What software engineers need to know about linking
and a few things about execution

(Extract from the slides by
Terrance E. Boult
http://vast.uccs.edu/~tboult/)

A Simplistic Program
Translation Scheme

m.c ASCII source file
Translator
1 Binary executable object file
P (memory image on disk)

Problems:
« Efficiency: small change requires complete recompilation
 Modularity: hard to share common functions (e.g. printf)
Solution:
o Static linker (or linker)

A Better Scheme Using a Linker

m.c a.c
Translators Translators
A a0 Separately compilegl
1 1 relocatable object files
Linker (Id)

l Executable object file (contains code
P and data for all functions defined in m.c
and a.c)

m Translating the Example
Program

= Compiler driver coordinates all steps in the translation and linking process.
— Typically included with each compilation system (e.g., gcc)
— Invokes preprocessor (cpp), compiler (ccl), assembler (as), and linker (1d).
— Passes command line arguments to appropriate phases

= Example: create executable p fromm.c and a.c:

bass> gcc -02 -v -0 p m.c a.c

cpp [args] m.c /tmp/cca07630.1

ccl /tmp/cca07630.1 m.c -02 [args] -o /tmp/cca07630.s

as [args] -o /tmp/cca076301.0 /tmp/cca07630.s

<similar process for a.c>

Id -0 p [system obj files] /tmp/cca076301.0 /tmp/cca076302.0
bass>

2% What Does a Linker Do?

= Merges object files

— Merges multiple relocatable (.0) object files into a single executable object
file that can loaded and executed by the loader.

= Resolves external references

— As part of the merging process, resolves external references.
» External reference: reference to a symbol defined in another object file.

» Relocates symbols

— Relocates symbols from their relative locations in the . o files to new
absolute positions in the executable.

— Updates all references to these symbols to reflect their new positions.

» References can be in either code or data
— code: a(Q); /* reference to symbol a */
— data: Int *xp=&x; /* reference to symbol x */

UCes Why Linkers?

= Modularity

— Program can be written as a collection of smaller source files, rather than one
monolithic mass.

— Can build libraries of common functions (more on this later)

* e.g., Math library, standard C library
= Efficiency

— Time:
» Change one source file, compile, and then relink.
» No need to recompile other source files.

— Space:
» Libraries of common functions can be aggregated into a single file...

* Yet executable files and running memory images contain only code for the functions they
actually use.

uccs

Executable and Linkable Format
(ELF)

= Standard binary format for object files
= Derives from AT&T System V Unix
— Later adopted by BSD Unix variants and Linux

* One unified format for
— Relocatable object files (. 0),

— Executable object files
— Shared object files (.s0)

= (Generic name: ELF binaries
= Better support for shared libraries than old a . out formats.

Upper
2 hex
digits of
address

CO

Linux Memory
Layout

Stack

— Runtime stack
Heap

— Dynamically allocated storage

— When call malloc, calloc, new
DLLs

— Dynamically Linked Libraries

— Library routines (e.g., printf, malloc)

— Linked into object code when first executed
Data

— Statically allocated data

— E.g., arrays & strings declared in code
Text

— Executable machine instructions

— Read-only

Static Libraries (archives)

pl.c p2.cC
Translator Translator
1 1 static library (archive) of
pl.o p2.0 libc.a relocatable object files
T~ 1 — concatenated into one file.
Linker (Id)

l executable object file (only contains code
P and data for libc functions that are called

from pl.cand p2.c)

Further improves modularity and efficiency by packaging commonly
used functions [e.g., C standard library (F'ibc), math library (11bm)]

Linker selectively links only the .o files in the archive that are
actually needed by the program.

uccs

om.cC

1

1

atoi.c printf.c rand
Translator Translator Translator
ator.o printf.o random.o

Archiver (ar)

|

libc.a C standard

Archiver allows incremental updates:
 Recompile function that changes and replace .o file in

archive.

ar rs libc.a \

Creating Static Libraries

r: replace
existing or
Insert new
file(s) into the
archive

S. create an
archive index

ator.o printf.o .. random.o

library

UCes Using Static Libraries

= Linker’s algorithm for resolving external references:
— Scan .o files and .a files in the command line order.
— During the scan, keep a list of the current unresolved references.

— As each new .o or .a file obj is encountered, try to resolve each unresolved reference
in the list against the symbols in obj.

— If any entries in the unresolved list at end of scan, then error.
= Problem:

— Command line order matters!

— Moral: put libraries at the end of the command line.

bass> gcc -L. libtest.o -Imine
bass> gcc -L. -Imine libtest.o
libtest.o: In function "main-:
libtest.o(.text+0x4): undefined reference to " libfun*

UCces Shared Libraries

= Static libraries have the following disadvantages:

— Potential for duplicating lots of common code in the executable files on a filesystem.
* e.g., every C program needs the standard C library

— Potential for duplicating lots of code in the virtual memory space of many processes.
— Minor bug fixes of system libraries require each application to explicitly relink
= Solution:

— Shared libraries (dynamic link libraries, DLLs) whose members are dynamically
loaded into memory and linked into an application at run-time.

» Dynamic linking can occur when executable is first loaded and run.
— Common case for Linux, handled automatically by 1d-11nux.so.

« Dynamic linking can also occur after program has begun.
— In Linux, this is done explicitly by user with dlopen() .
— Basis for High-Performance Web Servers.

» Shared library routines can be shared by multiple processes.

n.c a.c Dynamically Linked
l l Shared Libraries

Translators Translators
(ccl, as) (ccl,as)
m!o\‘ a%o
Linker (Id)
Partially linked executable p é libc.so Shared library of dynamically

(on disk) 1 / relocatable object files

Loader/Dynamic Linker

(Id-linux.so) li1bc.so functions called by m.c

and a.c are loaded, linked, and
(potentially) shared among

Fully linked executable l processes.
p’ (in memory) P

The Complete Picture

m.c a.c
Translator Translator
m.o a.o 1 ibwhatever.a

~ |

Static Linker (Id)

libc.so libm.so

P

Loader/Dynamlc Linker

(Id-linux.so)

|

p’

	What software engineers need to know about linking�and a few things about execution
	A Simplistic Program Translation Scheme
	A Better Scheme Using a Linker
	Translating the Example Program
	What Does a Linker Do?
	Why Linkers?
	Executable and Linkable Format (ELF)
	Linux Memory Layout
	Static Libraries (archives)
	Creating Static Libraries
	Using Static Libraries
	Shared Libraries
	Dynamically Linked Shared Libraries
	The Complete Picture

