Plane stress and plane strain

4.1 Introduction

Two-dimensional elastic problems were the first successful examples of the applica-
tion of the finite element method."? Indeed, we have already used this situation to
illustrate the basis of the finite element formulation in Chapter 2 where the general
relationships were derived. These basic relationships are given in Eqgs (2.1)—(2.5)
and (2.23) and (2.24), which for quick reference are summarized in Appendix C.

In this chapter the particular relationships for the plane stress and plane strain
problem will be derived in more detail, and illustrated by suitable practical examples,
a procedure that will be followed throughout the remainder of the book.

Only the simplest, triangular, element will be discussed in detail but the basic
approach is general. More elaborate elements to be discussed in Chapters 8 and 9
could be introduced to the same problem in an identical manner.

The reader not familiar with the applicable basic definitions of elasticity is referred
to elementary texts on the subject, in particular to the text by Timoshenko and
Goodier,® whose notation will be widely used here.

In both problems of plane stress and plane strain the displacement field is uniquely given
by the u and v displacement in the directions of the cartesian, orthogonal x and y axes.

Again, in both, the only strains and stresses that have to be considered are the three
components in the xy plane. In the case of plane stress, by definition, all other com-
ponents of stress are zero and therefore give no contribution to internal work. In plane
strain the stress in a direction perpendicular to the xy plane is not zero. However, by
definition, the strain in that direction is zero, and therefore no contribution to internal
work is made by this stress, which can in fact be explicitly evaluated from the three
main stress components, if desired, at the end of all computations.

4.2 Element characteristics

4.2.1 Displacement functions

Figure 4.1 shows the typical triangular element considered, with nodes i, j, m
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Fig. 4.1 An element of a continuum in plane stress or plane strain.

numbered in an anticlockwise order. The displacements of a node have two

components
uA
a,— == { U; } (41)

=< a; (4.2)
al‘)’l

The displacements within an element have to be uniquely defined by these six
values. The simplest representation is clearly given by two linear polynomials
U=ao+oax+a3y
(4.3)
V= 0y + asX + agy

The six constants « can be evaluated easily by solving the two sets of three simultaneous
equations which will arise if the nodal coordinates are inserted and the displacements
equated to the appropriate nodal displacements. Writing, for example,
up =)+ ax; +azy;
up =y + X, +a3); (4.4)
Uy = Q1 + QX + Q3
we can easily solve for oy, as, and a3 in terms of the nodal displacements u;, u;, u,,, and
obtain finally

1
U=sx [(ai + bix + ¢;y)u; + (@ + bix + ¢y uj + (A + by X + € ¥)hy] (4.5a)
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in which
a;i = XjVm — Xm)j
bi =y; = Vm (4.5b)
€= %Xm—Xj

with the other coefficients obtained by a cycle permutation of subscripts in the order,
i, j, m, and wheref

Iox
2A =det|1 x; y; | =2-(area of triangle ijm) (4.5¢)
1 xl’” ym

As the equations for the vertical displacement v are similar we also have

v a; + bix + Ciy)vi + (a/ + bjx + ij)vj + (am + bmx + Cmy)vm] (46)

=5

Though not strictly necessary at this stage we can represent the above relations, Eqs
(4.5a) and (4.6), in the standard form of Eq. (2.1):

u= { Z} = Na® = [IN, IN,, IN,,Ja° (4.7)

with I a two by two identity matrix, and
a; +bix+cy
2A
The chosen displacement function automatically guarantees continuity of displace-
ment with adjacent elements because the displacements vary linearly along any side

of the triangle and, with identical displacement imposed at the nodes, the same
displacement will clearly exist all along an interface.

N; = , etc. (4.8)

4.2.2 Strain (total)

The total strain at any point within the element can be defined by its three com-
ponents which contribute to internal work. Thus

9
e, Ox’
e={ e v=10 a% { Z} = Su (4.9)
T 9 9
dy’ 0Ox

t Note: If coordinates are taken from the centroid of the element then
Xi -‘er + X =i +yj +ym=0 and g = 2A/3 =4a; =day

See also Appendix D for a summary of integrals for a triangle.
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Substituting Eq. (4.7) we have

a;
¢=Ba’= [Bia Bja Bm] a; (4103)
am
with a typical matrix B; given by
ov,
Ox'’
by, 0
B—sn—| o 2N_1 ol 4.10b
i = i = ’ Ay A y G ( . )
ON; ON; ¢, bi
dy ' Ox

This defines matrix B of Eq. (2.4) explicitly.

