Introduzione al collaudo dei sistemi digitali

M. Favalli

Engineering Department in Ferrara

ntroduzione VLSI testing

Collaudo (testing) dei sistemi digitali

- Realizzazione di sistemi digitali (VLSI)
- Collaudo e verifica
- Collaudo ideale e collaudo reale
- Costo del collaudo
- Ruolo del collaudo
- Struttura di un sistema VLSI system-on-a-chip (SOC)

Introduzione

Processo di realizzazione di sistemi VLSI

Specifiche del cliente

Specifiche reali

Specifiche formali

Sintesi e verifica

Sviluppo del collaudo

Produzione

Collaudo

Introduzione VLSI testing 2 Introduzione VLSI testing

Definizioni

Sintesi

Procedura che a partire dalle specifiche (funzione di I/O) arriva alla descrizione della realizzazione di un dispositivo utilizzando materiali e processi noti.

Verifica

Analisi per assicurare che il progetto sintetizzato svolgerá la funzione di I/O assegnata una volta costruito il circuito (con un processo costruttivo ideale).

Collaudo

Un passo di produzione che assicura che il dispositivo fisico, costruito a partire dal progetto sintetizzato sia privo di difetti generati durante la produzione o il funzionamento del circuito (ipotesi di processo di sintesi ideale).

Sintesi, verifica e collaudo non possono essere considerati

Introduzione VLSI testing

Verifica

vs. Collaudo

- Verifica la correttezza del progetto.
- Simulazione, emulazione hardware, o metodi formali.
- Svolta una volta prima della produzione.
- Responsabile per progetti di qualitá.

- Verifica la correttezza dell'hardware
- Processo:
 - Test generation: processo software svolto durante il progetto
 - Test application: test elettrici applicati all'hardware
- Ripetuto per tutti i dispositivi prodotti.
- Responsabile per la qualitá dei dispositivi.

Motivazioni

- Perché un progettista o uno sviluppatore di sistemi EDA deve conoscere i problemi relativi al collaudo?
- Un sistema digitale progettato senza tenere conto del collaudo risulterá impossibile da collaudare e quindi non vendibile
- La generazione di sequenze di collaudo é un problema complesso che richiede algoritmi dedicati
- In entrambi i casi esistono numerosi problemi non ancora risolti in maniera soddisfacente
- Le tecnologie digitali evolvono verso dispositivi sempre piú piccoli caratterizzati da probabilitá di difetti sempre piú alte (il collaudo da solo non é sufficente, ma é comunque necessario)

Introduzione VLSI testing

testing

Defect based testing

- Non é possibile verificare in maniera esaustiva il funzionamento di un dispositivo
- Si cerca allora di verificare che il dispositivo sia privo di difetti

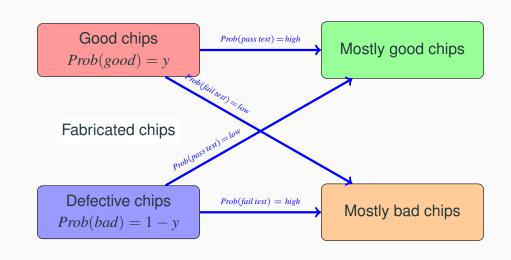
Introduzione VLSI testing 6 Introduzione VLSI testing

Collaudo ideale

Collaudo reale

- Il collaudo ideale rivela tutti i possibili difetti che si manifestano nel progetto di produzione
- Lascia passare tutti i dispositivi funzionanti correttamente
- I difetti da collaudare sono in grande numero e varietá
- Difficoltá nel generare test per alcuni difetti reali

- Basato su modelli di guasto, che possono avere una corrispondenza parziale con i difetti reali
- Copertura incompleta sui guasti modellati a causa della complessitá dei sistemi
- Alcuni chip corretti sono scartati. La loro frazione (o percentuale) si dice yield loss.
- Alcuni chip difettosi passano il collaudo. La loro frazione (o percentuale) si dice defect level.


