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Predictive ILP

Predictive ILP

Aim:

classifying instances of the domain, i.e.

predicting the class

Two settings:

Learning from entailment

Learning from interpretations
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Predictive ILP Learning from entailment

Learning from Entailment

Given

A set of positive example E+

A set of negative examples E−

A background knowledge B
A space of possible programs H

Find a program P ∈ H such that

∀e+ ∈ E+, P ∪ B |= e+ (completeness)

∀e− ∈ E−, P ∪ B 6|= e− (consistency)
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Predictive ILP Learning from entailment

Targeted Mailing
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Predictive ILP Learning from entailment

Mailing Example

Positive examples E+ = {respond(ann)}

Negative examples

E− = {respond(john), respond(mary), respond(steve)}

Background B = facts for relations customer , transaction and

article

customer(john,35,m, ca).
customer(mary ,25, f , ca).
customer(ann,29, f ,wa). . . .
transaction(john,bike_1,2).
transaction(ann, jacket_2,1). . . .
article(bike_1, sport , l ,1000).
article(jacket_2, clothing, l ,150). . . .
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Predictive ILP Learning from entailment

Mailing Example

Space of programs H: programs containing clauses with

in the head respond(Customer)
in the body a conjunction of literals from the set

{customer(Customer ,Age,Sex ,Address),
transaction(Customer ,Article,Quantity),
article(Article,Category ,Price),
Age = constant ,Sex = constant , . . .}

Possible solution

respond(Customer)← transaction(Customer ,Article,_Quantity),
article(Article,Category ,_Size,_Price),
Category = clothing
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Predictive ILP Learning from entailment

Definitions

covers(P,e) = true if B ∪ P |= e

covers(P,E) = {e ∈ E |covers(P,e) = true}

A theory P is more general than Q if covers(P,U) ⊇ covers(Q,U)

If B ∪ P |= Q then B ∪Q |= e ⇒ B ∪ P |= e so P is more general

than Q

A clause C is more general than D if

covers({C},U) ⊇ covers({D},U)

If B,C |= D then C is more general than D

If a clause covers an example, all of its generalizations will (covers

is antimonotonic)

If a clause does not cover an example, none of its specializations

will
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Predictive ILP Learning from entailment

Theta Subsumption

A clause

h← b1, . . . ,bn

can be seen as a set of literals {h,not b1, . . . ,not bn}

A substitution θ is a replacement of variable with terms:

θ = {X/a,Y/b}

C θ-subsumes D (C ≥ D) if there exists a substitution θ such that

Cθ ⊆ D [Plotkin 70]

C ≥ D ⇒ C |= D ⇒ B,C |= D ⇒ C is more general than D

C |= D 6⇒ C ≥ D
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Predictive ILP Learning from entailment

Examples of Theta Subsumption

C1 = father(X ,Y )← parent(X ,Y )

C2 = father(X ,Y )← parent(X ,Y ),male(X )

C3 = father(john, steve)← parent(john, steve),male(john)

C1 = {father(X ,Y ),not parent(X ,Y )}

C2 = {father(X ,Y ),notparent(X ,Y ),not male(X )}

C3 =
{father(john, steve),not parent(john, steve),not male(john)}

C1 ≥ C2 with θ = ∅

C1 ≥ C3 with θ = {X/john,Y/steve}

C2 ≥ C3 with θ = {X/john,Y/steve}
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Predictive ILP Learning from entailment

Example of C |= D 6⇒ C ≥ D

C = even(X )← even(half (X )).

D = even(X )← even(half (half (X ))).