It will be noted that in this case the B matrix is independent of the position within
the element, and hence the strains are constant throughout it. Obviously, the criterion
of constant strain mentioned in Chapter 2 is satisfied by the shape functions.

4.2.3 Elasticity matrix

The matrix D of Eq. (2.5)

U}C 6}»
6=4q0, p=D ) (4.11)
Txy P)/x_\f

can be explicitly stated for any material (excluding here o, which is simply additive).
To consider the special cases in two dimensions it is convenient to start from the form

e=Do+¢g
and impose the conditions of plane stress or plane strain.

Plane stress — isotropic material
For plane stress in an isotropic material we have by definition,

o, Vo,
ST E o
_ vo, o0,
&= -7 +E+6yo (4.12)
2(1 + vy,
Yo = T + Y0
Solving the above for the stresses, we obtain the matrix D as
£ 1 v 0
D= sy 1 0 (4.13)
1—v
0 0 (I-v)/2
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and the initial strains as

g =< €y (4.14)
Vxy0
in which E is the elastic modulus and v is Poisson’s ratio.
Plane strain - isotropic material

In this case a normal stress o exists in addition to the other three stress components.
Thus we now have

STETE B
vo, O, VO,
6}, = — E‘C E — E + Ey() (415)
2(1 + V)Txy
7\} = E 7\}0
and in addition
vo, VO, 0,
, = — e —— —_— ) = 0
[ E E + E + £-0

which yields
o, = V(O'X + ay) — Ee,

On eliminating o and solving for the three remaining stresses we obtain the matrix D
as

1—v v 0
D= L v 1—v 0 (4.16)
_(l+u)(l—2u) '
0 0 (1-2v)/2
and the initial strains
€x0 + Ve
& =4 &0 T Ve (4.17)
Vxy0

Anisotropic materials
For a completely anisotropic material, 21 independent elastic constants are necessary
to define completely the three-dimensional stress—strain relationship.*>

If two-dimensional analysis is to be applicable a symmetry of properties must exist,
implying at most six independent constants in the D matrix. Thus, it is always possible
to write

dl 1 d12 d13
D = d22 d23 (4 1 8)
sym. ds3
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Plane of strata parallel to xz

Fig. 4.2 A stratified (transversely isotropic) material.

to describe the most general two-dimensional behaviour. (The necessary symmetry of
the D matrix follows from the general equivalence of the Maxwell-Betti reciprocal
theorem and is a consequence of invariant energy irrespective of the path taken to
reach a given strain state.)

A case of particular interest in practice is that of a ‘stratified’ or transversely iso-
tropic material in which a rotational symmetry of properties exists within the plane
of the strata. Such a material possesses only five independent elastic constants.

The general stress—strain relations give in this case, following the notation of
Lekhnitskii* and taking now the y-axis as perpendicular to the strata (neglecting
initial strain) (Fig. 4.2),

Ox 10, 0.

C R
o N0 Oy 1O
! E, E, E
V|0, 1O, 0.
“TTE B +E
2w (4.19)
o= TR T
1
Vxy G_ZTW
1
Vyz = @Tyz

in which the constants E;, v; (G, is dependent) are associated with the behaviour in
the plane of the strata and E,, G,, v, with a direction normal to the plane.
The D matrix in two dimensions now becomes, taking E;/E, = nand G,/E, = m,
n  ny 0
nvy, 1 0 (4.20)
0 0 m(l—m3)

E
p-_
1 —nv;
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for plane stress or

E
P=araa _2y1 —2mA3)
n(l —m3) n(l+v) 0
X [nn(1+v)  (1—17) 0 (4.21)
0 0 m(1+ 1)1 — vy —2mA)

for plane strain.

