
Transaction Management

Read Chapter 10 of Riguzzi et al. Sistemi 

Informativi

Slides derived from those by Atzeni et al.



2

Transaction

• Elementary unit of work performed by an application

• It is a sequence of SQL statements, usually containing at least 

one UPDATE, DELETE or INSERT

• An application can contain more than one transaction

• Example: transaction for transferring money from one bank 

account to another

START TRANSACTION;

UPDATE Account    

SET Balance = Balance + 10 WHERE AccountNumber = 12202;

UPDATE Account    

SET Balance = Balance - 10 WHERE AccountNumber = 42177;

COMMIT;
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Transactions

• In SQL a transaction is started with START 

TRANSACTION and ended by

– COMMIT: the transaction has ended successfully

– ROLLBACK: the transaction has ended 

unsuccessfully, the work performed must be 

undone, also called abort
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Example

START TRANSACTION;

UPDATE Account

SET Balance = Balance + 10 WHERE AccountNumber= 12202;

UPDATE Account

SET Balance = Balance – 10 WHERE AccountNumber = 42177;

SELECT Balance INTO A  

FROM Account

WHERE AccountNumber = 42177; 

IF (A>=0)  THEN COMMIT;

ELSE ROLLBACK;
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Well-formed Transactions

• One and only one from COMMIT and ROLLBACK 

must be executed by a transaction

• No operation is performed after COMMIT or 

ROLLBACK
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Transaction

• If no START TRANSACTION is issued, usually every 

statement is considered a transaction

• Autocommit modality
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ACID Properties

• Transactions must possess the ACID properties:

– Atomicity

– Consistency

– Isolation

– Durability
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Atomicity

• A transaction is an atomic unit of execution, it can not be divided

• Either all the operations in the transaction are executed or none 

is

– E.g., in the case of the bank transfer, the execution of a 

single update statement would be disastrous

• The instant in which COMMIT is executed marks the atomic and 

indivisible instant in which the transaction ends successfully:

– An error before should cause the rollback of the work 

performed

– An error afterwards should not alter the effect of the 

transaction
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Atomicity

• The rollback of the work performed can be caused

– By a ROLLBACK (“suicide”) statement 

– by the DBMS (“homicide”), for example for the 

violation of integrity constraints or for concurrency 

management

• In case of a rollback, the work performed must be 

undone, bringing the database to the state it had 

before the start of the transaction



10

Consistency

• The execution of the transaction must not violate the integrity 

constraints on the database

• Examples of integrity constraints:

– A table can not contain two rows with the same value for a 

column declared as a primary key

– The sum of the balances of every couple of accounts must 

remain the same

• If Balance(a)+Balance(b)=Constant before the 

transaction then Balance(a)+Balance(b)=Constant after 

the transaction

• This type of constraint can be temporarily violated during 

the execution of the transaction, but must be satisfied at 

the end
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Isolation

• The execution of a transaction must be independent 

from the concurrent execution of other transactions

• In particular, the concurrent execution of a number of 

transaction must produce the same result as the 

execution of the same transactions in a sequence

• E.g. the concurrent exection of T1 and T2 must 

produce the same results that can be obtained by 

executing one of these sequences

– T1,T2

– T2,T1
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Durability

• After a transaction has committed, its modifications to 

the database must never be lost, they must be 

persistent

– Any type of failure after the commit should not 

alter the modifications
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Properties and DBMS Modules

• Atomicity and Durability

– Reliability manager

• Isolation:

– Concurrency Manager

• Consistency:

– Managed by the DDL compilers that introduce the 

required consistency checks in the code that is 

executed by the transaction
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Reliability Manager

• Uses the log, a sequential file where all the 

operations performed by the transactions are 

recorded

• This allows the reliability manager to undo or redo the 

transaction operations

• It must be stored on stable storage: it should be 

more secure than the storage where the data is kept

– Usually RAID 1 or RAID 5 disks are used

• The reliability manager has the responsibility of 

executing the START TRANSACTION, COMMIT and 

ROLLBACK statements
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Log

• The reliability manager stores in the log

– Transaction operations 

• BEGIN, B(T); COMMIT, C(T); ABORT, A(T) 

• INSERT, I(T,O,AS) O=object, AS=After State

• DELETE, D(T,O,BS) BS=Before State

• UPDATE, U(T,O,BS,AS) 

