‘Standard’ and ‘hierarchical’
element shape functions: some
general families of C; continuity

8.1 Introduction

In Chapters 4, 5, and 6 the reader was shown in some detail how linear elasticity
problems could be formulated and solved using very simple finite element forms. In
Chapter 7 this process was repeated for the quasi-harmonic equation. Although the
detailed algebra was concerned with shape functions which arose from triangular
and tetrahedral shapes only it should by now be obvious that other element forms
could equally well be used. Indeed, once the element and the corresponding shape
functions are determined, subsequent operations follow a standard, well-defined
path which could be entrusted to an algebraist not familiar with the physical aspects
of the problem. It will be seen later that in fact it is possible to program a computer
to deal with wide classes of problems by specifying the shape functions only. The
choice of these is, however, a matter to which intelligence has to be applied and in
which the human factor remains paramount. In this chapter some rules for the
generation of several families of one-, two-, and three-dimensional elements will be
presented.

In the problems of elasticity illustrated in Chapters 4, 5, and 6 the displacement
variable was a vector with two or three components and the shape functions were
written in matrix form. They were, however, derived for each component separately
and in fact the matrix expressions in these were derived by multiplying a scalar
function by an identity matrix [e.g., Eqs (4.7), (5.3), and (6.7)]. This scalar form
was used directly in Chapter 7 for the quasi-harmonic equation. We shall therefore
concentrate in this chapter on the scalar shape function forms, calling these simply N;.

The shape functions used in the displacement formulation of elasticity problems
were such that they satisfy the convergence criteria of Chapter 2:

(a) the continuity of the unknown only had to occur between elements (i.e., slope
continuity is not required), or, in mathematical language, C, continuity was
needed;

(b) the function has to allow any arbitrary linear form to be taken so that the
constant strain (constant first derivative) criterion could be observed.

The shape functions described in this chapter will require the satisfaction of these
two criteria. They will thus be applicable to all the problems of the preceding chapters
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and also to other problems which require these conditions to be obeyed. Indeed they
are applicable to any situation where the functional IT or ¢II (see Chapter 3) is defined
by derivatives of first order only.

The element families discussed will progressively have an increasing number of
degrees of freedom. The question may well be asked as to whether any economic or
other advantage is gained by thus increasing the complexity of an element. The
answer here is not an easy one although it can be stated as a general rule that as the
order of an element increases so the total number of unknowns in a problem can be
reduced for a given accuracy of representation. Economic advantage requires, however,
a reduction of total computation and data preparation effort, and this does not follow
automatically for a reduced number of total variables because, though equation-solving
times may be reduced, the time required for element formulation increases.

However, an overwhelming economic advantage in the case of three-dimensional
analysis has already been hinted at in Chapters 6 and 7 for three-dimensional analyses.

The same kind of advantage arises on occasion in other problems but in general the
optimum element may have to be determined from case to case.

In Sec. 2.6 of Chapter 2 we have shown that the order of error in the approximation
to the unknown function is O(h” '), where h is the element ‘size” and p is the degree of
the complete polynomial present in the expansion. Clearly, as the element shape func-
tions increase in degree so will the order of error increase, and convergence to the
exact solution becomes more rapid. While this says nothing about the magnitude
of error at a particular subdivision, it is clear that we should seek element shape func-
tions with the highest complete polynomial for a given number of degrees of freedom.

8.2 Standard and hierarchical concepts

The essence of the finite element method already stated in Chapters 2 and 3 is in
approximating the unknown (displacement) by an expansion given in Eqs (2.1) and
(3.3). For a scalar variable u this can be written as

n
uzﬁ:ZN,»a,»:Na (8.1

where n is the total number of functions used and g; are the unknown parameters to be
determined.
We have explicitly chosen to identify such variables with the values of the unknown
function at element nodes, thus making
u; = a; (82)
The shape functions so defined will be referred to as ‘standard’ ones and are the basis
of most finite element programs. If polynomial expansions are used and the element
satisfies Criterion 1 of Chapter 2 (which specifies that rigid body displacements cause

no strain), it is clear that a constant value of g; specified at all nodes must result in a
constant value of u:

o (30 .

i=1
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when «a; = u. It follows that
Z N, =1 (8.4)

at all points of the domain. This important property is known as a partition of unity'
which we will make extensive use of in Chapter 16. The first part of this chapter will
deal with such standard shape functions.

A serious drawback exists, however, with ‘standard’ functions, since when element
refinement is made totally new shape functions have to be generated and hence all
calculations repeated. It would be of advantage to avoid this difficulty by considering
the expression (8.1) as a series in which the shape function N; does not depend on the
number of nodes in the mesh n. This indeed is achieved with hierarchic shape functions
to which the second part of this chapter is devoted.

The hierarchic concept is well illustrated by the one-dimensional (elastic bar)
problem of Fig. 8.1. Here for simplicity elastic properties are taken as constant
(D = E) and the body force b is assumed to vary in such a manner as to produce
the exact solution shown on the figure (with zero displacements at both ends).

Two meshes are shown and a linear interpolation between nodal points assumed.
For both standard and hierarchic forms the coarse mesh gives

Kijai = f, (8.5)

For a fine mesh two additional nodes are added and with the standard shape
function the equations requiring solution are

K KL o a N
K3, Ky K| @ =195 (8.6)
0 Kih Ki] las £

In this form the zero matrices have been automatically inserted due to element inter-
connection which is here obvious, and we note that as no coefficients are the same, the
new equations have to be resolved. [Equation (2.13) shows how these coefficients are
calculated and the reader is encouraged to work these out in detail.]

With the ‘hierarchic’ form using the shape functions shown, a similar form of
equation arises and an identical approximation is achieved (being simply given by
a series of straight segments). The final/ solution is identical but the meaning of the
parameters a; is now different, as shown in Fig. 8.1.