When, as in Fig. 4.3, the direction of the strata is inclined to the x-axis then to
obtain the D matrices in universal coordinates a transformation is necessary.
Taking D’ as relating the stresses and strains in the inclined coordinate system
(x',)") it is easy to show that

D=TD'T" (4.22)
where
cos’ 3 sin’ 3 —2sin 3cos 8
T= sin® 3 cos’ 3 2sin 3cos 8 (4.23)

sinfcos3 —sinfcosf cos® 3 — sin’ 3

with [ as defined in Fig. 4.3.
If the stress systems ¢’ and ¢ correspond to € and e respectively then by equality
of work

or

Fig. 4.3 An element of a stratified (transversely isotropic) material.
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from which Eq. (4.22) follows on noting (see also Chapter 1)
g =T (4.24)

4.2.4 Initial strain (thermal strain)

‘Initial’ strains, i.c., strains which are independent of stress, may be due to many
causes. Shrinkage, crystal growth, or, most frequently, temperature change will, in
general, result in an initial strain vector:

€ = [ex0 Ey0 €20 Yxpo  Vyz0 %xo]T (4.25)

Although this initial strain may, in general, depend on the position within the
element, it will here be defined by average, constant values to be consistent with
the constant strain conditions imposed by the prescribed displacement function.

For an isotropic material in an element subject to a temperature rise 6° with a
coefficient of thermal expansion o we will have

g=af[l 1 1 0 0 0" (4.26)

as no shear strains are caused by a thermal dilatation. Thus, for plane stress, Eq.
(4.14) yields the initial strains given by
1
g=abf’¢ 13 =atm (4.27)
0

In plane strain the o, stress perpendicular to the xy plane will develop due to the
thermal expansion as shown above. Using Eq. (4.17) the initial thermal strains for
this case are given by

g = (1 +v)af’m (4.28)

Anisotropic materials present special problems, since the coefficients of thermal
expansion may vary with direction. In the general case the thermal strains are
given by

—— (4.29)

where o has properties similar to strain. Accordingly, it is always possible to find
orthogonal directions for which a is diagonal. If we let x" and )" denote the principal
thermal directions of the material, the initial strain due to thermal expansion for a
plane stress state becomes (assuming 2’ is a principal direction)

EX0 aq
g€ =0% ey p =0 (4.30)
Yx'y0 0

where a; and a, are the expansion coefficients referred to the x and )’ axes,
respectively.
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To obtain strain components in the x, y system it is necessary to use the strain
transformation

g =T'g, (4.31)

where T is again given by Eq. (4.23). Thus, g can be simply evaluated. It will be noted
that the shear component of strain is no longer equal to zero in the x, y coordinates.

4.2.5 The stiffness matrix

The stiffness matrix of the element ijm is defined from the general relationship (2.13)
with the coefficients

K = JB,TDB,zdx dy (4.32)

where ¢ is the thickness of the element and the integration is taken over the area of the
triangle. If the thickness of the element is assumed to be constant, an assumption con-
vergent to the truth as the size of elements decreases, then, as neither of the matrices
contains x or y we have simply

K¢ = B/DB,’A (4.33)

where A is the area of the triangle [already defined by Eq. (4.5)]. This form is now
sufficiently explicit for computation with the actual matrix operations being left to
the computer.

4.2.6 Nodal forces due to initial strain

These are given directly by the expression Eq. (2.13b) which, on performing the inte-
gration, becomes

(f)s, = —B/DgyrA,  ete. (4.34)

These ‘initial strain’ forces contribute to the nodes of an element in an unequal
manner and require precise evaluation. Similar expressions are derived for initial
stress forces.

4.2.7 Distributed body forces

In the general case of plane stress or strain each element of unit area in the xy plane is

subject to forces
-
by

in the direction of the appropriate axes.
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Again, by Eq. (2.13D), the contribution of such forces to those at each node is given by

¢ = —JNi{bx}dxdy
b,

i = —{ Zx } JN,- dxdy, etc. (4.35)
v
if the body forces b, and b, are constant. As N, is not constant the integration has to
be carried out explicitly. Some general integration formulae for a triangle are given in
Appendix D.
In this special case the calculation will be simplified if the origin of coordinates is
taken at the centroid of the element. Now

dexdy: Jydxdy =0

or by Eq. (4.7),

and on using Eq. (4.8)

e b, a;dxdy b, a _ b, é
) e

by relations noted on page 89.
Explicitly, for the whole element

b,
f¢ by
£ f:’ bl A 4.37
- J - by ? ( . )
f€
m bx
b

y
which means simply that the total forces acting in the x and y directions due to the
body forces are distributed to the nodes in three equal parts. This fact corresponds
with physical intuition, and was often assumed implicitly.