Introduzione VLSI testing

Introduzione VLSI testing

Da VLSI a nanotecnologie

Testing come un filtro

- Le definizioni precedenti riguardano il collaudo classico utilizzato per i circuiti digitali VLSI
- Cosa accade se la tecnologia non consente di produrre circuiti privi di difetti?
- Tolleranza ai guasti e riconfigurabilitá
- Rimane comunque l'esigenza del collaudo

Costi del collaudo

- Parte importante dei costi di progetto e produzione
- Design for testability (DFT)
 - Area aggiuntiva e riduzione della resa
 - Degrado delle prestazioni
- Processi software
 - Test generation e fault simulation
 - Test programming e debugging
- Collaudo di produzione
 - Automatic test equipment (ATE)

Introduzione VLSI testing

Ruoli del Collaudo

Rivelazione dei quasti (fault detection)

determina se il device under test (DUT) ha qualche guasto

Diagnosi di guasto (fault diagnosis)

identifica se un gausto specifico é presente nel DUT

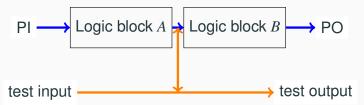
Caratterizzazione dei dispositivi

determina e corregge errori nel progetto e/o nella procedura di test

Failure mode analysis (FMA)

determina gli errori nei processi di produzione che possono avere dato luogo a difetti nel DUT

Design For Testability

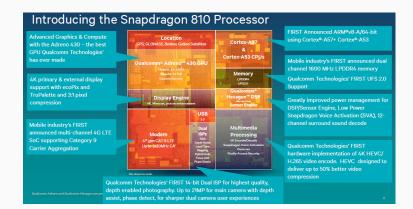

Stili e metodologie di progetto che riducono la complessitá della test generation

Motivazioni

La complessitá della test generation cresce esponenzialmente con la complessitá del circuito

Esempio

L'hardware di DFT consente di osservare la risposta di A e di applicare test a B senza dover collaudare la cascata di A e B



Introduzione VLSI testing

Ruoli del collaudo nell'era dei nano-circuiti

- Nanocircuiti
 - criticitá delle prestazioni
 - variabilitá dei parametri tecnologici
 - elevata probabilitá di difetti
- Il collaudo non puó piú essere visto come un processo pass/fail
 - supporto a timing adattativo
 - supporto alla riconfigurazione
 - supporto alla tolleranza ai guasti
- Queste funzioni devono principalmente essere realizzate sul circuito integrato

Introduzione VLSI testing Introduzione VLSI testing

Introduzione VLSI testing

Sommario

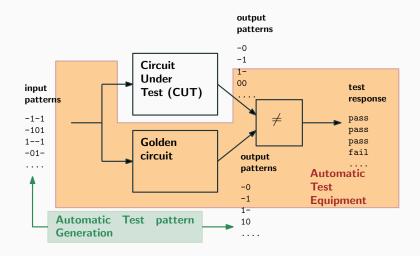
- Introduzione
 - Concetti fondamentali e definizioni
 - Processo e macchine di collaudo (ATE)
 - Aspetti economici e di qualitá
- Progetto delle sequenze di collaudo
 - Modelli di guasto
 - Simulazione di guasto
 - ATPG per circuiti combinatori
 - ATPG per circuiti sequenziali
- Delay test e IDDQ test
- DFT
 - Scan design
 - BIST
 - Boundary scan

Introduzione VLSI testing

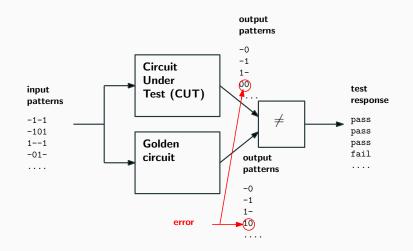
VLSI testing

Modalitá di collaudo

- Progettisti e test engineer progettano le sequenze di collaudo e hardware per il DFT
 - livello logico
 - strumenti EDA
- Le sequenze di test vengono applicate tramite ATE (Automatic Test Equipment)


