
Object-relational mapping

Source http://www.datanucleus.org/

http://www.datanucleus.org/

Object-relational impedance mismatch

• The object-relational impedance mismatch is a set

of conceptual and technical difficulties that are often

encountered when a RDBMS is being used by a

program written in an object-oriented programming

language or style.

2

Data type differences

• A major mismatch between existing relational and

OO languages is the type system differences.

• The relational model strictly prohibits by-reference

attributes (or pointers), whereas OO languages

embrace and expect by-reference behavior.

• Scalar types and their operator semantics are also

very often subtly to vastly different between the

models, causing problems in mapping.

• For example, most SQL systems support string types

with varying collations and constrained maximum

lengths, while most OO languages consider collation

only as an argument to sort routines and strings are

intrinsically sized to available memory 3

Structural and integrity differences

• In OO languages, objects can be composed of other

objects—often to a high degree—or specialize from a

more general definition. This may make the mapping

to relational schemas less straightforward.

• This is because relational data tends to be

represented in a named set of global, unnested

relation variables.

4

Manipulative differences

• The relational model has an intrinsic, relatively small

and well defined set of primitive operators for usage

in the query and manipulation of data, whereas OO

languages generally handle query and manipulation

through custom-built or lower-level physical access

path specific imperative operations

5

Transactional differences

• Relational database transactions, as the smallest unit

of work performed by databases, are much larger

than any operations performed by classes in OO

languages.

• Transactions in relational databases are dynamically

bounded sets of arbitrary data manipulations,

whereas the granularity of transactions in OO

languages is typically individual assignments of

primitive typed fields.

• OO languages typically have no analogue of isolation

or durability as well and atomicity and consistency

are only ensured for said writes of primitive typed

fields.
6

Solving impedance mismatch

• There have been some attempts at building object-

oriented database management systems (OODBMS)

that would avoid the impedance mismatch problem.

• They have been less successful in practice than

relational databases however, partly due to the

limitations of OO principles as a basis for a data

model.

• There has been research performed in extending the

database-like capabilities of OO languages through

such notions as transactional memory.

7

8

Object-relational mapping

• Object-relational mapping (ORM, O/RM, and O/R

mapping) is a programming technique for solving the

impedence mismatch

• The heart of the problem is translating the logical

representation of the objects into an atomized form

that is capable of being stored on the database,

while somehow preserving the properties of the

objects and their relationships so that they can be

reloaded as an object when needed.

• If this storage and retrieval functionality is

implemented, the objects are then said to be

persistent.

Object-relational mapping

• Compared to traditional techniques of exchange

between an object-oriented language and a relational

database, ORM often reduces the amount of code

that needs to be written

• Disadvantages of O/R mapping tools generally stem

from the high level of abstraction obscuring what is

actually happening in the implementation code.

9

Java Data Objects

• Java Data Objects (JDO) is a specification of Java

object persistence.

• One of its features is a transparency of the

persistence services to the domain model.

• JDO persistent objects are ordinary Java

programming language classes (POJOs); there is no

requirement for them to implement certain interfaces

or extend from special classes.

• JDO was developed under the Java Community

Process.

• JDO 3.0 was released in April 2010

10

Java Data Objects

• Object persistence is defined in external XML

metafiles

• JDO vendors provide developers with enhancers,

which modify compiled Java class files so they can

be transparently persisted.

• Byte-code enhancement is not mandated by the JDO

specification, although it is the commonly used

mechanism for implementing the JDO specification's

requirements.

• Currently, JDO vendors offer several options for

persistence, e.g. to RDBMS, to OODB, or to files.

11

Java Data Objects

• JDO enhanced classes are portable across different

vendors' implementation. Once enhanced, a Java

class can be used with any vendor's JDO product

• JDO is both an object-relational mapping standard

and a transparent object persistence standard

• JDO, from an API point of view, is agnostic to the

technology of the underlying datastore

12

Java Persistence API

• The Java Persistence API, sometimes referred to as

JPA, is a Java programming language application

programming interface specification which describes

the management of relational data in applications

• The JPA 2.1 specification was developed under the

Java Community Process and was released 22 April

2013

• JPA uses the javax.persistence package

13

Java Persistence API

• JPA, is an object-relational mapping (ORM) standard,

while JDO is both an object-relational mapping

standard and a transparent object persistence

standard.