4.2.8 Body force potential

In many cases the body forces are defined in terms of a body force potential ¢ as
0¢ b ¢

Ox T Oy
and this potential, rather than the values of 5, and b, is known throughout the region
and is specified at nodal points. If ¢¢ lists the three values of the potential associated
with the nodes of the element, i.e.,

b, =

(4.38)

o =19 (4.39)
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and has to correspond with constant values of b, and b,, ¢ must vary linearly within
the element. The ‘shape function’ of its variation will obviously be given by a pro-
cedure identical to that used in deriving Eqs (4.4)—(4.6), and yields

(b = [Ni7N]'7 m]¢£’ (440)
Thus,
_ 9 _ ¢
bx - Ax - [biabjabm] 2A
and
_ 0 ¥
y _8_)/ - _[Civcjacm] A (441)

The vector of nodal forces due to the body force potential will now replace Eq. (4.37)
by

-bm bj7 bm_
Cis C/a Cm
1|b; b, b
gl | (4
i o m
bia ij bm
L Ci» C/: Cm

4.2.9 Evaluation of stresses

The derived formulae enable the full stiffness matrix of the structure to be assembled,
and a solution for displacements to be obtained.

The stress matrix given in general terms in Eq. (2.16) is obtained by the appropriate
substitutions for each element.

The stresses are, by the basic assumption, constant within the element. It is usual to
assign these to the centroid of the element, and in most of the examples in this chapter
this procedure is followed. An alternative consists of obtaining stress values at the
nodes by averaging the values in the adjacent elements. Some ‘weighting’ procedures
have been used in this context on an empirical basis but their advantage appears
small.

It is also usual to calculate the principal stresses and their directions for every
element. In Chapter 14 we shall return to the problem of stress recovery and show
that better procedures of stress recovery exist.®’

4.3 Examples — an assessment of performance

There is no doubt that the solution to plane elasticity problems as formulated in
Sec. 4.2 is, in the limit of subdivision, an exact solution. Indeed at any stage of a



98 Plane stress and plane strain

finite subdivision it is an approximate solution as is, say, a Fourier series solution with
a limited number of terms.

As explained in Chapter 2, the total strain energy obtained during any stage of
approximation will be below the true strain energy of the exact solution. In practice
it will mean that the displacements, and hence also the stresses, will be underestimated
by the approximation in its general picture. However, it must be emphasized that this
is not necessarily true at every point of the continuum individually; hence the value of
such a bound in practice is not great.

What is important for the engineer to know is the order of accuracy achievable in
typical problems with a certain fineness of element subdivision. In any particular case
the error can be assessed by comparison with known, exact, solutions or by a study of
the convergence, using two or more stages of subdivision.

With the development of experience the engineer can assess a priori the order of
approximation that will be involved in a specific problem tackled with a given element
subdivision. Some of this experience will perhaps be conveyed by the examples
considered in this book.

In the first place attention will be focused on some simple problems for which exact
solutions are available.

4.3.1 Uniform stress field

If the exact solution is in fact that of a uniform stress field then, whatever the element
subdivision, the finite element solution will coincide exactly with the exact one. This is
an obvious corollary of the formulation; nevertheless it is useful as a first check of
written computer programs.

4.3.2 Linearly varying stress field

Here, obviously, the basic assumption of constant stress within each element means
that the solution will be approximate only. In Fig. 4.4 a simple example of a beam
subject to constant bending moment is shown with a fairly coarse subdivision. It is
readily seen that the axial (o)) stress given by the element ‘straddles’ the exact
values and, in fact, if the constant stress values are associated with centroids of the
elements and plotted, the best ‘fit’ line represents the exact stresses.

The horizontal and shear stress components differ again from the exact values
(which are simply zero). Again, however, it will be noted that they oscillate by
equal, small amounts around the exact values.

At internal nodes, if the average of the stresses of surrounding elements is taken it
will be found that the exact stresses are very closely represented. The average at
external faces is not, however, so good. The overall improvement in representing
the stresses by nodal averages, as shown in Fig. 4.4, is often used in practice for
contour plots. However, we shall show in Chapter 14 a method of recovery which
gives much improved values at both interior and boundary points.
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AY
—-—-—-—-| f—_————tr— — - —3—>»X
~0.44 | -0.44
| 0.07 | —0.07
i 0.07 | -0.07
. 0.00 -0.86
| -0.07 -0.07
" o07 -0.07
| 0.00 -0.86
1-0.07 -0.07
| ~0.06 ~0.08
| ~0.45 | -0.45
0.07 | -0.06
| -0.08 | -0.06
. ~0.48 | -0.48
| -0.08 | -0.06
-0.06 | 0.08
0.00 -0.83
1-0.09 0.04
-0.09 -0.04
A A
¥ Nodal averages
QO Value at
centres of
triangles
oy = -1
Exact
(ox= Txy = 0)
v =0.15