Quite generally,

Kl = Kf, (8.7)

as an identical shape function is used for the first variable. Further, in this particular
case the off-diagonal coefficients are zero and the final equations become, for the
fine mesh,

chl 0 0 Cl>]k ﬁ
0 K% O & =2 f (8.8)
0 0 K&|la fs
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Fig. 8.1 A one-dimensional problem of stretching of a uniform elastic bar by prescribed body forces. (a) ‘Stan-
dard approximation. (b) Hierarchic approximation.

The ‘diagonality’ feature is only true in the one-dimensional problem, but in
general it will be found that the matrices obtained using hierarchic shape functions
are more nearly diagonal and hence imply better conditioning than those with
standard shape functions.

Although the variables are now not subject to the obvious interpretation (as local
displacement values), they can be easily transformed to those if desired. Though it is
not usual to use hierarchic forms in linearly interpolated elements their derivation in
polynomial form is simple and very advantageous.

The reader should note that with hierarchic forms it is convenient to consider the
finer mesh as still using the same, coarse, elements but now adding additional refining
functions.

Hierarchic forms provide a link with other approximate (orthogonal) series solu-
tions. Many problems solved in classical literature by trigonometric, Fourier series,
expansion are indeed particular examples of this approach.
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In the following sections of this chapter we shall consider the development of shape
functions for high order elements with many boundary and internal degree of
freedoms. This development will generally be made on simple geometric forms and
the reader may well question the wisdom of using increased accuracy for such
simple shaped domains, having already observed the advantage of generalized
finite element methods in fitting arbitrary domain shapes. This concern is well
founded, but in the next chapter we shall show a general method to map high
order elements into quite complex shapes.

Part 1 ‘Standard’ shape functions

Two-dimensional elements

8.3 Rectangular elements — some preliminary
considerations

Conceptually (especially if the reader is conditioned by education to thinking in the
cartesian coordinate system) the simplest element form of a two-dimensional kind
is that of a rectangle with sides parallel to the x and y axes. Consider, for instance,
the rectangle shown in Fig. 8.2 with nodal points numbered 1 to 8, located as
shown, and at which the values of an unknown function u (here representing, for
instance, one of the components of displacement) form the element parameters.
How can suitable C, continuous shape functions for this element be determined?

Let us first assume that u is expressed in polynomial form in x and y. To ensure
interelement continuity of u along the top and bottom sides the variation must be
linear. Two points at which the function is common between elements lying above
or below exist, and as two values uniquely determine a linear function, its identity
all along these sides is ensured with that given by adjacent elements. Use of this
fact was already made in specifying linear expansions for a triangle.

Similarly, if a cubic variation along the vertical sides is assumed, continuity will be
preserved there as four values determine a unique cubic polynomial. Conditions for
satisfying the first criterion are now obtained.

To ensure the existence of constant values of the first derivative it is necessary that
all the linear polynomial terms of the expansion be retained.

Finally, as eight points are to determine uniquely the variation of the function only
eight coefficients of the expansion can be retained and thus we could write

U=+ arx+a3y+ agxy + sy’ + agx)’ + gy’ + agxy’ (8.9)

The choice can in general be made unique by retaining the lowest possible expansion
terms, though in this case apparently no such choice arises.t The reader will easily
verify that all the requirements have now been satisfied.

1 Retention of a higher order term of expansion, ignoring one of lower order, will usually lead to a poorer
approximation though still retaining convergence,? providing the linear terms are always included.
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Fig. 8.2 A rectangular element.

Substituting coordinates of the various nodes a set of simultaneous equations will
be obtained. This can be written in exactly the same manner as was done for a triangle
in Eq. (4.4) as

ty Lox, oy xivn vhoxot v x| [ @
b= . . . (8.10)
ug 1, xg, »g, . . . . ng?; ag
or simply as
u’ = Ca (8.11)
Formally,
o=C'u (8.12)
and we could write Eq. (8.9) as
u=Pa=PC v (8.13)
in which
P =[1,x,p xp, 0% % %, xp°] (8.14)
Thus the shape functions for the element defined by
u=Nu’ =[N, N,,..., Ngu (8.15)
can be found as
N=PC"'! (8.16)

This process has, however, some considerable disadvantages. Occasionally an
inverse of C may not exist*® and always considerable algebraic difficulty is experi-
enced in obtaining an expression for the inverse in general terms suitable for all
element geometries. It is therefore worthwhile to consider whether shape functions
N;(x,y) can be written down directly. Before doing this some general properties of
these functions have to be mentioned.
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Fig. 8.3 Shape functions for elements of Fig. 8.2.

Inspection of the defining relation, Eq. (8.15), reveals immediately some important
characteristics. Firstly, as this expression is valid for all components of u’,
I; i=j
Ni(xj, ;) = 6 = {0; l-%]]-
where 6;; is known as the Kronecker delta. Further, the basic type of variation along
boundaries defined for continuity purposes (e.g., linear in x and cubic in y in the
above example) must be retained. The typical form of the shape functions for the
elements considered is illustrated isometrically for two typical nodes in Fig. 8.3. It
is clear that these could have been written down directly as a product of a suitable
linear function in x with a cubic function in y. The easy solution of this example is
not always as obvious but given sufficient ingenuity, a direct derivation of shape
functions is always preferable.
It will be convenient to use normalized coordinates in our further investigation.
Such normalized coordinates are shown in Fig. 8.4 and are chosen so that their
values are =1 on the faces of the rectangle:

X —X dx

]
(8.17)

g2 dn:g

b b

Once the shape functions are known in the normalized coordinates, translation into
actual coordinates or transformation of the various expressions occurring, for
instance, in the stiffness derivation is trivial.
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Fig. 8.4 Normalized coordinates for a rectangle.

