(n)
41 216 27 22 21 216 41 O
6 840 840 840 840 840 840 840 1075 = af F*(n)

EXAMPLE 5.34: Evaluate the Newton-Cotes constants when the interpolating polynomial is
of order 2; i.e., ¥(r) is a parabola.
In this case we have

’ . ’ (r = n)(r—nr) (r = r)(r — r) (r = r)(r — ri)
L F(r) dr = f [Fo(ro — n)(ro — r2) *h (rn — ro)(n — r2) *h (r2 — ro)(r: — 7'1)] of

Using ro = a, rn = a + h, r, = a + 2h, where h = (b — a)/2, the evaluation of the integral
gives

b
f F(r) dr =2 - 2(F, + 4F, + F,)

Hence the Newton-Cotes constants are as given in Table 5.5 for the case n = 2.

a

EXAMPLE 5.35: Use Simpson’s rule to integrate f; (2" — r) dr.
In this case n = 2 and h = 3. Therefore, o, =0, =3, n=3,and Fy = 1, F, =
1.328427, F, = §, and we obtain

f 2" —rdr= %[(1)(1) + (4)(1.328427) + (1)(5)]

r3

or J (2" — r) dr = 5.656854
0
r3

The exact result is J (2" — r) dr = 5.598868
0

Hence the error is R = 0.057986

However, using the upper bound value on the error, we have

3 -0y
1000

R < (In 2)*(2") = 0.448743
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To obtain greater accuracy in the integration using the Newton-Cotes formulas we
need to employ a smaller interval A, i.e., include more evaluations of the function to be
integrated. Then we have the choice between two different strategies: we may use a higher-
order Newton-Cotes formula or, alternatively, employ the lower-order formula in a re-
peated manner, in which case the integration procedure is referred to as a composite
formula. Consider the following example.

EXAMPLE 5.36: Increase the accuracy of the integration in Example 5.35 by using half the
interval spacing.

In this case we have & = 2, and the required function values are Fy, = 1, F; = 0.931792,
F, = 1.328427, F5; = 2.506828, and F, = 5. The choice now lies between using the higher-
order Newton-Cotes formula with n = 4 or applying the Simpson’s rule twice, i.e., to the first
two intervals and then to the second two intervals. Using the Newton-Cotes formula with n = 4,
we obtain

3
f 2" —r)dr = 936(7170 + 32F, + 12F, + 32F; + TF,)
0

3
Hence, f (2" — r) dr = 5599232
0

On the other hand, using Simpson’s rule twice, we have

3 3/2 3
f(2’—r)dr=f (2’—r)dr+f (2" — ) dr
0 3/2

0

The integration is performed using

3/2 2_0
f (2’—r)dri26 (F0+4F1+F2)
0

where Fo, F,, and F, are the function values at r = 0, r = 2, and r = 3, respectively; i.e.,

Fo = 1; F, = 0.931792; F, = 1.328427

3/2
Hence we use f (27 — r)dr = 1.513899 (a)

0
Next we need to evaluate

3 3 _ 3
f (2’ - l") dr = 2(F0 + 4F1 + Fz)
3/2 6

where Fy, F\, and F, are the function values at r = 3, r = 2, and r = 3, respectively,

Fo = 1.328427; F, = 2.506828; =5

3
Hence we have f (2" — r) dr = 4.088935 (b)
3/2

Adding the results in (a) and (b), we obtain

3
f (2" — ) dr = 5.602834
0
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The use of a composite formula has a number of advantages over the application of
high-order Newton-Cotes formulas. A composite formula, such as the repetitive use of
Simpson’s rule, is easy to employ. Convergence is ensured as the interval of sampling
decreases, and, in practice, a sampling interval could be used that varies from one applica-
tion of the basic formula to the next. This is particularly advantageous when there are
discontinuities in the function to be integrated. For these reasons, in practice, composite
formulas are commonly used.

EXAMPLE 5.37: Use acomposite formula that employs Simpson’s rule to evaluate the integral
* 2 F() dr of the function F(r) in Fig. E5.37.
This function is best integrated by considering three intervals of integration, as follows:

13 2 9 13
1
J Fdr=f (r3+3)dr+f [10 + (r — 1)‘/3]dr+f [_(13—1')5-}-4] dr
-1 -1 2 9 128

F(r) k

15 |-

S S |
3 4 5 6 7 8 9 10 11 12 13 14 r

Figure E5.37 Function F(r)
We evaluate each of the three integrals using Simpson’s rule and have

f (P +3) dr = 2 _6("1)[(1)(2) + @)(3.125) + (1)(11)]
or J (r3 + 3)dr = 12.75
f [10 + (r — 1)V dr = 9-;-3[(1)(11) + (4)(11.650964) + (1)(12)]

9
or f [10 + (r — 1)3] dr = 81.204498
2

L [T%(B -+ 4] dr = 136- 2[(1)(12) + 4)(425) + ()@)]

13
1
— (13- +4|dr=22
or J;[128(3 r)’ + ]dr
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13
Hence, f Fdr = 1275 + 81.204498 + 22

-1

13
or f F dr = 115.954498

=1

5.5.3 The Gauss Formulas (One-Dimensional Integration)

The basic integration schemes that we have considered so far use equally spaced sampling
points, although the basic methods could be employed to construct procedures that allow
the interval of sampling to be varied; i.e., the composite formulas have been introduced. The
methods discussed so far are effective when measurements of an unknown function to be
integrated have been taken at certain intervals. However, in the integration of finite element
matrices, a subroutine is called to evaluate the unknown function F at given points, and
these points may be anywhere on the element. No additional difficulties arise if the sampling
points are not equally spaced. Therefore, it seems natural to try to improve the accuracy that
can be obtained for a given number of function evaluations by also optimizing the positions
of the sampling points. A very important numerical intergration procedure in which both
the positions of the sampling points and the weights have been optimized is Gauss quadra-
ture. The basic assumption in Gauss numerical integration is that

f F(r)dr = a\F(r)) + &aF(rz) + -+ - + a,F(ra) + R, (5.144)

a

where both the weights a,, . . ., a, and the sampling points r, . . ., r, are variables. It
should be recalled that in the derivation of the Newton-Cotes formulas, only the weights
were unknown, and they were determined from the integration of a polynomial () that
passed through equally spaced sampling points of the function F(r). We now also calculate
the positions of the sampling points and therefore have 2n unknowns to determine a
higher-order integration scheme.