• JDO, from an API point of view, is agnostic to the

technology of the underlying datastore, whereas JPA

is targeted to RDBMS datastores (although there are

several JPA providers that support access to non-

relational datastores through the JPA API, such as

DataNucleus and ObjectDB).

14

Java Persistence API

• A persistence entity is a lightweight Java class whose

state is typically persisted to a table in a relational

database.

• Instances of such an entity correspond to individual

rows in the table.

• Entities typically have relationships with other

entities, and these relationships are expressed

through object/relational metadata.

• Object/relational metadata can be specified directly in

the entity class file by using annotations, or in a

separate XML descriptor file distributed with the

application.

15

Java Persistence Query Language

• The Java Persistence Query Language (JPQL)

makes queries against entities stored in a relational

database. Queries resemble SQL queries in syntax,

but operate against entity objects rather than directly

with database tables.

16

Related technologies

• Hibernate provides an open source object-relational

mapping framework for Java.

• Hibernate solves object-relational impedance

mismatch problems by replacing direct persistence-

related database accesses with high-level object

handling functions.

• Hibernate's primary feature is mapping from Java

classes to database tables (and from Java data types

to SQL data types).

• Many of the features originally presented in Hibernate

were incorporated into the Java Persistence API

• Versions 3.2 and later provide an implementation for

the Java Persistence API. 17

Related technologies

• Enterprise JavaBeans

• The EJB 3.0 specification (itself part of the Java EE 5

platform) included a definition of the Java Persistence

API.

• However, javax.persistence does not require an EJB

container, and thus will work within a Java SE

environment as well

• The Java Persistence API replaces the persistence

solution of EJB 2.0 CMP (Container Managed

Persistence).

18

JDO with DataNucleus AccessPlatform

• Step 0 : Download DataNucleus AccessPlatform

• In our case, download JDO tutorial from the

Esercitazioni section of the course home page or

from

http://www.unife.it/ing/lm.infoauto/sistemi-

informativi/allegati/jdo-datanucleus-tutorial.zip

• Step 1 : Create your domain/model classes

• Do this as you would normally.

19

http://www.unife.it/ing/lm.infoauto/sistemi-informativi/allegati/jdo-datanucleus-tutorial.zip

Tutorial in Eclipse

• Uncompress jdo-datanucleus-tutorial.zip into a new

folder jdo-datanucleus-tutorial

• Create a new Java project

• Copy the src and lib subfolders of jdo-datanucleus-

tutorial in the root folder of the Java project

20

Tutorial in Eclipse

• Add all the libraries in the lib folder to the build path

of the project

– lib\datanucleus-core-3.2.11.jar;

– lib\datanucleus-api-jdo-3.2.7.jar;

– lib\datanucleus-rdbms-3.2.10.jar;

– lib\jdo-api-3.1-rc1.jar; JDO API JAR

– lib\db2jcc.jar; JDBC driver classes

– lib\log4j-1.2.14.jar; logging classes

• Build the project

21

Tutorial in Eclipse

• Copy jdo-datanucleus-tutorial/src/META-

INF/persistence.xml in bin/META-INF/persistence.xml

in the Java project

• Copy jdo-datanucleus-tutorial/src/package-db2.orm

in bin/package-db2.orm

• Copy jdo-datanucleus-tutorial/src/log4j.properties in

bin/log4j.properties

22

Working example: store

• Application handling products in a store

package org.datanucleus.samples.jdo.tutorial;

public class Product

{ protected long id; String name = null;

String description = null; double price = 0.0;

public Product(String name, String desc, double price)

{ this.name = name;

this.description = desc;

this.price = price;}

……

}

23

Book

package org.datanucleus.samples.jdo.tutorial;

public class Book extends Product

{ String author=null;

String isbn=null;

String publisher=null;

public Book(String name, String desc, double price, String

author, String isbn, String publisher)

{ super(name,desc,price);

this.author = author;

this.isbn = isbn;

this.publisher = publisher;

}

….

} 24

Inheritance

• We have inheritance between 2 classes.

• Some data in the store will be of type Product , and

some will be Book

• This allows us to extend our store further in the future

and provide DVD items for example, and so on.