8.4 Completeness of polynomials

The shape function derived in the previous section was of a rather special form [see
Eq. (8.9)]. Only a linear variation with the coordinate x was permitted, while in y a
full cubic was available. The complete polynomial contained in it was thus of order
1. In general use, a convergence order corresponding to a linear variation would
occur despite an increase of the total number of variables. Only in situations where
the linear variation in x corresponded closely to the exact solution would a higher
order of convergence occur, and for this reason elements with such ‘preferential’
directions should be restricted to special use, e.g., in narrow beams or strips. In
general, we shall seek element expansions which possess the highest order of a
complete polynomial for a minimum of degrees of freedom. In this context it is
useful to recall the Pascal triangle (Fig. 8.5) from which the number of terms

_____ AN
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Fig. 8.5 The Pascal triangle. (Cubic expansion shaded — 10 terms).
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occurring in a polynomial in two variables x, y can be readily ascertained. For
instance, first-order polynomials require three terms, second-order require six
terms, third-order require ten terms, etc.

8.5 Rectangular elements — Lagrange family*~®

An easy and systematic method of generating shape functions of any order can be
achieved by simple products of appropriate polynomials in the two coordinates.
Consider the element shown in Fig. 8.6 in which a series of nodes, external and
internal, is placed on a regular grid. It is required to determine a shape function for
the point indicated by the heavy circle. Clearly the product of a fifth-order
polynomial in £ which has a value of unity at points of the second column of nodes
and zero elsewhere and that of a fourth-order polynomial in 5 having unity on the
coordinate corresponding to the top row of nodes and zero elsewhere satisfies all
the interelement continuity conditions and gives unity at the nodal point concerned.

Polynomials in one coordinate having this property are known as Lagrange poly-
nomials and can be written down directly as

1(E) = (=) —&) (€= &)= &) - (E—E&)
¢ (& =€) (& — &) (G = &) (& — &ksr) - (& — &)

giving unity at £, and passing through » points.

(8.18)

(0, m) m(l, J) (n, m)

o—® © l
| -
)

Fig. 8.6 A typical shape function for a Lagrangian element (n =5, m=4,/=1,/=4).
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(@) (b)

(©)
Fig. 8.7 Three elements of the Lagrange family: (a) linear, (b) quadratic, and (c) cubic.

Thus in two dimensions, if we label the node by its column and row number, 7, J,
we have
Ni= Nyy = B () (8.19)

where n and m stand for the number of subdivisions in each direction.

Figure 8.7 shows a few members of this unlimited family where m = n.

Indeed, if we examine the polynomial terms present in a situation where n = m we
observe in Fig. 8.8, based on the Pascal triangle, that a large number of polynomial
terms is present above those needed for a complete expansion.” However, when

mapping of shape functions is considered (Chapter 9) some advantages occur for
this family.

I\
/\/\
/\/\/\
/\/\/\/\

/ /\/y\/y\ \
/  / /\33/\ N\

Fig. 8.8 Terms generated by a lagrangian expansion of order 3 x 3 (or n x n). Complete polynomials of order
3 (orn).
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8.6 Rectangular elements — ‘serendipity’ family*>

It is usually more efficient to make the functions dependent on nodal values placed on
the element boundary. Consider, for instance, the first three elements of Fig. 8.9. In
each a progressively increasing and equal number of nodes is placed on the element
boundary. The variation of the function on the edges to ensure continuity is linear,
parabolic, and cubic in increasing element order.

To achieve the shape function for the first element it is obvious that a product of
linear lagrangian polynomials of the form

He+D(n+1) (8.20)

gives unity at the top right corners where £ = 1 = 1 and zero at all the other corners.

Further, a linear variation of the shape function of all sides exists and hence

continuity is satisfied. Indeed this element is identical to the lagrangian one with n = 1.
Introducing new variables

So=28  mo=m (8.21)
in which &;, n; are the normalized coordinates at node 7, the form
Ni=3(1+&)(1+m) (8.22)

allows all shape functions to be written down in one expression.

As a linear combination of these shape functions yields any arbitrary linear varia-
tion of u, the second convergence criterion is satisfied.

The reader can verify that the following functions satisfy all the necessary criteria
for quadratic and cubic members of the family.

‘Quadratic’ element

Corner nodes:

N =51+ &)1 +m0) (& +mo — 1) (8.23)
n=1
£=-1 n £=1
€
(@ n=-1 (b)
O

(© (d)

Fig. 8.9 Rectangles of boundary node (serendipity) family: (a) linear, (b) quadratic, (c) cubic, (d) quartic.
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Mid-side nodes:

‘Cubic’ element
Corner nodes:
Ni =55 (14 &) (1 +nm0)[=10+9(& +17)] (8.24)
Mid-side nodes:
&= +£1 and n=+4

Ny = 5 (1+&)(1—n*)(1+ )

with the remaining mid-side node expression obtained by changing variables.

In the next, quartic, member® of this family a central node is added so that all terms
of a complete fourth-order expansion will be available. This central node adds a shape
function (1 — &%)(1 — ?) which is zero on all outer boundaries.

The above functions were originally derived by inspection, and progression to yet
higher members is difficult and requires some ingenuity. It was therefore appropriate

(@ Ns=3(1-8) (1-n) () Ng=3(1-8§) (1-n?)
0.5
Step 1
107~ Ny = (1-8) (1-n)/4
0.5
Step 2

©

Step 3

Fig. 8.10 Systematic generation of ‘serendipity’ shape functions.
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to name this family ‘serendipity’ after the famous princes of Serendip noted for their
chance discoveries (Horace Walpole, 1754).

However, a quite systematic way of generating the ‘serendipity’ shape functions can
be devised, which becomes apparent from Fig. 8.10 where the generation of a
quadratic shape function is presented.””