In analogy with the derivation of the Newton-Cotes formulas, we use an interpolating
polynomial y«(r) of the form given in (5.140),

W(r) = 2 Fl(r) (5.145)
j=1

where n samplings points are now considered, r,, . . . , r,, which are still unknown. For the

determination of the values r, . . ., r,, we define a function P(r),
Pr)=(r—=—r)r—nr): - (r—n) (5.146)
which is a polynomial of order n. We note that P(r) = 0 at the sampling points ry, . . . , 7.

Therefore, we can write

F(r) =4g(r) + P(N(Bo + Bir + Bor*+ - - +) (5.147)

Integrating F(r), we obtain

[roa-S e[ wra]+ S vpra] e

a j=1 a
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where it should be noted that in the first integral on the right in (5.148), functions of order
(n — 1) and lower are integrated, and in the second integral the functjons that are integrated
are of order n and higher. The unknown values r;,j = 1,2, .. ., n, can now be determined
using the conditions

b
f P(ryrkdr = 0 k=012 ...,n—-1 (5.149)
Then, since the polynomial ¢(r) passes through n sampling points of F(r), and P(r) vanishes
at these points, the conditions in (5.149) mean that the reqtired integral [° F(r) dr is
approximated by integrating a polynomial of order (2n — 1) instead of F(r).

In summary, using the Newton-Cotes formulas, we use (n + 1) equally spaced sam-
pling points and integrate exactly a polynomial of order at most n. On the other hand, in
Gauss quadrature we require n unequally spaced sampling points and integrate exactly a
polynomial of order at most (2n — 1). Polynomials of orders less than n and (2n — 1),
respectively, for the two cases are also integrated exactly.

To determine the sampling points and the integration weights, we realize that they
depend on the interval a to b. However, to make the calculations general, we consider a
natural interval from —1 to +1 and deduce the sampling points and weights for any interval.
Namely, if r, is a sampling point and «; is the weight for the interval —1 to +1, the
corresponding sampling point and weight in the integration from a to b are

a-;b_*_bzari and bzaai
respectively.
Hence, consider an interval from —1 to + 1. The sampling points are determined from
(5.149) with a = —1 and b = +1. To calculate the integration weights we substitute for

F(r) in (5.144) the interpolating polynomial /() from (5.145) and perform the integration.
It should be noted that because the sampling points have been determined, the polynomial
Y(r) is known, and hence

+1
a; = f I(r) dr; ji=12,...,n (5.150)

-1

TABLE 5.6 Sampling points and weights in Gauss-Legendre
numerical integration (interval —1 to +1)

n ri Q;
1 0. (15 zeros) 2. (15 zeros)

2 +0.57735 02691 89626 1.00000 00000 00000

3 +(0.77459 66692 41483 0.55555 55555 55556

0.00000 00000 00000 0.88888 88888 88889

4 +(0.86113 63115 94053 0.34785 48451 137454

+0.33998 10435 84856 0.65214 51548 62546

5 *+0.90617 98459 38664 0.23692 68850 56189

+(.53846 93101 05683 0.47862 86704 99366

0.00000 00000 00000 0.56888 88888 88889

6 +0.93246 95142 03152 0.17132 44923 79170

+0.66120 93864 066265 0.36076 15730 48139

+0.23861 91860 83197 0.46791 39345 72691
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The sampling points and weights for the interval —1 to +1 have been published by A. N.
Lowan, N. Davids, and A. Levenson [A] and are reproduced in Table 5.6 forn = 1 to 6.

The coefficients in Table 5.6 can be calculated directly using (5.149) and (5.150) (see
Example 5.38). However, for larger n the solution becomes cumbersome, and it is expedient
to use Legendre polynomials to solve for the coefficients, which are thus referred to as
Gauss-Legendre coefficients.

EXAMPLE 5.38: Derive the sampling points and weights for two-point Gauss quadrature.
In this case P(r) = (r — r)(r — r,) and (5.149) gives the two equations

r+ 1

(r—r)(r —rn)dr=20
J-1

+1

| (r—=r)(r —r)rdr=20

J-

Solving, we obtain nn = —i
and rn+r=20
Hence ! + 1
rhn = — ————; rz = ——
V3 V3
The corresponding weights are obtained using (5.150), which in this case gives
r+1 r—r
o = > dr

J-i1n— n,

P+ 1
r — rn

dr

4 4]

Jo1 12— n

Since r, = —r;, we obtain a; = a;, = 1.0.

EXAMPLE 5.39: Use two-point Gauss quadrature to evaluate the integral [y (2" — r) dr
considered in Examples 5.35 and 5.36.

Using two-point Gauss quadrature, we obtain from (5.144),

L 2" = r)dr=aF(r) + a; F(rp) (a)

where ay, a, and ry, r, are weights and sampling points, respectively. Since the interval is from
0 to 3, we need to determine the values a, a,, r, and r, from the values given in Table 5.6,

a = 3(1); a = 3(1)

b2 V3/ 772 V3
where 1/ V3 = 0.5773502692. Thus,

3
and (a) gives f (2" — r) dr = 5.56053551
0
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The Gauss-Legendre integration procedure is commonly used in isoparametric finite
element analysis. However, it should be noted that other integration schemes, in which both
the weights and sampling positions are varied to obtain maximum accuracy, have also been
derived (see C. E. Froberg [A] and A. H. Stroud and D. Secrest [A)).

5.5.4 Integrations in Two and Three Dimensions

So far we have considered the integration of a one-dimensional function F(r). However,
two- and three-dimensional integrals need to be evaluated in two- and three-dimensional
finite element analyses. In the evaluation of rectangular elements, we can apply the above
one-dimensional integration formulas successively in each direction.® As in the analytical
evaluation of multidimensional integrals, in this procedure, successively, the innermost
integral is evaluated by keeping the variables corresponding to the other integrals constant.
Therefore, we have for a two-dimensional integral,

f:l J:l F(r, s) drds = ; a;

-+

F(r:, s) ds (5.151)

or J+ J+ F(r, S) drds = 2 a; F(r;, Sj) (5.152)

and corresponding to (5.133), a; = i, where a; and o; are the integration weights for
one-dimensional integration. Similarly, for a three-dimensional integral,

+1 p+l p+d
f f f F(r, S, t) drdsdt = 2 Q; QO F(r,-, S7, tk) (5.153)
-1 J-1 J-1

i, j.k

and oy = a;a;ax. We should note that it is not necessary in the numerical integration to use
the same quadrature rule in the two or three dimensions; i.e., we can employ different
numerical integration schemes in the r, s, and ¢ directions.

EXAMPLE 5.40: Given that the (i, j)th element of a stiffness matrix K is [*! [, r2s? drds.
Evaluate the integral [*! [*! r2s? dr ds using (1) Simpson’s rule in both r and s, (2) Gauss
quadrature in both r and s, and (3) Gauss quadrature in r and Simpson’s rule in s.