• JDO allows objects to be retrieved maintaining their

inheritances.

25

Inventory

package org.datanucleus.samples.jdo.tutorial;

import java.util.HashSet;

import java.util.Set;

public class Inventory

{ protected String name=null;

protected Set<Product> products = new HashSet<Product>();

public Inventory(String name) { this.name = name;}

public String getName() { return name; }

public Set<Product> getProducts() { return products; }

public String toString()

{ return "Inventory : " + name;}

}

26

Step 2 : Define the Persistence for

classes

• You now need to define how the classes should be

persisted, in terms of which fields are persisted etc.

With JDO you could use

• XML Metadata

• Annotations

• Annotations + XML

• MetaData API at runtime

• Here we use what could be considered a best

practice, specifying basic persistence info as

annotations, and then adding on ORM information in

XML (since if we want then to persist to a different

datastore later we don't need to update/recompile our

classes, just change the XML file). 27

Product

package org.datanucleus.samples.jdo.tutorial;

import javax.jdo.annotations.IdGeneratorStrategy;

import javax.jdo.annotations.PersistenceCapable;

import javax.jdo.annotations.Persistent;

import javax.jdo.annotations.PrimaryKey;

@PersistenceCapable public class Product

{ @PrimaryKey

@Persistent(valueStrategy=IdGeneratorStrategy.NATIVE)

protected long id;

String name = null;

String description = null; double price = 0.0;

……

}

28

Book

package org.datanucleus.samples.jdo.tutorial;

import javax.jdo.annotations.PersistenceCapable;

@PersistenceCapable

public class Book extends Product

{ String author=null;

String isbn=null;

String publisher=null;

public Book(String name, String desc, double price, String

author, String isbn, String publisher)

{ super(name,desc,price);

this.author = author;

this.isbn = isbn;

this.publisher = publisher;}

….} 29

Inventory

package org.datanucleus.samples.jdo.tutorial;

import java.util.HashSet;

import java.util.Set;

import javax.jdo.annotations.PersistenceCapable;

import javax.jdo.annotations.PrimaryKey;

@PersistenceCapable public class Inventory

{ @PrimaryKey protected String name=null;

protected Set<Product> products = new HashSet<Product>();

public Inventory(String name) { this.name = name;}

public String getName() { return name; }

public Set<Product> getProducts() { return products; }

public String toString()

{ return "Inventory : " + name;}

} 30

Persistence information

• Note that we mark each class that can be persisted

with @PersistenceCapable and their primary key

field(s) with @PrimaryKey.

• In addition we defined a valueStrategy for Product

field id so that it will have its values generated

automatically.

• You now need to define which objects of these

classes are actually persisted. You do this via a

file META-INF/persistence.xml at the root of the

CLASSPATH.

31

Persistence information

<?xml version="1.0" encoding="UTF-8" ?>

<persistence xmlns="http://java.sun.com/xml/ns/persistence"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"

version="1.0">

<persistence-unit name="Tutorial">

<class>org.datanucleus.samples.jdo.tutorial.Inventory</class>

<class>org.datanucleus.samples.jdo.tutorial.Product</class>

<class>org.datanucleus.samples.jdo.tutorial.Book</class>

<exclude-unlisted-classes/>

32

persistence.xml

<properties>

<property name="javax.jdo.option.ConnectionURL"

value="jdbc:db2://10.17.2.91:50000/PROVA"/>

<property name="javax.jdo.option.ConnectionDriverName"

value="com.ibm.db2.jcc.DB2Driver"/>

<property name="javax.jdo.option.ConnectionUserName"

value="utente"/>

<property name="javax.jdo.option.ConnectionPassword"

value="Infonew1"/>

<property name="javax.jdo.option.Mapping" value="db2"/>

</properties>

</persistence-unit>

</persistence>

33

ORM information

• We define ORM information in an XML file package-

db2.orm
<?xml version="1.0"?>

<!DOCTYPE orm SYSTEM "file:/javax/jdo/orm.dtd">

<orm>

<package name="org.datanucleus.samples.jdo.tutorial">

<class name="Inventory" table=“INVENTORIES<MATR>">

<field name="name">

<column name="INVENTORY_NAME" length="100"/>

</field>

<field name="products" table=

"INVENTORY_PRODUCTS<MATR>">

<join/>

</field>

</class> 34

ORM information

<class name="Product" table="PRODUCTS<MATR>">

<inheritance strategy="new-table"/>

<field name="id"><column name="PRODUCT_ID"/></field>

<field name="name"><column name="PRODUCT_NAME"