As a starting point we observe that for mid-side nodes a lagrangian interpolation of
a quadratic x linear type suffices to determine N; at nodes 5 to 8. N5 and Ng are shown
at Fig. 8.10(a) and (b). For a corner node, such as Fig. 8.10(c), we start with a bilinear
lagrangian family N, and note immediately that while N, = 1 at node 1, it is not zero
at nodes 5 or 8 (step 1). Successive subtraction of %N 5 (step 2) and %Ng (step 3) ensures
that a zero value is obtained at these nodes. The reader can verify that the expressions
obtained coincide with those of Eq. (8.23).

Indeed, it should now be obvious that for all higher order elements the mid-side and
corner shape functions can be generated by an identical process. For the former a
simple multiplication of mth-order and first-order lagrangian interpolations suffices.
For the latter a combination of bilinear corner functions, together with appropriate
fractions of mid-side shape functions to ensure zero at appropriate nodes, is
necessary.

Similarly, it is quite easy to generate shape functions for elements with different
numbers of nodes along each side by a systematic algorithm. This may be very

Fig. 8.11 Shape functions for a transition ‘serendipity’ element, cubic/linear.
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Fig. 8.12 Terms generated by edge shape functions in serendipity-type elements (3 x 3 and m x m).

desirable if a transition between elements of different order is to be achieved, enabling
a different order of accuracy in separate sections of a large problem to be studied.
Figure 8.11 illustrates the necessary shape functions for a cubic/linear transition.
Use of such special elements was first introduced in reference 9, but the simpler
formulation used here is that of reference 7.

With the mode of generating shape functions for this class of elements available it is
immediately obvious that fewer degrees of freedom are now necessary for a given
complete polynomial expansion. Figure 8.12 shows this for a cubic element where
only two surplus terms arise (as compared with six surplus terms in a lagrangian of
the same degree).

It is immediately evident, however, that the functions generated by nodes placed
only along the edges will not generate complete polynomials beyond cubic order.
For higher order ones it is necessary to supplement the expansion by internal
nodes (as was done in the quartic element of Fig. 8.9) or by the use of ‘nodeless’
variables which contain appropriate polynomial terms.

8.7 Elimination of internal variables before assembly —
substructures

Internal nodes or nodeless internal parameters yield in the usual way the element
properties (Chapter 2)
OI1¢
oa‘

=K’ +1° (8.25)

As a° can be subdivided into parts which are common with other elements, a°, and
others which occur in the particular element only, a°, we can immediately write

o o’

0a®  0a®
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and eliminate a° from further consideration. Writing Eq. (8.25) in a partitioned form
we have

oI1¢ e
gar Yo (T RT R Jlaf ST |
oa¢
From the second set of equations given above we can write
a’ = —(K)' (K 2" +1°) (8.27)
which on substitution yields
oI1°
= K" a +f*° 8.28
52 + (8.28)

in which
K™ =K — Ke(I:(C)flKeT
(8.29)
fre — f Ke( ) 1fe

Assembly of the total region then follows, by considering only the element bound-
ary variables, thus giving a considerable saving in the equation-solving effort at the
expense of a few additional manipulations carried out at the element stage.

Perhaps a structural interpretation of this elimination is desirable. What in fact is
involved is the separation of a part of the structure from its surroundings and
determination of its solution separately for any prescribed displacements at the inter-
connecting boundaries. K* is now simply the overall stiffness of the separated
structure and f* the equivalent set of nodal forces.

If the triangulation of Fig. 8.13 is interpreted as an assembly of pin-jointed bars the
reader will recognize immediately the well-known device of ‘substructures’ used
frequently in structural engineering.

Such a substructure is in fact simply a complex element from which the internal
degrees of freedom have been eliminated.

Immediately a new possibility for devising more elaborate, and presumably more
accurate, elements is presented.

VRV aY

3 s

SR
4 V L
71 vanawal

(b)

Fig. 8.13 Substructure of a complex element.
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Fig. 8.14 A quadrilateral made up of four simple triangles.

Figure 8.13(a) can be interpreted as a continuum field subdivided into triangular
elements. The substructure results in fact in one complex element shown in Fig.
8.13(b) with a number of boundary nodes.

The only difference from elements derived in previous sections is the fact that the
unknown u is now not approximated internally by one set of smooth shape functions
but by a series of piecewise approximations. This presumably results in a slightly
poorer approximation but an economic advantage may arise if the total computation
time for such an assembly is saved.

Substructuring is an important device in complex problems, particularly where a
repetition of complicated components arises.

In simple, small-scale finite element analysis, much improved use of simple
triangular elements was found by the use of simple subassemblies of the triangles
(or indeed tetrahedra). For instance, a quadrilateral based on four triangles from
which the central node is eliminated was found to give an economic advantage
over direct use of simple triangles (Fig. 8.14). This and other subassemblies based
on triangles are discussed in detail by Doherty et al

8.8 Triangular element family

The advantage of an arbitrary triangular shape in approximating to any boundary
shape has been amply demonstrated in earlier chapters. Its apparent superiority
here over rectangular shapes needs no further discussion. The question of generating
more elaborate higher order elements needs to be further developed.

Consider a series of triangles generated on a pattern indicated in Fig. 8.15. The
number of nodes in each member of the family is now such that a complete poly-
nomial expansion, of the order needed for interelement compatibility, is ensured.
This follows by comparison with the Pascal triangle of Fig. 8.5 in which we see the
number of nodes coincides exactly with the number of polynomial terms required.
This particular feature puts the triangle family in a special, privileged position, in
which the inverse of the C matrices of Eq. (8.11) will always exist. However, once
again a direct generation of shape functions will be preferred — and indeed will be
shown to be particularly easy.