1. Using Simpson’s rule, we have

J~—+l Jfl ris’drds = Jr—l %[(1)(1) + (4)(0) + (1)(1)]52 ds

- [ea=w) @0+ o)) -

2, Using two-point Gauss quadrature, we have

J~+l J~+l - r+l [ 1 o) ( ) 1 )) )
rescdrds = 1(——) + 1(——)]s ds
-1 J-1 J-1 0 V3 V3
e =305 - 0(5)] -5
=| i2as=3M(—=) +WOl=—=}| =2
Jo1 3 3| V3 D V3 9
® This results in much generality of the integration, but for special cases somewhat less costly procedures can
be designed (see B. M. Irons [C]).

O
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3. Finally, using Gauss quadrature in » and Simpson’s rule in s, we have

.E .El [(1)("\%)2 + (1)(;}—5-)2}2 ds
_ fll %sz ds = %[(1)@) + (4)(0) + (1)@)] _ g

We should note that these numerical integrations are exact because both integration
schemes, i.e., Simpson’s rule and two-point Gauss quadrature, integrate a parabola exactly.

The above procedure is directly applicable to the evaluation of matrices of quadrilat-
eral elements in which all integration limits are —1 to +1. Hence, in the evaluation of a
two-dimensional finite element, the integrations can be carried out for each entry of the
stiffness and mass matrices and load vectors as illustrated in Example 5.40. Based on the
information given in Table 5.6, some common Gauss quadrature rules for two-dimensional
analysis are summarized in Table 5.7.

Considering next the evaluation of triangular and tetrahedral element matrices, how-
ever, the procedure given in Example 5.40 is not applicable directly because now the
integration limits involve the variables themselves. A great deal of research has been spent
on the development of suitable integration formulas for triangular domains, and here, too,
formulas of the Newton-Cotes type (see P. Silvester [A]) and of the Gauss quadrature type
are available (see P. C. Hammer, O. J. Marlowe, and A. H. Stroud [A] and G. R. Cowper
[A]). As ir the integration over quadrilateral domains, the Gauss quadrature rules are in
general more efficient because they yield a higher integration accuracy for the same number
of evaluations. Table 5.8 lists the integration stations and integration weights of the Gauss
integration formulas published by G. R. Cowper [Al.

5.5.5 Appropriate Order of Numerical Integration

In the practical use of the numerical integration procedures presented in the previous
section, basically two questions arise, namely, what kind of integration scheme to use, and
what order to select. We pointed out that in using the Newton-Cotes formulas, (n + 1)
function evaluations are required to integrate without error a polynomial of order n. On the
other hand, if Gauss quadrature is used, a polynomial of order (2n — 1) is integrated exactly
with only » function evaluations. In each case of course any polynomial of lower order than
n and (2n — 1), respectively, is also integrated exactly.

In finite element analysis a large number of function evaluations directly increases the
cost of analysis, and the use of Gauss quadrature is attractive. However, the Newton-Cotes
formulas may be efficient in nonlinear analysis for the reasons discussed in Section 6.8 .4.

Having selected a numerical integration scheme, the order of numerical integration to
be used in the evaluation of the various finite element integrals needs to be determined. The
choice of the order of numerical integration is important in practice because, first, the cost
of analysis increases when a higher-order integration is employed, and second, using a
different integration order, the results can be affected by a very large amount. These
considerations are particularly important in three-dimensional analysis.

The matrices to be evaluated by numerical integration are the stiffness matrix K, the
mass matrix M, the body force vector Rg, the initial stress vector R;, and the surface load
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TABLE 5.7 Gauss numerical integrations over quadrilateral domains

Integration Degree of Location of integration
order precision points

Vt
2x2 3 s=0.577...

3Ix3 5

s=-0339 ...
s =-0.861 ...

4x4 7

'The location of any integration point in the x, y coordinate system is given by: x, = Z;h(r,, 5,)x; and
¥, = 2ihi(ry, 5,)y;- The integration weights are given in Table 5.6 using (5.152).

vector Rs. In general, the appropriate integration order depends on the matrix that is
evaluated and the specific finite element being considered. To demonstrate the important
aspects, consider the Gauss numerical integration order required to evaluate the matrices of
the continuum and structural elements discussed in Sections 5.3 and 5.4.

A first observation in the selection of the order of numerical integration is that, in
theory, if a high enough order is used, all matrices will be evaluated very accurately. On the
other hand, using too low an order of integration, the matrices may be evaluated very
inaccurately and, in fact, the problem solution may not be possible. For example, consider
an element stiffness matrix. If the order of numerical integration is too low, the matrix can
have a larger number of zero eigenvalues than the number of physical rigid body modes.
Hence, for a successful solution of the equilibrium equations alone, it would be necessary
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that the deformation modes corresponding to all zero eigenvalues of the element be properly
restrained in the assemblage of finite elements because otherwise the structure stiffness
matrix would be singular. A simple example is the evaluation of the stiffness matrix of a
three-node truss element. If one-point Gauss numerical integration is used, the row and
column corresponding to the degree of freedom at the midnode of the element are null
vectors, which may result in a structure stiffness matrix that is singular. Therefore, the
integration order should in general be higher than a certain limit.

The integration order required to evaluate a specific element matrix accurately can be
determined by studying the order of the function to be integrated. In the case of the stiffness
matrix, we need to evaluate

K = f B’CB det J dV (5.154)
|4

where C is a constant material property matrix, B is the strain-displacement matrix in the
natural coordinate system 7, s, ¢, det J is the determinant of the Jacobian transforming local
(or global) to natural coordinates (see Section 5.3), and the integration is performed over
the element volume in the natural coordinate system. The matrix function F to be integrated
is, therefore,

F = B’CB det J (5.155)

The matrices J and B have been defined in Sections 5.3 and 5.4.

A case for which the order of the variables in F can be evaluated with relative ease
arises when the four-node two-dimensional element studied in Example 5.5 is used as a
rectangular or parallelogram element. It is instructive to consider this case in detail because
the procedure of evaluating the required integration order is displayed clearly.

EXAMPLE 5.41: Evaluate the required Gauss numerical integration order for the calculation
of the stiffness matrix of a four-node displacement-based rectangular element.