C |= D: we can obtain D by resolving C with itself, but

C 6≥ D: there is no substitution θ such that Cθ ⊆ D

F. Riguzzi (ENDIF) Inductive Logic Programming 11 / 56



Predictive ILP Learning from entailment

In Practice

Coverage test: SLD or SLDNF resolution

Try to derive e from B ∪ P ∪ {C}

Generality order:

θ-subsumption
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Predictive ILP Learning from entailment

Properties of Theta Subsumption

θ-subsumption induces a lattice in the space of clauses

Every set of clauses has a least upper bound (lub) and a greatest

lower bound (glb)

This is not true for the generality relation based on logical

consequence
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Predictive ILP Learning from entailment

Lattice

F. Riguzzi (ENDIF) Inductive Logic Programming 14 / 56



Predictive ILP Learning from entailment

Least General Generalization

lgg(C,D) = least upper bound in the θ-subsumption order

An algorithm exists which has complexity O(s2) where s is the

size of the clauses

Example:

C = father(john,mary)← parent(john,mary),male(john)
D = father(david , steve)← parent(david , steve),male(david)
lgg(C,D) = father(X ,Y )← parent(X ,Y ),male(X )

For a set of n clauses the complexity is O(sn)
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Predictive ILP Learning from entailment

Least General Generalization Algorithm

The algorithm keeps a set of anti-substituons A that contains

elements of the form V/t1, t2 meaning that variable V replaced

the term t1 in the first formula and the term t2 in the second

formula

The lgg of two terms f 1(s1, . . . , sn) and f 2(t1, . . . , tm) is:

f 1(lgg(s1, t1), . . . , lgg(sn, tn))

if f 1/n = f 2/m, otherwise

if an element of the form V/f1(s1, . . . , sn), f2(t1, . . . , tm) is present
in A, then the lgg is V

otherwise let V be a new variable, add
V/f1(s1, . . . , sn), f2(t1, . . . , tm) to A and the lgg is V
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Predictive ILP Learning from entailment

Least General Generalization Algorithm

Examples

lgg(f (a,b, c), f (a, c,d)) = f (lgg(a,a), lgg(b, c), lgg(c,d)) = f (a,X ,Y ),
A = {X/b, c,Y/c,d}
lgg(f (a,a), f (b,b)) = f (lgg(a,b), lgg(a,b)) = f (X ,X ), A = {X/a,b}

Note that the same variable X is used in both arguments of the

second example because it indicates the lgg of the same two

terms

lgg(f (a,b), f (b,a)) = f (lgg(a,b), lgg(b,a)) = f (X ,Y ),
A = {X/a,b,Y/b,a}

Note that two different variables X and Y are used because the

order of the terms is different
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Predictive ILP Learning from entailment

Least General Generalization Algorithm

The lgg of two literals L1 = (not)p(s1, ..., sn) and
L2 = (not)q(t1, ..., tm) is

undefined if L1 and L2 do not have the same sign or if p/n 6= q/m,

otherwise

lgg(L1, L2) = (not)p(lgg(s1, t1), ...lgg(sn, tn))

Examples:

lgg(parent(john,mary), parent(john, steve)) = parent(john,X)
A = {X/mary , steve}
lgg(parent(john,mary), not parent(john, steve)) = undefined

lgg(parent(john,mary), father(john, steve)) = undefined
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Predictive ILP Learning from entailment

Least General Generalization Algorithm

lgg(C,D) = {lgg(L,K )|L ∈ C,K ∈ D and lgg(L,K ) is defined}

Examples

C = father(john,mary)← parent(john,mary),male(john)
D = father(david , steve)← parent(david , steve),male(david)
lgg(C,D) = father(X ,Y )← parent(X ,Y ),male(X ),
A = {X/john,david ,Y/mary , steve}

C = win(conf 1)← occ(place1, x , conf 1),occ(place2,o, conf 1)
D = win(conf 2)← occ(place1, x , conf 2),occ(place2, x , conf 2)
lgg(C,D) = win(Conf )← occ(place1, x ,Conf ),occ(L, x ,Conf ),
occ(M,Y ,Conf ),occ(place2,Y ,Conf )
A = {Conf/conf 1, conf 2,L/place1,place2,M/place2,place1,Y/o, x}
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Predictive ILP Learning from entailment

Relative Subsumption

θ subsumption does not take into account background knowledge

C ≥ D ⇔ |= ∀(Cθ → D)

Relative Subsumption [Plotkin 71]: C θ subsume D relative to

background B (C ≥B D) if there exists a substitution θ such that

B |= ∀(Cθ → D)
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Predictive ILP Learning from entailment

Relative Least General Generalization

Relative Least General Generalization (rlgg): lgg with respect to

relative subsumption.