19 In

ntroduzione VLSI testing


20

Schema concettuale

Introduzione VLSI testing

Schema concettuale

Tipologie di collaudo

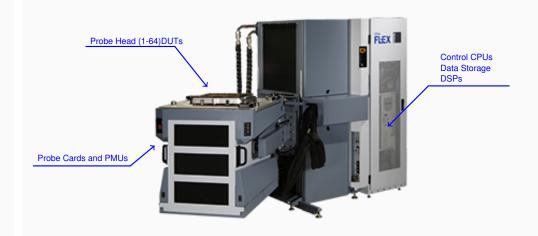
- Verification testing e characterization testing : verifica la correttezza del progetto e delle procedure di collaudo
- Manufacturing testing: collaudo di tutti i chip prodotti per guasti parametrici e difetti casuali
- Acceptance testing (incoming inspection): collaudo svolto dai clienti sui chip acquistati per verificarne la qualit\(\tilde{A}\)
- On-chip testing: aiuta il collaudo di produzione e viene ripetuto periodicamente per verificare la funzionalitá del circuito integrato
- On-line testing: il circuito viene collaudato durante il suo normale funzionamento

Verification testing

Characterization testing

- Si effettua per i primi prototipi
 - Ispezione ottica: microscopio elettronico a scansione
 - Analisi dei segnali interini al chip: electron beam testing
 - Collaudi funzionali
 - Eventuale diagnosi di errori di fabbricazione o progetto

- Esplora le condizioni di funzionamento del chip
 - temperatura, alimentazione,
 - definisce le condizioni per il collaudo di produzione
 - caratterizza il processo di produzione
- Continua durante tutta la fase di produzione per monitorare e migliorare progetti, processi e la resa


ntroduzione VLSI testing

troduzione VLSI testing

Manufacturing testing

- Determina se i chip prodotti corrispondono alle specifiche
- Deve coprire elevate percentuali di guasti
- Deve minimizzare i tempi di collaudo e quindi i costi
- Tradizionalmente non svolgeva alcuna diagnosi, le cose cambiano nel caso di circuiti riconfigurabili
- Il collaudo deve avvenire alla velocitá a cui operano i chip

Automatic Test Equipment (ATE)

Struttura e tecnologia degli ATE - 1

Struttura e tecnologia degli ATE - 2

- In questo corso manterremo una visione prevalentemente logica del problema del collaudo
- Bisogna peró notare che un ATE é essenzialmente uno strumento di misura elettronico di alta qualitá
- Molte condizioni sulla loro tecnologia si riflettono sugli algoritmi utilizzati per il collaudo e il DFT

Versatilitá

- Modificando le probe un ATE é tipicamente in grado di effettuare collaudi di diverso tipo su:
 - wafer;
 - chip;
 - su packaged chip;
- Negli anni 90 esistevano ATE specializzati per memorie, logica o componenti mixed-signal
- Oggi le tecnologie SoC richiedono la presenza di queste funzionalitá su un unico sistema

ntroduzione VLSI testing

5 Int

ntroduzione VLSI testing

Struttura e tecnologia degli ATE - 3

Considerazioni generali sugli ATE

- I vettori logici da applicare al circuito vanno trasformati in opportune forme d'onda elettriche (frame processor e pin electronics)
 - l'ATE deve essere in grado di produrre forme d'onda consistenti con gli standard di test e di comunicazione fra i circuiti integrati
 - l'accuratezza delle temporizzazioni e il controllo su livelli di tensione e corrente sono particolarmente rilevanti
- Le stesse condizioni valgono per l'analisi delle risposte che possono disporre di (Precision Measurment Units condivise fra diversi pin)

- Si tratta di sistemi complessi molto costosi che devono essere ammortati nel tempo
- Un ATE deve essere utilizzato per collaudare almeno 2 generazioni (Moore) di circuiti integrati
- Per tenere dietro ai relativi incrementi di prestazioni, l'ATE deve essere realizzato con i circuiti piú veloci disponibili al momento (utilizzo di bipolari)
- La sfida é persa se il DUT non aiuta l'ATE

Introduzione VLSI testing