The integration order to be used depends on the order of the variables r and s in F defined
in (5.155). For a rectangular element with sides 2a and 2b, we can write

X =ar,y = bs

and consequently the Jacobian matrix J is

a 0
1= [o b]
Since the elements of J are constant, referring to the information given in Example 5.5, the

elements of the strain-displacement matrix B are therefore functions of r or s only. But the
determinant of J is also constant; hence,

F = f(r? rs, 59

where f denotes “function of.”
Using two-point Gauss numerical integration in the r and s directions, all functions in r and
s involving at most cubic terms are integrated without error; e.g., for integration order n, the order
of r and s integrated exactly is (2n — 1). Hence, two-point Gauss integration is adequate.
Note that the Jacobian matrix J is also constant for a four-node parallelogram element;
hence, the same derivation and result are applicable.
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In an analogous manner, the required integration order to evaluate exactly (or very
accurately) the stiffness matrices, mass matrices, and element load vectors of other elements
can be assessed. In this context it should be noted that the Jacobian matrix is not constant
for nonrectangular and nonparallelogram element shapes, which may mean that a very high
integratton order might be required to evaluate the element matrices to high accuracy.

In the above example, a displacement-based element was considered, but we should
emphasize that, of course, the same numerical integration schemes are also used in the
evaluation of the element matrices of mixed formulations. Hence, in mixed formulations the
required integration order must also be identified using the procedure just discussed (see
Exercise 5.57).

In studying which integration order to use for geometrically distorted elements, we
recognize that it is frequently not necessary to calculate the matrices to very high precision
using a very high order of numerical integration. Namely, the change in the matrix entries
(and their effects) due to using an order of [ instead of (/ — 1) may be negligible. Hence, we
need to ask what order of integration is generally sufficient, and we present the following
guideline.

We recommend that full numerical integration® always be used for a displacement-
based or mixed finite element formulation, where we define “full” numerical integration as
the order that gives the exact matrices (i.e., the analytically integrated values) when the
elements are geometrically undistorted. Table 5.9 lists this order for elements used in
two-dimensional analyses.

Using this integration order for a geometrically distorted element will not yield the
exactly integrated element matrices. The analysis is, however, reliable because the numeri-
cal integration errors are acceptably small assuming of course reasonable geometric distor-
tions. Indeed, as shown by P. G. Ciarlet [A], if the geometric distortions are not excessive
and are such that in exact integration the full order of convergence is still obtained (with the
provisions discussed in Section 5.3.3), then that same order of convergence is also obtained
using the full numerical integration recommended here. Hence, in that case, the order of
numerical integration recommended in Table 5.9 does not result in a reduction of the order
of convergence. On the other hand, if the element geometric distortions are very large, and
in nonlinear analysis of course, a higher integration order may be appropriate (see Sec-
tion 6.8.4).

Figure 5.39 shows some results obtained in the solution of the ad-hoc test problem
described in Fig. 4.12. These results were obtained using sequences of distorted, quasi-
uniform meshes. Figure 5.39(a) describes the geometric distortions used, and Fig. 5.39(b)
and (c) show the convergence results obtained with the eight-node and nine-node elements
using the Gauss integration order in Table 5.9. These results show that the order of conver-
gence (the slopes of the graphed curves when 4 is small) is approximately 4 in all cases (as
is theoretically predicted). However, the actual value of the error for a given value of 4 is
larger when the elements are distorted. That is, the constant ¢ in (4.102) increases as the
elements are distorted.

The reason for recommending the numerical integration orders in Table 5.9 is that the
reliability of the finite element procedures is of utmost concern (see Section 1.3), and if an

?In Section 5.5.6 we briefly discuss “reduced”’ numerical integration, which is the counterpart of full numer-
ical mtegration.
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TABLE 5.9 Recommended full Gauss numerical integration orders for the evaluation of
isoparametric displacement-based element matrices (use of Table 5.7)

Two-dimensionel elements Integration order
(plene stress, plane strain
and axisymmetric conditions)

4-node 2x2
4-node distorted 2% 2
-~
8-node 3x3
-
__.,__._
8-node distorted [ 3x3
_._.__
o
9-node ® 3x3
o
9-node distorted Q 3x3
® ®
® ®
16-node ® ° 4 x4
® ®

16-node distorted Q 4 x4

(Note: In axisymmetric analysis, the hoop strain effect is in all cases not integrated exactly, but with sufficient
accuracy.)



0.25

J |
2.0 2.0
{ Y
Element sides of
equal length = 0.50/4
! g ¢
! B
E 0.75
|
20| |5 | o "
\
|
H
B E
Y |
A
» 2.0 . 8 x 8 mesh, case B, h=2/8

Case C

The lines AA and BB are drawn, and then the sides AC, CB, BO, OA are subdivided into equal lengths
to form the elements in the domain ACBO. Similarly for the other three domains.

(a) Distortions used

6 6
5 5
4 4

logig (E — Ep)
w

N
log1o (E— Ep)
w

N

'0,910 h |Og1o h

{b) Results using 8-node eiements {c) Results using 9-node elements
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integration order lower than the “full” order is used (for a displacement-based or a mixed
formulation), the analysis is in general unreliable.

An interesting case is the rectangular two-dimensional plane stress eight-node
displacement-based isoparametric element evaluated with 2 X 2 Gauss integration. This
integration order yields an element stiffness matrix with one spurious zero energy mode (see
Exercise 5.56); that is, the element matrix not only has three zero eigenvalues (correspond-
ing to the physical rigid body motions) but also has one additional zero eigenvalue that is
purely a result of using too low an order of integration. Figure 5.40 shows a very simple
analysis case using a single eight-node element with 2 X 2 Gauss integration in which the
model is unstable; that is, if the solution is obtained, the calculated nodal point displace-
ments are very large and have no resemblance to the correct solution.'® In this simple
analysis it is readily seen that the eight-node element using 2 X 2 Gauss integration is
inadequate, and it can be argued that in more complex analysis the (single) spurious zero
energy mode is usually adequately restrained in an assemblage of elements. However, in a
large, complex model, in general, elements with spurious zero energy modes in an uncon-
trolled manner improve the overall solution results, introduce large errors, or result in an
unstable solution.

P
* - 9
¢ 4
Figure 540 Eight-node plane stress
A é .= B element supported at B by a spring.
’ Analysis unstable with 2 X 2 Gauss
integration.