length="100"/></field>

</class>

<class name="Book" table="BOOKS<MATR>">

<inheritance strategy="new-table"/>

<field name="author"><column length="40"/></field>

<field name="isbn"><column length="20" jdbc-type="CHAR"/>

</field>

<field name="publisher"><column length="40"/></field>

</class>

</package>

</orm>
35

Step 3 : Enhance your classes

• JDO relies on the classes that you want to persist

being PersistenceCapable. That is, they need to

implement this Java interface.

• You could write your classes manually to do this but

this would be laborious. Alternatively you can use a

post-processing step to compilation that "enhances"

your compiled classes, adding on the necessary

extra methods to make them PersistenceCapable .

• There are several ways to do this, using an

"enhancer" at compile time (with JDK1.6+), or at

runtime, or as a post-compile step. We use the post-

compile step in this tutorial.

36

Step 3 : Enhance your classes

• DataNucleus JDO provides its own byte-code

enhancer for instrumenting/enhancing your classes

for use by any JDO implementation.

• Use the command line from the root folder of the

project

• java -cp bin;lib\datanucleus-core-

3.2.11.jar;lib\datanucleus-api-jdo-

3.2.7.jar;lib\datanucleus-rdbms-3.2.10.jar;lib\jdo-api-

3.1-rc1.jar

org.datanucleus.enhancer.DataNucleusEnhancer

bin\package-db2.orm

• Assuming bytecode is in folder bin, libraries in folder

lib and package-db2.orm in folder bin 37

Step 3 : Enhance your classes

• This command enhances the .class files that have

@PersistenceCapable annotations.

• If you accidentally omitted this step, at the point of

running your application and trying to persist an

object, you would get

a ClassNotPersistenceCapableException thrown.

• The output of this step are a set of class files that

represent PersistenceCapable classes.

38

Step 4 : Generate any schema required

for your domain classes

• This step is optional, depending on whether you have

an existing database schema.

• If you haven't, at this point you can use the RDBMS

SchemaTool to generate the tables where these

domain objects will be persisted.

• DataNucleus RDBMS SchemaTool is a command

line utility

39

Step 4 : Generate any schema required

for your domain classes

• java -cp bin;lib\datanucleus-core-

3.2.11.jar;lib\datanucleus-api-jdo-

3.2.7.jar;lib\datanucleus-rdbms-3.2.10.jar;lib\jdo-api-

3.1-rc1.jar;lib\db2jcc.jar;lib\log4j-1.2.14.jar

org.datanucleus.store.schema.SchemaTool -create

-pu Tutorial bin\package-db2.orm

• -pu Tutorial has the effect of indicating that the

pesistence information are specified in the Tutorial

persistence-unit in persistence.xml

40

Step 4 : Generate any schema required

for your domain classes

• This will generate the required tables, indexes, and

foreign keys for the classes defined in the JDO Meta-

Data file.

41

Step 5 : Write the code to persist

objects of your classes

• Now you need to define which objects of the classes

are actually persisted, and when. Interaction with the

persistence framework of JDO is performed via a

PersistenceManager.

• This provides methods for persisting of objects,

removal of objects, querying for persisted objects,

etc..

42

Main

import java.util.Iterator;

import java.util.List;

import javax.jdo.PersistenceManager;

import javax.jdo.PersistenceManagerFactory;

import javax.jdo.Extent;

import javax.jdo.Query;

import javax.jdo.JDOHelper;

import javax.jdo.Transaction;

43

Main

• The initial step is to obtain access to a

PersistenceManager

PersistenceManagerFactory pmf =

JDOHelper.getPersistenceManagerFactory("Tutorial");

PersistenceManager pm =

pmf.getPersistenceManager();

• We are creating a PersistenceManagerFactory using

the file persistence.xml as used above for

DataNucleus RDBMS SchemaTool. This will contain

all properties necessary for persistence usage.