Before proceeding further it is useful to define a special set of normalized co-
ordinates for a triangle.
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() 6

(b)
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Fig. 8.15 Triangular element family: (a) linear, (b) quadratic, and (c) cubic.

8.8.1 Area coordinates

While cartesian directions parallel to the sides of a rectangle were a natural choice for
that shape, in the triangle these are not convenient.

A new set of coordinates, L, L,, and L; for a triangle 1, 2, 3 (Fig. 8.16), is defined
by the following linear relation between these and the cartesian system:

X = L])C] —+ L2X2 —+ L3.X'3
y=Liyi+Lyy,+ L3y; (8.30)
=L, +L1L,+ Ly

Toevery set, Ly, L,, L; (which are not independent, but are related by the third equa-
tion), there corresponds a unique set of cartesian coordinates. At point 1, L; = 1 and
L, = L5 =0, etc. A linear relation between the new and cartesian coordinates implies

L, =0,

(X1 y1) ‘ (X2 v2)

Fig. 8.16 Area coordinates.



Triangular element family

that contours of L; are equally placed straight lines parallel to side 2-3 on which
L, =0, etc.

Indeed it is easy to see that an alternative definition of the coordinate L, of a point
P is by a ratio of the area of the shaded triangle to that of the total triangle:

_area P23

= 8.31
'™ area 123 ( )
Hence the name area coordinates.
Solving Eq. (8.30) gives
I - a+bix+cy
b 2A
ay + bzX + Yy
Ly= = "2 =7 8.32
L= (832)
1. — ay + b3x + c3y
3T 2A
in which
1 x »
A =idet|1 x, y,|=areal23 (8.33)
1 x5 y3
and
ap = X2)3 — X3 by =y —y3 €1 =X3 =X

etc., with cyclic rotation of indices 1, 2, and 3.
The identity of expressions with those derived in Chapter 4 [Eqs (4.5b) and (4.5¢)] is
worth noting.

8.8.2 Shape functions

For the first element of the series [Fig. 8.15(a)], the shape functions are simply the area
coordinates. Thus

Nl :Ll N2:L2 N3 :L3 (834)

This is obvious as each individually gives unity at one node, zero at others, and varies
linearly everywhere.

To derive shape functions for other elements a simple recurrence relation can be
derived.> However, it is very simple to write an arbitrary triangle of order M in a
manner similar to that used for the lagrangian element of Sec. 8.5.

Denoting a typical node i by three numbers /, J, and K corresponding to the
position of coordinates Ly;, L,;, and Ls; we can write the shape function in terms
of three lagrangian interpolations as [see Eq. (8.18)]

N; = [1(L)!(Ly)IK (Ls) (8.35)

In the above /7, etc., are given by expression (8.18), with L, taking the place of &,
etc.
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0,0, M)

(M, 0, 0) (0, M, 0)

Fig. 8.17 A general triangular element.

It is easy to verify that the above expression gives
Ni=1 —at Ly=Ly, Ly=Ly, L;=Lsx

and zero at all other nodes.
The highest term occurring in the expansion is

LiL3LY
and as
I+J+K=M

for all points the polynomial is also of order M.

Expression (8.35) is valid for quite arbitrary distributions of nodes of the pattern
given in Fig. 8.17 and simplifies if the spacing of the nodal lines is equal (i.e., 1/m).
The formula was first obtained by Argyris et al'' and formalized in a different
manner by others.”!?

The reader can verify the shape functions for the second- and third-order elements
as given below and indeed derive ones of any higher order easily.

Quadratic triangle [Fig. 8.15(b)]
Corner nodes:
N =(Q2L, - 1)L, etc.
Mid-side nodes:
Ny=4L,L,, etc.

Cubic triangle [Fig. 8.15(c)]
Corner nodes:
Ny =3(L; = 1)(3L, — 2)L, etc. (8.36)
Mid-side nodes:
Ny=3LL,(3L; — 1), etc. (8.37)
and for the internal node:
Ny =27L,L,L;



Line elements

The last shape again is a ‘bubble’ function giving zero contribution along bound-
aries — and this will be found to be useful in many other contexts (see the mixed
forms in Chapter 12).

The quadratic triangle was first derived by Veubeke'® and used later in the context
of plane stress analysis by Argyris.14

When element matrices have to be evaluated it will follow that we are faced with
integration of quantities defined in terms of area coordinates over the triangular
region. It is useful to note in this context the following exact integration expression:

alb!c!

LiISLSdxdy =———— A 8.38
Jlesz’ (a+b+c+t2) ( )

One-dimensional elements

8.9 Line elements

So far in this book the continuum was considered generally in two or three dimen-
sions. ‘One-dimensional’ members, being of a kind for which exact solutions are
generally available, were treated only as trivial examples in Chapter 2 and in
Sec. 8.2. In many practical two- or three-dimensional problems such elements do in
fact appear in conjunction with the more usual continuum elements — and a unified
treatment is desirable. In the context of elastic analysis these elements may represent
lines of reinforcement (plane and three-dimensional problems) or sheets of thin lining
material in axisymmetric bodies. In the context of field problems of the type discussed
in Chapter 7 lines of drains in a porous medium of lesser conductivity can be
envisaged.

Once the shape of such a function as displacement is chosen for an element of this
kind, its properties can be determined, noting, however, that derived quantities such
as strain, etc., have to be considered only in one dimension.

Figure 8.18 shows such an element sandwiched between two adjacent quadratic-
type elements. Clearly for continuity of the function a quadratic variation of the

00O O
(@]

Fig. 8.18 A line element sandwiched between two-dimensional elements.
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unknown with the one variable £ is all that is required. Thus the shape functions are
given directly by the Lagrange polynomial as defined in Eq. (8.18).