As an example, let us consider the dynamic analysis of the cantilever bracket shown
in Fig. 5.41 and use the nine-node displacement-based element with 2 X 2 Gauss integra-.
tion, in which case each element stiffness matrix has three spurious zero energy modes. We
have considered this bracket already in Fig. 4.20, but with two pin supports instead of the
fixed condition used now. (As noted there, the 16-element model of the pin-supported
bracket using 2 X 2 Gauss integration for the element stiffness matrices was unstable). The
frequency solution of the 16-element mesh of nine-node displacement-based elements
representing the clamped cantilever bracket gives the results listed in Table 5.10. This table
shows that the use of 2 X 2 Gauss integration (referred to as reduced integration; sece
Section 5.5.6) does not result in a spurious zero energy mode of the complete model
(because the bracket is clamped at its left end) but in one spurious nonzero energy mode
that is part of the predicted smallest six frequencies. Such modes of no physical reality—
which we refer to also as “phantom” modes—ocan introduce uncontrolled errors into a

10Tn exact arithmetic the stiffness matrix is singular, but because of round-off errors in the computations a
solution is usually obtained.
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(b) Sixteen element mesh of 9-node elements

Figure 5.41 Frequency solution of clamped cantilever bracket

dynamic step-by-step solution'' that may not be easily detectable, and even if these errors
are detected, the analysis would require additional solution attempts all of which may result

in extensive and undesirable numerical experimentation.
For these reasons any element with a spurious zero energy mode should not be used

in engineering practice, in linear or in nonlinear analysis, and we therefore do not discuss
such elements in this book. However, we should mention that to prevent the deleterious
effects of spurious modes, significant research efforts have been conducted to control their

1'The mode shapes of phantom frequencies may indicate that the response is not physical, but in a dynamic
step-by-step solution, the frequencies and mode shapes are normally not calculated.
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TABLE 5.10 Smallest six frequencies (in Hz) of the 16-element mesh in
Fig. 5.41(b) using a consistent mass matrix’

16-element model 16 X 64
element model,?
Mode 3IX3 2 X2 3 X3
number Gauss integration Gauss integration Gauss integration
1 112.4 110.5 110.6
2 634.5 617.8 606.4
3 906.9 905.5 905.2
4 1548 958.4% 1441
5 2654 1528 2345
6 2691 2602 2664

"The element consistent mass matrices are always integrated using 3 X 3 Gauss
integration.

¥*We include the results using a fine mesh (with 64 elements replacing each nine-node
element of the 16-element mesh) for comparison purposes.

$ Spurious i.e., phantom mode.

behavior (see, for example, T. Belytschko, W. K. Liu, J. S-J. Ong, and D. Lam [A] and
T. J. R. Hughes [A]).

In the above discussion we focused attention on the evaluation of the element stiffness
matrices. Considering the element force vectors, it is usually good practice to employ the
same integration scheme and the same order of integration as for the stiffness matrices. For
the evaluation of an element mass matrix, it should be recognized that for a lumped mass
matrix only the volume of the element needs to be evaluated correctly and for the consistent
mass matrix the order given in Table 5.9 is usually appropriate. However, special cases exist
in which for the sufficiently accurate evaluation of a consistent mass matrix a higher-order
integration may be necessary than in the calculation of the stiffness matrix.

EXAMPLE 5.42: Evaluate the stiffness and mass matrices and the body force vector of ele-
ment 2 in Example 4.5 using Gauss numerical integration.
The expressions to be integrated have been derived in Example 4.5,
-
80 2 1 on
X 80 1 1
= E + — - —
K L (1 40) 1 [ 80 80] dx ®
o E
80 2 T on
X 80 X X
M = + = - b
"L (1 40) x [(1 80) 80]“"‘ ®
| 80
..1 ) gx_(;
R__1 80(1_{_x)2 X dx (©)
g = — el
10 Jo 40 30 |
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The expressions in (a) and (c) are integrated exactly with two-point integration, whereas the
evaluation of the integral in (b) requires three-point integration. A higher-order integration is
required in the evaluation of the mass matrix because this matrix is obtained from the displace-
ment interpolation functions, whereas the stiffness matrix is calculated using derivatives of the
displacement functions.

Using one-, two-, and three-point Gauss integration to evaluate (a), (b), and (c) we obtain
One-point integration.

CI2E[ 1 -1 _p[480 4807 _ 196
K"240[-—1 1]’ M'6[4so 480]’ Rs 6[ ]

Two-point integration:

_13E[ 1 ~1] _p[3733 3467 1 7
K= 240[—-1 1]’ M= 6[346.7 1013.3]’ Rs 6[ ]

Three-point integration.

_BBE[ 1 -1 _p[384 3367 _1[ 72
K"240[--—1 1]’ M“6[336 1024]’ Rs 6[136]

It is interesting to note that with too low an order of integration the total mass of the
element and the total load to which the element is subjected are not taken fully into account.

Table 5.9 summarizes the results of an analysis for the appropriate integration orders in the
evaluation of the stiffness matrices of two-dimensional elements. Of course, the informa-
tion given in the table is also valuable in deducing appropriate orders of integration for the
calculation of the matrices of other elements.

EXAMPLE 5.43: Discuss the required integration order for the evaluation of the MITC9 plate
and isoparametric three-dimensional elements shown in Fig. E5.43.

Consider the plate element first. The integration in the r, s plane corresponds in essence
to the evaluation of the nine-node element in Table 5.9. In general, this integration order of 3 X 3
will also be effective when the element is used in distorted form.

The required integration order for the evaluation of the stiffness matrix of the three-
dimensional solid element can also be deduced from the information given in Table 5.9. The
displacements vary linearly in the r direction; hence, two-point integration is sufficient. In the

X
(a) MITC9 plate bending element (b} Three-dimensional solid element

Figure E5.43 Elements considered in Example 5.43
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t, s planes, i.e., at r equal to constants, the element displacements correspond to those of the
eight-node element in Table 5.9. Hence, 2 X 3 X 3 Gauss integration is required to evaluate the
element stiffness matrix exactly.

5.5.6 Reduced and Selective Integration

Table 5.9 gives the recommended Gauss numerical integration orders for two-dimensional
isoparametric displacement-based elements, and the recommended orders for other ele-
ments can be deduced (see Example 5.43). With these integration orders (referred to as
“full” integration), the element matrices of geometrically undistorted elements are evalu-
ated exactly, whereas for geometrically distorted elements a sufficiently accurate approxi-
mation is obtained (unless the geometric distortions are very large, in which case a higher
integration order is recommended).

However, in view of our discussion in Section 4.3.4, we recall that the displacement
formulation of finite element analysis yields a strain energy smaller than the exact strain
energy of the mathematical/mechanical model being considered, and physically, a displace-
ment formulation results in overestimating the system stiffness. Therefore, we may expect
that by not evaluating the displacement-based element stiffness matrices accurately in the
numerical integration, better overall solution results can be obtained. This should be the
case if the error in the numerical integration compensates appropriately for the overestima-
tion of structural stiffness due to the finite element discretization. In other words, a reduc-
tion in the order of the numerical integration from the order that is required to evaluate the
element stiffness matrices exactly (for geometrically undistorted elements) may be expected
to lead to improved results. When such a reduction in the order of numerical integration is
used, we refer to the procedure as reduced integration. For example, the use of 2 X 2 Gauss
integration (although not recommended for use in practice; see Section 5.5.5) for the
nine-node isoparametric element stiffness matrix corresponds to a reduced integration. In
addition to merely using a reduced integration order, selective integration may also be
considered, in which case different strain terms are integrated with different orders of
integration. In these cases of reduced and selective numerical integration the specific
integration scheme should be regarded as an integral part of the element formulation.