It does not exists in the general case of B a set of Horn clauses

It exists in the case that B is a set of ground atoms and can be

computed in this way:

rlgg((H1← B1), (H2← B2)) =
lgg((H1← B1,B), (H2← B2,B))
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Predictive ILP Learning from entailment

Relative Least General Generalization

Example

C1 = father(john,mary)

C2 = father(david , steve)

B = {parent(john,mary),parent(david , steve),
parent(kathy ,mary), female(kathy),
male(john),male(david)}
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Predictive ILP Learning from entailment

Relative Least General Generalization

Example

C1← B = fa(j ,m)← p(j ,m),p(d , s),p(k ,m), f (k),m(j),m(d)

C2← B = fa(d , s)← p(j ,m),p(d , s),p(k ,m), f (k),m(j),m(d)

rlgg(C1,C2) = fa(X ,Y )← p(j ,m),p(X ,Y ),p(Z ,m),

p(W ,U),p(d , s),p(S,U),p(T ,m),p(R,Y ),p(k ,m),

f (k),m(j),m(X ),m(W ),m(d)

A = {X/j ,d ,Y/m, s,Z/j , k ,W/d , j ,U/s,m,S/d , k ,T/k , j ,R/k ,d}
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Predictive ILP Learning from entailment

Reduced clause

Two clauses C and D are equivalent (relative to B) if C ≥ D and

D ≥ C (C ≥B D and D ≥B C)

A clause C is reduced (relative to B) if it does not contain any

subset D that is equivalent to C (relative to B)

C = rlgg(C1,C2) = fa(X ,Y )← p(j ,m),p(X ,Y ),p(Z ,m),
p(W ,U),p(d , s),p(S,U),p(T ,m),p(R,Y ),p(k ,m),
f (k),m(j),m(X ),m(W ),m(d)
is equivalent to

D = fa(X ,Y )← p(j ,m),p(X ,Y ),p(d , s),p(k ,m),
f (k),m(j),m(X ),m(d)
and is equivalent relative to B to

D = fa(X ,Y )← p(X ,Y ),m(X )
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Predictive ILP Learning from entailment

Bottom-up Systems

Covering loop

Search for a clause from specific to general

Learn(E ,B)

P := 0

repeat /* covering loop */

C :=GenerateClauseBottomUp(E ,B)

P := P ∪ {C}
Remove from E the positive examples covered by P

until Sufficiency criterion

return P
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Predictive ILP Learning from entailment

Golem [Muggleton, Feng 90]

Bottom-up system

Generalization by means of rlgg

Sufficiency criterion: E+ = ∅
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Predictive ILP Learning from entailment

Golem

GolemGenerateClause(E ,B)

select randomly some couples of examples from E+

compute their rlgg

let C be the rlgg that covers most positive examples

while covering no negative

repeat

randomly select some examples from E+

compute the rlgg between C and each selected example

let C be the rlgg that covers most positive examples

while covering no negative

remove from E+ the examples covered by C

while C covers no negatives

remove literals from the body of C until C covers

some negative examples

return C
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Predictive ILP Learning from entailment

Top-down Systems

Covering loop as bottom-up systems

Search for a clause from general to specific using beam search

Score clauses using a heuristic function
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Predictive ILP Learning from entailment

Top-down Systems

GenerateClauseTopDown(E,B)

Beam := {p(X )← true}
BestClause := null

repeat /* specialization loop */

Remove the first clause C of Beam

compute ρ(C)
score all the refinements

update BestClause

add all the refinements to the beam

order the beam according to the score

remove the last clauses that exceed the dimension d

until the Necessity criterion is satisfied

return BestClause
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Predictive ILP Learning from entailment

Typical Stopping Criteria

Sufficiency criteria:

E+ = ∅
GenerateClauseTopDown returns null
a disjunction of the above

Necessity criteria

the number of negative examples covered by BestClause is 0

the number of negative examples covered by BestClause is below a
threshold

Beam is empty

a disjunction of the above
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Predictive ILP Learning from entailment

Refinement Operator

ρ(C) = {D|D ∈ L,C ≥ D}

where L is the space of possible clauses

A refinement operator usually generates only minimal

specializations

A typical refinement operator applies two syntactic operations to a
clause

it applies a substitution to the clause

it adds a literal to the body
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Predictive ILP Learning from entailment