Fig. 4.4 Pure bending of a beam solved by a coarse subdivision into elements of triangular shape. (Values of
0y, 0y, and 7, listed in that order)

4.3.3 Stress concentration

A more realistic test problem is shown in Figs 4.5 and 4.6. Here the flow of stress
around a circular hole in an isotropic and in an anisotropic stratified material is con-
sidered when the stress conditions are uniform.® A graded division into elements is
used to allow a more detailed study in the region where high stress gradients are
expected. The accuracy achievable can be assessed from Fig. 4.6 where some of the
results are compared against exact solutions.*”

In later chapters we shall see that even more accurate answers can be obtained with
the use of more elaborate elements; however, the principles of the analysis remain
identical.



100 Plane stress and plane strain

Fig. 4.5 A circular hole in a uniform stress field: (a) isotropic material; (b) stratified (orthotropic) material;
E=E=16=E=31=011=00G,=042

Exact solution for infinite plate
o Finite element solution

-1.0

(a) Isotropic (b) Orthotropic

Fig. 4.6 Comparison of theoretical and finite element results for cases (a) and (b) of Fig. 4.5.

4.4 Some practical applications

Obviously, the practical applications of the method are limitless, and the finite
element method has superseded experimental technique for plane problems because
of its high accuracy, low cost, and versatility. The ease of treatment of material
anisotropy, thermal stresses, or body force problems add to its advantages.

A few examples of actual early applications of the finite element method to complex
problems of engineering practice will now be given.
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4.4.1 Stress flow around a reinforced opening (Fig. 4.7)

In steel pressure vessels or aircraft structures, openings have to be introduced in the
stressed skin. The penetrating duct itself provides some reinforcement round the edge
and, in addition, the skin itself is increased in thickness to reduce the stresses due to
concentration effects.

Analysis of such problems treated as cases of plane stress present no difficulties.
The elements are chosen so as to follow the thickness variation, and appropriate
values of this are assigned.

The narrow band of thick material near the edge can be represented either by
special bar-type elements, or by very thin triangular elements of the usual type, to
which appropriate thickness is assigned. The latter procedure was used in the problem
shown in Fig. 4.7 which gives some of the resulting stresses near the opening itself.
The fairly large extent of the region introduced in the analysis and the grading of
the mesh should be noted.

4.4.2 An anisotropic valley subject to techtonic stress® (Fig. 4.8)

A symmetrical valley subject to a uniform horizontal stress is considered. The
material is stratified, and hence is ‘transversely isotropic’, and the direction of
strata varies from point to point.

The stress plot shows the tensile region that develops. This phenomenon is of
considerable interest to geologists and engineers concerned with rock mechanics.
(See reference 10 for additional applications on this topic.)

4.4.3 A dam subject to external and internal water pressures'’'?

A buttress dam on a somewhat complex rock foundation is shown in Fig. 4.9 and
analysed. This dam (completed in 1964) is of particular interest as it is the first to
which the finite element method was applied during the design stage. The hetero-
geneous foundation region is subject to plane strain conditions while the dam itself
is considered in a state of plane stress of variable thickness.

With external and gravity loading no special problems of analysis arise.

When pore pressures are considered, the situation, however, requires perhaps some
explanation.

It is well known that in a porous material the water pressure is transmitted to the
structure as a body force of magnitude

4 9p
b, = o by, = ay (4.43)
and that now the external pressure need not be considered.

The pore pressure p is, in fact, now a body force potential, as defined in Eq. (4.38).
Figure 4.9 shows the element subdivision of the region and the outline of the dam.
Figure 4.10(a) and (b) shows the stresses resulting from gravity (applied to the dam
only) and due to water pressure assumed to be acting as an external load or, alternatively,
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Fig. 4.8 Avalleywith curved strata subject to a horizontal tectonic stress (plane strain 170 nodes, 298 elements).

as an internal pore pressure. Both solutions indicate large tensile regions, but the increase

u = 0 Region analysed

of stresses due to the second assumption is important.
The stresses calculated here are the so-called ‘effective’ stresses. These represent the

forces transmitted between the solid particles and are defined in terms of the total
stresses ¢ and the pore pressures p by
¢ =c+mp

i.e., simply by removing the hydrostatic pressure component from the total stress.