The key question as to whether a reduced and/or selectivély integrated element can be
recommended for practical use is: Has the element formulation (using the specific integra-
tion procedure) been sufficiently tested and analyzed for its stability and convergence? If
tractable, a mathematical stability and convergence analysis is of course most desirable.

A natural first step in such an analysis is to view the reduced and/or selectively
integrated element as a mixed element (see D. S. Malkus and T. J. R. Hughes [A]). (An
example is the two-node mixed interpolated beam element in Section 5.4.1 further men-
tioned below.) Once the exact equivalence between the reduced and/or selectively inte-
grated element and a mixed formulation has been identified, the second step is to analyze
the mixed formulation for stability and convergence and in this way obtain a deep under-
standing of the element based on the reduced/selective integration.

Since there are many possibilities for assumptions in mixed formulations, it is natural
to assume that there exists a mixed formulation that is equivalent to the reduced /selectively
integrated element and seek that formulation for analysis purposes. However, the mere fact
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that in general reduced/selectively integrated elements can be regarded as mixed formula-
tions does not justify the use of reduced integration because of course not every mixed
formulation represents a reliable and efficient finite element scheme. Rather, this equiva-
lence (with the details to be identified in each specific case) only points toward an approach
for the analysis of reduced/selectively integrated elements.

It also follows that once a complete equivalence has been identified, we can consider
the reduced/selective integration as merely an effective way to accurately calculate the
finite element matrices of the mixed formulation, and we adopt here this view and interpre-
tation of reduced and selective integration.

A relatively simple example is the isoparametric two-node beam element based on
one-point (r-direction) Gauss integration. In Example 4.30 and Section 5.4.1 we showed
that this element is completely equivalent to the beam element obtained using the Hu-
Washizu variational principle with linearly varying transverse displacement w, section
rotation 3, and a constant shear strain y within each element. The stability and convergence
of the element were considered in Section 4.5.7 where we showed that the ellipticity and
inf-sup conditions are satisfied.

Let us consider the following additional example to emphasize these observations.

EXAMPLE 5.44: A simple triangular plate bending element can be derived using the isopara-
metric displacement formulation in Section 5.4.2 but integrating the stiffness matrix terms with
one-point integration. This integration evaluates the stiffness matrix terms corresponding to
bending exactly, whereas the terms corresponding to the transverse shear are integrated approx-
imately. Hence, the element stiffness matrix is based on reduced integration (or we may also say
selective integration because only the shear terms are not integrated exactly).

Derive a variational formulation and the stiffness matrix for this element.

The element and its variational formulation have been presented by J.-L. Batoz,
K. J. Bathe, and L. W. Ho [A]. We note that the element is a natural development when we are
aware of the success of the one-point integrated isoparametric beam element (see Example 4.30
and Sections 4.5.7 and 5.4.1). This beam element has a strong variational basis, the mathemat-
ical analysis ensures good convergence properties, and computationally the element is simple
and effective.

For the development of the variational basis of this plate element, we note that the
one-point integration implicitly assumes a constant transverse shear strain (as in the isoparamet-
ric one-point integrated two-node beam element). Referring to Example 4.30, we can therefore
directly establish the variational indicator for the plate element as

~ 1 1
My = J (—2- k Core + yTC,y*S — —iyASTC,yAS) dA — J wp dA + boundary terms ()
A A

where k, C,, 4, C, have been defined in (5.95) to (5.97) and 44’ contains the assumed transverse
shear strains

AS = [ﬁzs
T)?‘zs

The relation in (a) is a modified Hellinger-Reissner functional. Substituting the interpolations for
w, B, and B, into k and v, integrating over the element midsurface area A, and invoking the
stationarity of Il with respect to the nodal point variables i,

] = constant
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o
CE
i=|e
6]
and ¥, we obtain
o %ol - o]
G -DJLvy*] 0
r
where K, = J Bl C.,B, dA
A
r
D= C,dA = AC,
Ja
G =C, j B, dA
A
and B, and B, are strain-displacement matrices,
K = Bbﬁ
v = B,l
Using static condensation, we obtain the stiffness matrix of the element with respect to the
nodal point variables only,
K=K, +GD'G

As we discussed in Section 5.4.2, the pure displacement-based isoparametric plate
element (i.e., using full numerical integration for the bending and transverse shear terms in
the displacement-based stiffness matrix) is much too stiff (displays the shear locking phe-
nomenon). The presentation in Example 5.44 shows that the one-point integrated element
has a variational basis quite analogous to the basis of the one-point integrated isoparametric
beam element. However, whereas the beam element is reliable and effective, the plate
element stiffness matrix in Example 5.44 has a spurious zero eigenvalue and hence the
element is unreliable and should not be used in practice (as was pointed out by J.-L. Batoz,
K. J. Bathe, and L. W. Ho [A]).

The important point of this example is that a variational basis of an element might well
exist, but whether the element is useful and effective can of course be determined only by
a deeper analysis of the formulation.

The equivalence between a certain isoparametric reduced or selectively integrated
displacement-based element and a mixed formulation may also hold only for specific geo-
metric element shapes and may also no longer be valid when nonisotropic material laws (or
geometric nonlinearities) are introduced. An analysis of the effects of each of these condi-
tions should then be performed.

5.5.7 Exercises

5.53. Evaluate the Newton-Cotes constants when the interpolating polynomial is of order 3, i.e., ¢/(r)
is a cubic,

5.54. Derive the sampling points and weights for three-point Gauss integration.
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5.55.

5.56.

5.57.

5.58.

Show that 3 X 3 Gauss numerical integration is sufficient to calculate the stiffness and mass
matrices of a nine-node geometrically undistorted displacement-based element for axisymmetric
analysis.

Show that 2 X 2 Gauss integration of the stiffness matrix of the eight-node plane stress
displacement-based square element results in the spurious zero energy mode shown. (Hint: You
need to show that Ba = 0 for the given displacements.)

u

Symmetric
deformations

Consider the 9/3 u/p element and show that 3 X 3 Gauss integration of a geometrically undis-
torted element gives the exact stiffness matrix. Also, show that 2 X 2 Gauss integration is not
adequate.