Heuristic Functions

n+,n− number of positive and negative examples in the training

set, n = n+ + n−

n+(C),n−(C) number of positive and negative examples covered

by clause C

n(C) = n+(C) + n−(C)

Accuracy: Acc = P(+|C) (more accurately Precision), P(+|C)
can be estimated by

relative frequency: P(+|C) = n+(C)
n(C)

m-estimate: P(+|C) = n+(C)+mP(+)
n(C)+m

, where P(+) = n+/n

Laplace: m-estimate with m = 2,P(+) = 0.5 P(+|C) = n+(C)+1
n(C)+2
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Predictive ILP Learning from entailment

Heuristic Functions

Coverage: Cov = n+(C)− n−(C)

Informativity: Inf = log2(Acc)

Weighted relative accuracy: WRAcc = P(C)(P(+|C) − P(+))
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Predictive ILP Learning from entailment

FOIL [Quinlan 90]

Top-down system with

Dimension of the beam: 1
Heuristic: (approximately) weighted gain of Inf :

H = n(C′)(Inf (C′)− Inf (C))
Refinement operator: addition of a literal or unification
Sufficiency criterion: E+ = ∅
Necessity criterion: n−(BestClause) = 0
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Predictive ILP Learning from entailment

Progol [Muggleton 95]

Top-down system with

Dimension of the beam: user defined

Heuristic: Compression: Comp = n+(C)− n−(C)− |C|
Refinement operator: adds a literal from the most specific clause ⊥
after having replaced some of the constants with variables

Sufficiency criterion: E+ = ∅
Necessity criterion: Beam = ∅ or a maximum number of iterations

of the loop is reached
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Predictive ILP Learning from interpretations

Learning from Interpretations

Interpretation = set of ground atoms.

Aim: learning a classifier for logical interpretations

Classifier: a set of disjunctive clauses

Disjunctive clause

C = h1 ∨ h2 ∨ . . . ∨ hn ← b1,b2, . . . ,bm

can be seen as a set of literals

{h1, . . . ,hn,not b1, . . . ,not bm}

head(C) = h1 ∨ h2 ∨ . . . ∨ hn or {h1, . . . ,hn}

body(C) = b1,b2, . . . ,bm or {b1, . . . ,bm}

body+(C) = set of positive literals of body(C)

body−(C) = set of atoms of negative literals of body(C)
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Predictive ILP Learning from interpretations

Learning from Interpretations

Set of clauses as a classifier

an interpretation is positive if all the clauses are true in the

interpretation
an interpretation is negative if there exists at least one clause that

is false in it

A clause C is true in an interpretation I if for all grounding

substitutions θ of C:

I |= body(C)θ → head(C)θ ∩ I 6= ∅
or

body+(C)θ ⊆ I ∧ body−(C)θ ∩ I = ∅ → head(C)θ ∩ I 6= ∅
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Predictive ILP Learning from interpretations

Test of the Truth of a Clause

Range restricted clause: all the variables of the clause appear in

positive literals in the body

Range restricted clause C, finite interpretation I: run the query

?− body(C),not head(C) against a logic program containing I

If C = h1 ∨ h2 ∨ . . . ∨ hn ← b1,b2, . . . ,bm then the query is

?− b1,b2, . . . ,bm,not h1,not h2, . . . ,not hn

If the query succeeds, C is false in I. If the query fails, C is true in

I [De Raedt, Bruynooghe 93]
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Predictive ILP Learning from interpretations

Example

I = {female(liz),male(richard),
gorilla(liz),gorilla(richard)}

C = male(X ) ∨ female(X )← gorilla(X ): the clause is true in I

because the query ?− gorilla(X ),not male(X ),not female(X ) fails

C = male(X )← gorilla(X ): the clause is false in I because the

query

?− gorilla(X ),not male(X ) succeeds with θ = {X/liz}.
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Predictive ILP Learning from interpretations

Learning from Interpretations

Given

a space of possible clausal theories H
a set P of interpretations

a set N of interpretations

Find: a clausal theory H ∈ H such that

for all p ∈ P, p |= H

for all n ∈ N, n 6|= H

Less expressive than learning from entailment: no recursive

definitions
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Predictive ILP Learning from interpretations

Test with Background

Background: a normal program B

Truth of a clause C in the interpretation M(B ∪ I) where M is the

model according to the chosen semantics and I is an

interpretation (i.e. B ∪ I |= C)

Range restricted clause C, normal program B containing only

range restricted clauses, interpretation I: run the query

?− body(C),not head(C) against the logic program B ∪ I.