44

Main

• Now that the application has a PersistenceManager it

can persist objects. This is performed as follows
Transaction tx=pm.currentTransaction();

Object inventoryId = null;

try {

tx.begin();

Inventory inv = new Inventory("My Inventory");

Product product = new Product("Sony Discman","A standard

discman from Sony",200.00);

Book book = new Book("Lord of the Rings by Tolkien","The classic

story",49.99,"JRR Tolkien", "12345678", "MyBooks Factory");

inv.getProducts().add(product);

inv.getProducts().add(book);

pm.makePersistent(inv);

tx.commit(); inventoryId = pm.getObjectId(inv);

}
45

Main

finally

{

if (tx.isActive())

{

tx.rollback();

}

pm.close();

}

• Please note that the finally step is important in that it

tidies up connections to the datastore and the

PersistenceManager.

46

Main

• To retrieve objects from persistent storage:

// Basic Extent of all Products

pm = pmf.getPersistenceManager();

tx = pm.currentTransaction();

try

{ tx.begin();

Extent e = pm.getExtent(Product.class, true);

Iterator iter = e.iterator();

while (iter.hasNext())

{ Object obj = iter.next();

System.out.println("> " + obj); }

tx.commit();

}
47

Main

catch (Exception e)

{

System.out.println("Exception thrown during retrieval of

Extent : " + e.getMessage());

}

finally

{

if (tx.isActive())

{

tx.rollback();

}

pm.close();

}

48

Main

// Perform some query operations

pm = pmf.getPersistenceManager();

tx = pm.currentTransaction();

try { tx.begin();

System.out.println("Executing Query for Products with price below

150.00");

Query q=pm.newQuery("SELECT FROM " +

Product.class.getName() +

" WHERE price < 150.00 ORDER BY price ASC");

List<Product> products = (List<Product>)q.execute();

Iterator<Product> iter = products.iterator();

49

Main

while (iter.hasNext())

{

Product p = iter.next();

System.out.println("> " + p);

// Give an example of an update

if (p instanceof Book)

{

Book b = (Book)p;

b.setDescription("This book has been reduced in price!");

}

}

tx.commit();

}
50

Main

finally

{

if (tx.isActive())

{

tx.rollback();

}

pm.close();

}

System.out.println("");

51

Main

// Clean out the database

pm = pmf.getPersistenceManager();

tx = pm.currentTransaction();

try

{

tx.begin();

System.out.println("Retrieving Inventory using its id");

Inventory inv = (Inventory)pm.getObjectById(inventoryId);

System.out.println("Clearing out Inventory");

inv.getProducts().clear();

52

Main

System.out.println("Deleting Inventory");

pm.deletePersistent(inv);

System.out.println("Deleting all products from persistence");

Query q = pm.newQuery(Product.class);

long numberInstancesDeleted = q.deletePersistentAll();

System.out.println("Deleted " + numberInstancesDeleted + "

products");

tx.commit();

}

53

Main

finally

{

if (tx.isActive())

{

tx.rollback();

}

pm.close();

}

System.out.println("");

System.out.println("End of Tutorial");

}

}
54

Step 6 : Run your application

• Run Main by right clicking on the Main.java file and

selection Run As..->Java application

55

Output

DataNucleus AccessPlatform with JDO

===================================

Persisting Inventory of products

Inventory, Product and Book have been persisted

Retrieving Extent for Products

> Book : JRR Tolkien - Lord of the Rings by Tolkien

> Product : 2 name=Sony Discman [A standard discman from Sony]

Executing Query for Products with price below 150.00

> Book : JRR Tolkien - Lord of the Rings by Tolkien

Retrieving Inventory using its id

Clearing out Inventory

Deleting Inventory

Deleting all products from persistence

Deleted 2 products

End of Tutorial
56

Delete the schema

• java -cp bin;lib\datanucleus-core-

3.2.11.jar;lib\datanucleus-api-jpa-

3.3.6.jar;lib\datanucleus-api-jdo-

3.2.7.jar;lib\datanucleus-rdbms-3.2.10.jar;lib\jdo-api-

3.1-rc1.jar;lib\db2jcc.jar;lib\log4j-1.2.14.jar

org.datanucleus.store.schema.SchemaTool -delete -

pu Tutorial bin\package-db2.orm

57

JPA

• Similar to JDO:

– Annotations

– XML files

– Class enhancement

58