Identify the requireﬁ integration order for full integration of the stiffness matrix of the six-node
displacement-based triangular element when using the Gauss integration in Table 5.8.

Plane stress
element

&

5.59. Consider the nine-node plane stress element shown. All nodal point displacements are fixed

except that u, is free. Calculate the displacement u; due to the load P.

(a) Use anpalytical integration to evaluate the stiffness coefficient.

(b) Use 1 X 1, 2 X 2, and 3 X 3 Gauss numerical integration to evaluate the stiffness
coefficient. Compare your results.

et

10 ’i
A, :
, '57 . u, P
E = 200,000
v=0.30 6 ; Thickness
+ t=1.0

5.60. Consider the evaluation of lumped mass matrices for the elements shown in Table 5.9. Determine

suitable Gauss integration orders for the evaluation of these matrices.
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5.61. Consider the plate bending element formulation in Example 5.29. Assume that the element
stiffness matrix is evaluated with one-point Gauss integration. Show that this element has
spurious zero energy modes.'?

5.62. Consider the plate bending element formulation in Example 5.29 and assume that the bending
strain energy is evaluated with 2 X 2 Gauss integration and the shear strain energy is evaluated
with one-point Gauss integration. Show that this element has spurious zero energy modes.'?

5.6 COMPUTER PROGRAM IMPLEMENTATION OF ISOPARAMETRIC
FINITE ELEMENTS

In Section 5.3 we discussed the isoparametric finite element formulation and gave the
specific expressions needed in the calculation of four-node plane stress (or plane strain)
elements (see Example 5.5). An important advantage of 1soparametric element evaluations
is the similarity between the calculations of different elements. For example, the calculation
of three-dimensional elements is a relatively simple extension from the calculation of
two-dimensional elements. Also, in one subroutine, elements with a variety of nodal point
configurations can be calculated if an algorithm for selecting the appropriate interpolation
functions is used (see Section 5.3).

The purpose of this section is to provide an actual computer program for the calcula-
tion of the stiffness matrix of four-node isoparametric elements. In essence, SUBROUTINE
QUADS is the computer program implementation of the procedures presented in Exam-
ple 5.5. In addition to plane stress and plane strain, axisymmetric conditions can be consid-
ered. It is believed that by showing the actual program implementation of the element, the
relative ease of implementing isoparametric elements is best demonstrated. The input and
output variables and the flow of the program are described by means of comment lines.

SUBROUTINE QUADS (NEL,ITYPE,NINT,THIC,YM,PR,XX,S,I0OUT) QUA00001
C QUA00002
C . . QUAO00003
c . . QUA00004
C. PROGRAM . QUA0000S
c . TO CALCULATE ISOPARAMETRIC QUADRILATERAL ELEMENT STIFFNESS . QUA00006
C . MATRIX FOR AXISYMMETRIC, PLANE STRESS, AND PLANE STRAIN . QUA00007
c . CONDITIONS . QUA00008
C . . QUA00009
C . - - INPUT VARIABLES - - . QUA00010
C . NEL = NUMBER OF ELEMENT . QUA00011
c . ITYPE = ELEMENT TYPE . QUA00012
c . EQ.0 = AXISYMMETRIC . QUA00013
c . EQ.1 = PLANE STRAIN . QUAG00L4
c . EQ.2 = PLANE STRESS . QUA0001S
c . NINT = GAUSS NUMERICAL INTEGRATION ORDER . QUA00016
c . THIC = THICKNESS OF ELEMENT . QUA00017
c . YM = YOUNG’S MODULUS . QUA00018
c . PR = POISSON’S RATIO . QUA00019
c . XX(2,4) = ELEMENT NODE COORDINATES . QUA00020
c. s(8,8) = STORAGE FOR STIFFNESS MATRIX . QUA00021
C . IOUT = UNIT NUMBER USED FOR OUTPUT . QUA00022
C . QUA00023

12Note that these elements should therefore not be used in practice (see Section 5.5.5).
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- - OUTPUT - - . QUA00024
s(8,8) = CALCULATED STIFFNESS MATRIX . QUA00025
. QUA00026
. . . . . . . . [ - . . . . . . . . . . . QUAOOOZ?
IMPLICIT DOUBLE PRECISION (A-H,0-2) QUA00028
T T T T T T T OO . QUA00029
THIS PROGRAM IS USED IN SINGLE PRECISION ARITHMETIC ON CRAY . QUA00030
EQUIPMENT AND DOUBLE PRECISION ARITHMETIC ON IBM MACHINES, . QUA00031
ENGINEERING WORKSTATIONS AND PCS. DEACTIVATE ABOVE LINE FOR . QUA00032
SINGLE PRECISION ARITHMETIC. . QUA00033
T T T T T T T S T . QUA00034
DIMENSION D(4,4),B(4,8),XX(2,4),5(8,8),XG(4,4),WGT(4,4),DB(4) QUA00035
QUA00036
MATRIX XG STORES GAUSS - LEGENDRE SAMPLING POINTS QUA00037
QUA00038
DATA XG/ 0.DO, 0.D0, 0.D0, 0.D0, -.5773502691896D0, QUA00039
.5773502691896D0, 0.D0, 0.0, ~.7745966692415D0, 0.D00, QUA00040
2 .7745966692415D0, 0.D0, -.8611363115941D0, QUA00041
3 -.3399810435849D0, .3399810435849D0, .8611363115941D0 / QUA0004§
QUA0004
MATRIX WGT STORES GAUSS - LEGENDRE WEIGHTING FACTORS QUA00044
QUAQ0045
DATA WGT / 2.DO, 0.00, 0.D0, 0.D0, 1.p00, 1.00, QUA00046
0.00, 0.D0, .5555555555556D0, .8888888888889D0, QUA00047
.5555555555556D0, 0.D0,  .3478548451375D0, .6521451548625D0,QUA00048
3 .6521451548625D0, .3478548451375D0 / QUA00049
QUA00050
OBTAIN STRESS-STRAIN LAW QUA00051
QUA00052
FaYM/(1.+ER) QUA00053
G=F*PR/(1.-2.%PR) QUA00054
H=F + G QUA00055
QUA00056
PLANE STRAIN ANALYSIS QUA00057
QUA00058
D(1,1)=H QUA00059
D(1,2)=G QUA00060
D(1,3)=0. QUA0QO061
D(2,1)=G QUA00062
D(2,2)=H QUA00063
D(2,3)=0. QUA00064
D(3,1)=0. QUA00065
D(3,2)=0. QUADQ066
D(3,3)=F/2. QUA00067
IF (ITYPE.EQ.1) THEN QUA00068
THIC=1. QUA00069
GO TO 20 QUA0G070
ENDIF Qua00071
QUA00072
AXISYMMETRIC ANALYSIS QUA00073
QUA00074
D(1,4)=G QUA00075
D(2,4)=G QUA00076
D(3,4)=0 QUA00077
D(4,1)=G QUA00078
D(4,2)=G QUA00079
D(4,3)=0 QUA00080
D(4,4)=H QUA00081
IF (ITYPE.EQ.0) GO TO 20 QUA00082
QUA00083
FOR PLANE STRESS ANALYSIS CONDENSE STRESS-STRAIN MATRIX QUA00084
QUA00085
DO 10 I=1,3 QUA00086
A=D(1,4)/D(4,4) QUAQ0087
DO 10 J=1,3 QuA00088
D(I,J)=D(I,J) - D(4,J)*A QUA00089
10 D(J,1)=D(1,J) QUA00090