Three-dimensional elements

8.10 Rectangular prisms — Lagrange family

In a precisely analogous way to that given in previous sections equivalent elements of
three-dimensional type can be described.

Now, for interelement continuity the simple rules given previously have to be
modified. What is necessary to achieve is that along a whole face of an element the
nodal values define a unique variation of the unknown function. With incomplete
polynomials, this can be ensured only by inspection.

Shape function for such elements, illustrated in Fig. 8.19, will be generated by a
direct product of three Lagrange polynomials. Extending the notation of Eq. (8.19)
we now have

for n, m, and p subdivisions along each side.

This element again is suggested by Zienkiewicz et al.> and elaborated upon by
Argyris et al.® All the remarks about internal nodes and the properties of the formu-
lation with mappings (to be described in the next chapter) are applicable here.

Fig. 8.19 Right prism of Lagrange family.



Rectangular prisms — ‘serendipity’ family

8.11 Rectangular prisms - ‘serendipity’ family*®"°

The family of elements shown in Fig. 8.20 is precisely equivalent to that of Fig. 8.9.
Using now three normalized coordinates and otherwise following the terminology of
Sec. 8.6 we have the following shape functions:

‘Linear’ element (8 nodes)
Ny =13 (1+&)(1+n0)(1+¢) (8.40)

which is identical with the linear lagrangian element.

‘Quaderatic’ element (20 nodes)

Corner nodes:

Ny =g (1+ &)1 +m0)(1+ o) (& + 1m0 + o — 2) (8.41)
E=-1
8 nodes
~
n=-1
e
20 nodes
~
e
32 nodes
~
e

Fig. 8.20 Right prisms of boundary node (serendipity) family with corresponding sheet and line elements.
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186 ‘Standard’ and ‘hierarchical’ element shape functions

Typical mid-side node:
&=0 n; = £l G ==l

Ni=1(1 =)0 +m) (1 + )

‘Cubic’ elements (32 nodes)
Corner node:
Ni =gz (14 &)(1+m0)(1+G)9(€ +n* +¢) — 19] (8.42)
Typical mid-side node:
fi:i% n; = %1 G ==+l

Ny =2 (1 - E)(1+9)(1+no)(1 + )

When ¢ =1 =(, the above expressions reduce to those of Eqs (8.22)—(8.24).
Indeed such elements of three-dimensional type can be joined in a compatible
manner to sheet or line elements of the appropriate type as shown in Fig. 8.20.

Once again the procedure for generating the shape functions follows that described
in Figs 8.10 and 8.11 and once again elements with varying degrees of freedom along
the edges can be derived following the same steps.

The equivalent of a Pascal triangle is now a tetrahedron and again we can observe
the small number of surplus degrees of freedom — a situation of even greater magni-
tude than in two-dimensional analysis.

8.12 Tetrahedral elements

The tetrahedral family shown in Fig. 8.21 not surprisingly exhibits properties similar
to those of the triangle family.

Firstly, once again complete polynomials in three coordinates are achieved at each
stage. Secondly, as faces are divided in a manner identical with that of the previous
triangles, the same order of polynomial in two coordinates in the plane of the face is
achieved and element compatibility ensured. No surplus terms in the polynomial occur.

8.12.1 Volume coordinates

Once again special coordinates are introduced defined by (Fig. 8.22):
X =Lix1+ Loxy 4+ L3x3 + Lyxy
y=Linn+Lyyy+Lyys + Lays (8.43)
z=Lizi + Lyzy + Lyz3 + Lyzy
l=Li+L,+ L3+ Ly
Solving Eq. (8.43) gives
_ay+bix+cey+dz

L
! 6V

etc.




Tetrahedral elements

Fig. 8.21 The tetrahedron family: (a) linear, (b) quadratic, and (c) cubic.

where the constants can be identified from Chapter 6, Eq. (6.5). Again the physical
nature of the coordinates can be identified as the ratio of volumes of tetrahedra
based on an internal point P in the total volume, ¢.g., as shown in Fig. 8.22:

_ volume P234

'™ Volume 1234 cte. (8.44)

8.12.2 Shape function

As the volume coordinates vary linearly with the cartesian ones from unity at one
node to zero at the opposite face then shape functions for the linear element
[Fig. 8.21(a)] are simply

Nl = Ll N2 = L2, etc. (845)

Formulae for shape functions of higher order tetrahedra are derived in precisely the
same manner as for the triangles by establishing appropriate Lagrange-type formulae
similar to Eq. (8.35). Leaving this to the reader as a suitable exercise we quote the
following:
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188 ‘Standard’ and ‘hierarchical’ element shape functions

Fig. 8.22 Volume coordinates.

‘Quadratic’ tetrahedron [Fig. 8.21(b)]

For corner nodes:

N =Q2L, - 1)L, etc. (8.46)
For mid-edge nodes:

Ns=4L,L,, etc.
‘Cubic’ tetrahedron
Corner nodes:
Ny =31(3L, - 1)(3L, — 2)Ly, etc. (8.47)
Mid-edge nodes:
Ns=3LL,(3L; — 1), etc.

Mid-face nodes:

Ny; =271, L5, etc.
A useful integration formula may again be here quoted:

arbreqrd . a'bleld!
JJJVOIL1L2L3L4 dxdydz- (a+b+c+d+3)'6V (848)




(c) 26 nodes

Fig. 8.23 Triangular prism elements (serendipity) family: (a) linear, (b) quadratic, and (c) cubic.
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8.13 Other simple three-dimensional elements

The possibilities of simple shapes in three dimensions are greater, for obvious reasons,
than in two dimensions. A quite useful series of elements can, for instance, be based
on triangular prisms (Fig. 8.23). Here again variants of the product, Lagrange,
approach or of the ‘serendipity’ type can be distinguished. The first element of
both families is identical and indeed the shape functions for it are so obvious as
not to need quoting.