mT:

[1,1,0]

103

(4.44)
10,13

The effective stress is of particular importance in the mechanics of porous media
such as those that occur in the study of soils, rocks, or concrete. The basic assumption
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Fig. 4.9 Stress analysis of a buttress dam. A plane stress condition is assumed in the dam and plane strain in
the foundation. (a) The buttress section analysed. (b) Extent of foundation considered and division into finite
elements.

in deriving the body forces of Eq. (4.43) is that only the effective stress is of any
importance in deforming the solid phase. This leads immediately to another
possibility of formulation.'* If we examine the equilibrium conditions of Eq. (2.10)
we note that this is written in terms of total stresses. Writing the constitutive relation,
Eq. (2.5), in terms of effective stresses, i.e.,

o =D'(z—g) + o (4.45)

and substituting into the equilibrium equation (2.10) we find that Eq. (2.12) is again
obtained, with the stiffness matrix using the matrix D’ and the force terms of
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Eq. (2.13b) being augmented by an additional force
— JVU B 'mp d(vol) (4.46)
or, if p is interpolated by shape functions N;, the force becomes
— JW B 'mN’ d(vol)p* (4.47)

This alternative form of introducing pore pressure effects allows a discontinuous
interpolation of p to be used [as in Eq. (4.46) no derivatives occur] and this is now
frequently used in practice.

4.4.4 Cracking

The tensile stresses in the previous example will doubtless cause the rock to crack. If a
stable situation can develop when such a crack spreads then the dam can be
considered safe.

Cracks can be introduced very simply into the analysis by assigning zero elasticity
values to chosen clements. An analysis with a wide cracked wedge is shown in
Fig. 4.11, where it can be seen that with the extent of the crack assumed no tension
within the dam body develops.
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Fig. 4.11 Stressesin a buttress dam. The introduction of a ‘crack” modifies the stress distribution [same load-
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Some practical applications
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Fig. 4.14 An underground power station. Mesh used in analysis.
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110 Plane stress and plane strain

A more elaborate procedure for allowing crack propagation and resulting stress
redistribution can be developed (see Volume 2).

4.4.5 Thermal stresses

As an example of thermal stress computation the same dam is shown under simple
temperature distribution assumptions. Results of this analysis are given in Fig. 4.12.

4.4.6 Gravity dams

A buttress dam is a natural example for the application of finite element methods.
Other types, such as gravity dams with or without piers and so on, can also be
simply treated. Figure 4.13 shows an analysis of a large dam with piers and crest gates.

In this case the approximation of assuming a two-dimensional treatment in the
vicinity of the abrupt change of section, i.e., where the piers join the main body of
the dam, is clearly involved, but this leads to localized errors only.

It is important to note here how, in a single solution, the grading of element size is
used to study concentration of stress at the cable anchorages, the general stress flow in
the dam, and the foundation behaviour. The linear ratio of size of largest to smallest
elements is of the order of 30 to 1 (the largest elements occurring in the foundation are
not shown in the figure).

4.4.7 Underground power station

This last example, illustrated in Figs 4.14 and 4.15, shows an interesting application.
Here principal stresses are plotted automatically. In this analysis many different
components of 6, the initial stress, were used due to uncertainty of knowledge
about geological conditions. The rapid solution and plot of many results enabled
the limits within which stresses vary to be found and an engineering decision arrived
at. In this example, the exterior boundaries were taken far enough and ‘fixed’
(u =v=0). However, a better treatment could be made using infinite elements as
described in Sec. 9.13.

4.5 Special treatment of plane strain with an
incompressible material

It will have been noted that the relationship (4.16) defining the elasticity matrix D for
an isotropic material breaks down when Poisson’s ratio reaches a value of 0.5 as the
factor in parentheses becomes infinite. A simple way of side-stepping this difficulty is
to use values of Poisson’s ratio approximating to 0.5 but not equal to it. Experience
shows, however, that if this is done the solution deteriorates unless special formula-
tions such as those discussed in Chapter 12 are used.



References

4.6 Concluding remark

In subsequent chapters, we shall introduce elements which give much greater
accuracy for the same number of degrees of freedom in a particular problem. This
has led to the belief that the simple triangle used here is completely superseded.
In recent years, however, its very simplicity has led to its revival in practical use
in combination with the error estimation and adaptive procedures discussed in
Chapters 14 and 15.
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