If the query succeeds, C is false in M(B ∪ I) (B ∪ I 6|= C). If the

query fails, C is true in M(B ∪ I) (B ∪ I |= C)
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Predictive ILP Learning from interpretations

Learning from Int. with Background

Given

a space of possible clausal theories H

a set P of interpretations

a set N of interpretations

a background theory B

Find: a clausal theory H ∈ H such that

for all p ∈ P, B ∪ p |= H

for all n ∈ N, B ∪ n 6|= H
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Predictive ILP Learning from interpretations

Generality Relation

cover({C},e) = true if e |= C

C ≥ D ⇒ C |= D ⇒ D is more general than C

the relation is reversed

Example:

false ← true

false ← gorilla(X )
female(X )← gorilla(X )
female(X ) ∨male(X )← gorilla(X )
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Predictive ILP Learning from interpretations

ICL [De Raedt, Van Laer, 95]

Dual version of a top down entailment algorithm:

coverage loop is performed on negative examples

Updates CN2 to first order

ICL(P,N,B)

H := ∅
repeat

C :=FindBestClause(P,N,B)

if C 6= null then

add C to H

remove from N all interpretations that are false for C

until C = null or N is empty

return H
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Predictive ILP Learning from interpretations

ICL FindBestClause

FindBestClause(P,N,B)

Beam := {false ← true}, BestClause := null

while Beam is not empty do

NewBeam := ∅
for each clause C in Beam do

for each refinement Ref of C do

if Ref is better than BestClause and Ref is

statistically significant then

BestClause := Ref

if Ref is not to be pruned then

add Ref to NewBeam

if size of NewBeam > MaxBeamSize then

remove worst clause from NewBeam

Beam := NewBeam

return BestClause
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Predictive ILP Learning from interpretations

ICL Heuristics

n(C)= number of interpretations (positive and negative) where C

is false

n−(C)= number of negative interpretation where C is false

H(C) = p(−|C) = n−(C)+1

n(C)+2
= precision over negative class
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Descriptive ILP

Descriptive ILP

Discovering regularities, patterns

Example tasks:

finding association rules

clustering
subgroup discovery
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Descriptive ILP

Claudien [De Raedt, Dehaspe 97]

Learning problem: Given

a space of possible clausal theories H
a set P of interpretations

a background theory B

Find: a clausal theory H ∈ H such that

∀p ∈ P,B ∪ p |= H
H is maximally specific
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Descriptive ILP

Example

p1 = {female(liz),male(richard),
gorilla(liz),gorilla(richard)}
p2 = {female(ginger),male(fred),
gorilla(ginger),gorilla(fred)}
If H contains only range-restricted, constant-free clauses a solution is:

gorilla(X )← female(X )
gorilla(X )← male(X )
male(X ) ∨ female(X )
← male(X ), female(X )
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Descriptive ILP

Claudien Algorithm

ClausalDiscovery(E ,B)

H := ∅
Beam := {false ← true}
while Beam is not empty do

delete from Beam the first clause C

if C is true on E then

H := H ∪ {C}
else

for all C′ ∈ ρ(C) for which not prune(C′) do

Beam := Beam ∪ {C′}
return H
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Descriptive ILP

Pointers

ILPnet2

http://www.cs.bris.ac.uk/~ILPnet2/

http://www-ai.ijs.si/~ilpnet2/

KDnet http://www.kdnet.org/

Books:

[Lavrac, Dzeroski 94]: freely available in pdf from

http://www-ai.ijs.si/SasoDzeroski/ILPBook/

[Bergadano et al. 96]
[Dzeroski, Lavrac 01]
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