For the ‘quadratic’ element illustrated in Fig. 8.23(b) the shape functions are

Corner nodes L; = (; = 1:
Ny =5L2L = D1 +¢) =3 Li(1-C) (8.49)
Mid-edge of triangles:
Ny =2LLy(1 +¢), etc. (8.50)
Mid-edge of rectangle:
N;=Li(1 - Cz), etc.

Such elements are not purely esoteric but have a practical application as “fillers’ in
conjunction with 20-noded serendipity elements.

Part 2 Hierarchical shape functions

8.14 Hierarchic polynomials in one dimension

The general ideas of hiearchic approximation were introduced in Sect. 8.2 in the
context of simple, linear, elements. The idea of generating higher order hierarchic
forms is again simple. We shall start from a one-dimensional expansion as this has
been shown to provide a basis for the generation of two- and three-dimensional
forms in previous sections.

To generate a polynomial of order p along an element side we do not need to
introduce nodes but can instead use parameters without an obvious physical meaning.
As shown in Fig. 8.24, we could use here a linear expansion specified by ‘standard’
functions N, and N; and add to this a series of polynomials always designed so as
to have zero values at the ends of the range (i.e. points 0 and 1).

Thus for a quadratic approximation, we would write over the typical one-
dimensional element, for instance,

ﬁ=u0N0+U1N1 +a2N2 (851)
where
—1 +1
M= M= M=) (8.52)

using in the above the normalized x-coordinate [viz. Eq. (8.17)].
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Fig. 8.24 Hierarchical element shape functions of nearly orthogonal form and their derivatives.

We note that the parameter a, does in fact have a meaning in this case as it is the
magnitude of the departure from linearity of the approximation # at the element
centre, since N, has been chosen here to have the value of unity at that point.

In a similar manner, for a cubic element we simply have to add a; N5 to the quad-
ratic expansion of Eq. (8.51), where N3 is any cubic of the form

N§ :Oé0+a1€+a2€2+013€3 (853)

and which has zero values at £ = +1 (i.e., at nodes 0 and 1). Again an infinity of choices
exists, and we could select a cubic of a simple form which has a zero value at the centre
of the element and for which dN;/d¢ = 1 at the same point. Immediately we can write

NS =¢(1-8) (8.54)

as the cubic function with the desired properties. Now the parameter a; denotes
the departure of the slope at the centre of the element from that of the first
approximation.
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We note that we could proceed in a similar manner and define the fourth-order
hierarchical element shape function as

Ny =&(1-8) (8.55)

but a physical identification of the parameter associated with this now becomes more
difficult (even though it is not strictly necessary).

As we have already noted, the above set is not unique and many other possibilities
exist. An alternative convenient form for the hierarchical functions is defined by
1
(" =1) peven

e D!
Np(©) =47 (8.56)
(& —€) podd
p!
where p ( >2)is the degree of the introduced polynomial.'® This yields the set of shape
functions:

Ns=LE-1)  N=LE-¢
Ny=4(E-1) N=5(E -9  ete

We observe that all derivatives of N, of second or higher order have the value zero
at £ =0, apart from d’N,/d&’, which equals unity at that point, and hence, when
shape functions of the form given by Eq. (8.57) are used, we can identify the
parameters in the approximation as

i
Pder e

(8.57)

p=2 (8.58)

This identification gives a general physical significance but is by no means necessary.
In two- and three-dimensional elements a simple identification of the hierarchic
parameters on interfaces will automatically ensure C, continuity of the approximation.
As mentioned previously, an optimal form of hierarchical function is one that
results in a diagonal equation system. This can on occasion be achieved, or at least
approximated, quite closely.
In the elasticity problems which we have discussed in the preceding chapters the
element matrix K possesses terms of the form [using Eq. (8.17)]

dNf dNp Lo J] dN¢ dN¢,

K[fn == J’QF dx dx X = a » k d§ df

If shape function sets containing the appropriate polynomials can be found for which
such integrals are zero for / # m, then orthogonality is achieved and the coupling
between successive solutions disappears.

One set of polynomial functions which is known to possess this orthogonality
property over the range —1 < ¢ < 1 is the set of Legendre polynomials P,(¢), and
the shape functions could be defined in terms of integrals of these polynomials.’
Here we define the Legendre polynomial of degree p by

1 1 &
O p-mirTag

de (8.59)

(€2 —1)"] (8.60)
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and integrate these polynomials to define
1 ar-!
Ny = | B ae =

(p— )21 der| (& = 1)] (8.61)

Evaluation for each p in turn gives
Ns=¢ -1 N{=2-¢)  etc

These differ from the element shape functions given by Eq. (8.57) only by a multiply-
ing constant up to N3, but for p > 3 the differences become significant. The reader can
easily verify the orthogonality of the derivatives of these functions, which is useful in
computation. A plot of these functions and their derivatives is given in Fig. 8.24.

8.15 Two- and three-dimensional, hierarchic, elements of
the ‘rectangle’ or 'brick’ type

In deriving ‘standard’ finite element approximations we have shown that all shape
functions for the Lagrange family could be obtained by a simple multiplication of
one-dimensional ones and those for serendipity elements by a combination of such
multiplications. The situation is even simpler for hierarchic elements. Here a// the
shape functions can be obtained by a simple multiplication process.