QuUA00091
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CALCULATE ELEMENT STIFFNESS

DO 30 I=1,8

DO 30 J=1,8

S(I,J)=0.

IST=3

IF (ITYPE.EQ.0) IST=4
DO 80 LX=1,NINT
RI=XG(LX,NINT)

DO 80 LY=1,NINT
SI=XG(LY,NINT)

EVALUATE DERIVATIVE OPERATOR B AND THE JACOBIAN DETERMINANT DET

CALL STDM (XX,B,DET,RI,SI,XBAR,NEL,ITYPE,IOUT)

ADD CONTRIBUTION TO ELEMENT STIFFNESS

IF (ITYPE.GT.0) XBAR=THIC
WT=WGT( LX,NINT) *WGT(LY,NINT ) *XBAR*DET
DO 70 J=1,8

DO 40 K=1,IST

DB(K)=0.0

DO 40 L=1,IST

DB(K)=DB(K) + D(K,L)*B(L,J)
DO 60 I=J,8

STIFF=0.0

DO 50 L«=1,IST

STIFF=STIFF + B(L,I)*DB(L)
S(X,J)=S(I,J) + STIFF*WT
CONTINUE

CONTINUE

DO 90 J=1,8
DO 90 I-J;B
RETURN

END

SUBROUTINE STDM (XX,B,DET,R,S,XBAR,NEL,ITYPE,IOUT)

*

PROGRAM

TO EVALUATE THE STRAIN-DISPLACEMENT TRANSFORMATION MATRIX B
AT POINT (R,S) FOR A QUADRILATERAL ELEMENT

IMPLICIT DOUBLE PRECISION (A-H,0-2)

DIMENSION XX(2,4),B(4,8),H(4),p(2,4),XJ3(2,2),X31I(2,2)

RP = 1.0 + R
Sp=1.0 + S
RM =1.0 - R
SM = 1.0 - 8

INTERPOLATION FUNCTIONS

H(1l) = 0.25% RP* SP
H(2) = 0.25% RM* SP
H(3) = 0.25*% RM* SM
H(4) = 0.25% RP* SM

NATURAL COORDINATE DERIVATIVES OF THE INTERPOLATION FUNCTIONS

1. WITH RESPECT TO R

P(1,1) = 0.25* SP
P(1,2) = - P(1,1)
P(1,3) = — 0.25* SM
P(1,4) = - P(1,3)
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P(2,1)
P(2,2)
P(2,3)
P(2,4)

EVALUATE

DO 30 I=1
DO 30 J=1
DUM = 0.0
DO 20 K=1

0.25* RP
0.25% RM
- P(2,2)
- P(2,1)

THE JACOBIAN MATRIX AT POINT (R,S)

,2
,2

. 4

DUM=DUM + P(I,K)*XX(J,K)
XJ(I,J)=DUM

COMPUTE THE DETERMINANT OF THE JACOBIAN MATRIX AT POINT (R,S)

DET = XJ(

1,1)* XJ(2,2) ~ XJ(2,1)* XJ(1,2)

IF (DET.GT.0.00000001) GO TO 40
WRITE (IOUT,2000) NEL

GO TO 800

COMPUTE INVERSE OF THE JACOBIAN MATRIX
DUM=1./DET

XJI(1,1) = XJ(2,2)* DUM

XJI(1,2) =-XJ(1,2)* DUM

XJI(2,1) =-XJ(2,1)* DUM

XJI(2,2) = XJ(1,1)* DUM

EVALUATE GLOBAL DERIVATIVE OPERATOR B
K2=(

DO 60 K=1,4

K2=mK2 + 2

B(l,K2-1) = 0,

B(l,K2 ) = 0,

B(2,K2-1) = 0.

B(2,K2 ) = 0.

DO 50 I=1,2

B(1,K2-1) = B(1,K2-1) + XJI(1,I) * P(I,K)
B(2,K2 ) = B(2,K2 ) + XJI(2,I) » P(I,K)
B(3,K2 ) = B(1,K2-1)

B(3,K2-1) = B(2,K2 )

IN CASE OF PLANE STRAIN OR PLANE STRESS ANALYSIS DO NOT INCLUDE

THE NORMAL STRAIN COMPONENT

IF (ITYPE.GT.0) GO TO 900

COMPUTE THE RADIUS AT POINT (R,S)

XBAR=(0.0
DO 70 K=l

. 4

XBAR=XBAR + H(K)*XX(1,K)

EVALUATE THE HOOP STRAIN-DISPLACEMENT RELATION

IF (XBAR.

FOR THE CASE OF ZERO RADIUS EQUATE RADIAL TO HOOP STRAIN

DO 80 K=1
B(4,K)=B(
GO TO 900

NON-ZERO

GT.0.00000001) GO TO 90

.8
1,K)

RADIUS
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QUA00219
QUAD00220
QUAD0221
QUADD222
QUAD0223
QUAD0224
QUA00225
QUAOD0226
QUA00227
QUAD0228
QUAD0229
QUAQ00230
QUAD0231
QUAD0232
QUAD0233



484 Formulation and Calculation of Isoparametric Finite Element Matrices Chap. 5
90 DUM=1./XBAR QUA00234
K2=0 QUAO00235

DO 100 Ke=1,4 QUA00236
K2=K2 + 2 QUA00237
B(4,K2 ) = 0, QUA00238

100 B(4,K2-1) = H(K)*DUM QUA00239
GO TO 900 QUA00240

c QUA00241
800 STOP QUA00242
900 RETURN QUA 00243

c QUA 00244
2000 FORMAT (//,' *** ERROR *** /, QUA00245
1 * ZERO OR NEGATIVE JACOBIAN DETERMINANT FOR ELEMENT (‘,I8,')’)QuUA00246

c QUA00247
END QuUA00248