Thus, for instance, in Fig. 8.25 we show the shape functions for a lagrangian nine-
noded element and the corresponding hierarchical functions. The latter not only have
simpler shapes but are more easily calculated, being simple products of linear and
quadratic terms of Eq. (8.56), (8.57), or (8.61). Using the last of these the three
functions illustrated are simply

Ny =(1—=¢)(1+n)/4
Ny = (1=&(1=1)/2 (8.62)
Ny =(1=&)(1 =)
The distinction between lagrangian and serendipity forms now disappears as for
the latter in the present case the last shape function (N3) is simply omitted.
Indeed, it is now easy to introduce interpolation for elements of the type illustrated
in Fig. 8.11 in which a different expansion is used along different sides. This essential
characteristic of hierarchical elements is exploited in adaptive refinement (viz.

Chapter 15) where new degrees of freedom (or polynomial order increase) is made
only when required by the magnitude of the error.

8.16 Triangle and tetrahedron family'®"’

Once again the concepts of multiplication can be introduced in terms of area (volume)
coordinates.

Returning to the triangle of Fig. 8.16 we note that along the side 1-2, L5 is identi-
cally zero, and therefore we have

(Li+Ly)12=1 (8.63)

16,17
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(a) Standard (b) Hierarchical

Fig. 8.25 Standard and hierarchic shape functions corresponding to a lagrangian, quadratic element.

If £, measured along side 1-2, is the usual non-dimensional local element coordinate
of the type we have used in deriving hierarchical functions for one-dimensional
elements, we can write

Ll =%(1-¢) Lol =5(1+¢) (8.64)
from which it follows that we have
§=(Ly— L) (8.65)

This suggests that we could generate hierarchical shape functions over the triangle
by generalizing the one-dimensional shape function forms produced earlier. For
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example, using the expressions of Eq. (8.56), we associate with the side 1-2 the
polynomial of degree p ( >2) defined by

1
] [(Ly — Ly)” = (Ly + L,)"] peven

Npa2 =1 § (8.66)
] (L, —Ly)" = (L, — Ly)(Ly + L,)"" "] podd

It follows from Eq. (8.64) that these shape functions are zero at nodes 1 and 2.
In addition, it can easily be shown that N,,_,, will be zero all along the sides 31
and 3-2 of the triangle, and so C, continuity of the approximation # is assured.

It should be noted that in this case for p > 3 the number of hierarchical functions
arising from the element sides in this manner is insufficient to define a complete
polynomial of degree p, and internal hierarchical functions, which are identically
zero on the boundaries, need to be introduced; for example, for p = 3 the function
LL,L; could be used, while for p =4 the three additional functions LiL,L;,
LL5Ls, LiL,L3 could be adopted.

In Fig. 8.26 typical hierarchical linear, quadratic, and cubic trial functions for a
triangular element are shown. Similar hierarchical shape functions could be generated

(b)

()

Fig. 8.26 Triangular elements and associated hierarchical shape functions of (a) linear, (b) quadratic, and
(c) cubic form.

16,17
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from the alternative set of one-dimensional shape functions defined in Eq. (8.61).
Identical procedures are obvious in the context of tetrahedra.

8.17 Global and local finite element approximation

The very concept of hierarchic approximations (in which the shape functions are not
affected by the refinement) means that it is possible to include in the expansion

u="> Na (8.67)
i=1

functions N which are not local in nature. Such functions may, for instance, be the
exact solutions of an analytical problem which in some way resembles the problem
dealt with, but do not satisfy some boundary or inhomogeneity conditions. The
“finite element’, local, expansions would here be a device for correcting this solution
to satisfy the real conditions. This use of the global-local approximation was first
suggested by Mote'® in a problem where the coefficients of this function were fixed.
The example involved here is that of a rotating disc with cutouts (Fig. 8.27). The
global, known, solution is the analytical one corresponding to a disc without
cutout, and finite elements are added locally to modify the solution. Other examples
of such ‘fixed’ solutions may well be those associated with point loads, where the use
of the global approximation serves to eliminate the singularity modelled badly by the
discretization.

@

‘Local’ elements

(b)

Fig. 8.27 Some possible uses of the local-global approximation: (a) rotating slotted disc, (b) perforated
beam.
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In some problems the singularity itself is unknown and the appropriate function
can be added with an unknown coefficient.

8.18 Improvement of conditioning with hierarchic forms

We have already mentioned that hierarchic element forms give a much improved
equation conditioning for steady-state (static) problems due to their form which is
more nearly diagonal. In Fig. 8.28 we show the ‘condition number’ (which is a
measure of such diagonality and is defined in standard texts on linear algebra; see
Appendix A) for a single cubic element and for an assembly of four cubic elements,
using standard and hierarchic forms in their formulation. The improvement of the
conditioning is a distinct advantage of such forms and allows the use of iterative solu-
tion techniques to be more easily adopted.'® Unfortunately much of this advantage
disappears for transient analysis as the approximation must contain specific modes
(see Chapter 17).

Single element (Reduction of condition number = 10.7)

®)

Amax/Mmin = 390 Mmax/Amin = 36

Four element assembly (Reduction of condition number = 13.2)

) ® ¢ —

1l Il
o —
Amax/Amin = 1643 Amax/Mmin = 124

Cubic order elements

@ Standard shape function
Hierarchic shape function

Fig. 8.28 Improvement of condition number (ratio of maximum to minimum eigenvalue of the stiffness
matrix) by use of a hierarchic form (elasticity isotropic v = 0.15).
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8.19 Concluding remarks

An unlimited selection of element types has been presented here to the reader — and
indeed equally unlimited alternative possibilities exist.** What of the use of such

(18]
to
as

mplex elements in practice? The triangular and tetrahedral elements are limited
situations where the real region is of a suitable shape which can be represented
an assembly of flat facets and all other elements are limited to situations repre-

sented by an assembly of right prisms. Such a limitation would be so severe that
little practical purpose would have been served by the derivation of such shape func-
tions unless some way could be found of distorting these elements to fit realistic
curved boundaries. In fact, methods for doing this are available and will be described

n
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the next chapter.
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