– System operations 

• DUMP

• CHECKPOINT
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Exmple of a Log

time

dump checkpoint checkpoint

B(T1) I(T1,O1,A1) B(T2) U(T2,O2,B2,A2) D(T1,O2,B3) C(T1)
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Undo and Redo

• These records allow the reliability manager to undo 

or redo operations

• Undo of an operation on an object O

– UPDATE or DELETE: copy the before state on O

– INSERT: delete O

• Redo of an operation on an object O

– UPDATE or INSERT: copy the after state on O

– DELETE: delete O
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Undo and Redo

• They are both idempotent, if A is an operation

– Undo(Undo(A))=Undo(A)

– Redo(Redo(A))=Redo(A)
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Checkpoint and Dump

• Periodic operations that are needed for recovering 

from errors

– Checkpoints for warm and cold restarts

– Dumps for cold restarts

• Checkpoints are performed by the reliability manager

– They record all the transactions that are active (i.e. 

they have not committed nor aborted) at the time 

of the checkpoint

– They write the dirty pages of committed 

transactions in the buffer to disk using a force
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Checkpoint

• Simplest version:

1. No operation is accepted (no updates, deletes, inserts, 
commits or aborts)

2. All the dirty pages of committed transaction are transferred 
to disk with a force

3. A checkpoint record including the identifiers of the 
transactions active at the time of the checkpoint is written
to the log in a synchronous way (with a force)

4. New operations are accepted again

• In this way all the committed transactions have their changes 
stored on disk and the active transactions are stored in the log 
in the checkpoint record

• We indicate a checkpoint record in the log with 
CK(T1,T2,…,Tn)
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Dump

• A dump is a backup of the whole database

• The backup can be put on

– A disk different from the one of the database

– A disk on another machine

– More commonly, a tape

• After the backup has been performed, a dump record 

is stored on the log registering the date and time of 

the backup plus other information
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Rules

• The reliability manager enforces two rules:

– Write Ahead Log (WAL) requires that the log 

record corresponding to an operation is written to 

disk before the modified data is written to disk. In 

this way the modification of an aborted transaction 

can be undone.

– Commit Precedence: The log records 

corresponding to a transactions are written to disk 

before the commit is executed. In this way the 

modifications of a committed transaction can be 

redone.
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Transactions

• A transaction is considered committed when a 

commit record is written to disk in the log

– A failure before this moment results in the Undo of 

all the operations performed by the transaction

– A failure after this moment results in the Redo of 

all the operations performed by the transaction
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When Writing Data to Disk?

• Immediate modality: data modifications are written to 

disk before commit. It doesn’t require Redo but it 

requires Undo

• Deferred modality: data modifications are written to 

disk only after commit. It doesn’t require Undo but it 

requires Redo

• Mixed modality: some data modifications can be 

written before commit, some after. It requires both 

Undo and Redo. In this way writes to disk are 

optimized. This is the scheme most commonly used
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When Writing Data to Disk?

Log writes

Database writes

B(T) U(T,X,B,A) U(T,Y,B,A) C(T)

w(X) w(Y)

Immediate modality

B(T) U(T,X,B,A) U(T,Y,B,A) C(T)

w(X)w(Y)

B(T) U(T,X,B,A) U(T,Y,B,A) C(T)

w(X) w(Y)

Deferred modality

Mixed modality

t

t

t
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Failures

• Two types:

– “Soft” failures: software bugs, power failures

• Loss of the primary memory, not of secondary 

memory (data and log)

• Warm restart

– “Hard” failures: data disk failure (e.g. head crash)

• Loss of the primary memory and the secondary 

memory where the data is stored but not loss of 

the secondary memory where the log is stored

• Cold restart
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Failures

• In case of a failure of the disk where the log is stored, 

we are not able to recover exactly to the point of 

failure

• A backup must be restored

• The modifications performed after the backup are lost

• Otherwise, no modification performed by a committed 

transaction is lost
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Warm Restart

• Classify transactions at the instant of failure as

– Completed (committed and with all the data on 

disk) (those that committed before the last 

checkpoint)

– Committed but not completed (Redo is necessary) 

(those that committed after the last checkpoint)

– Uncommitted (Undo is necessary) (those that 

were aborted after the last checkpoint or that did 

not commit after the last checkpoint and before the 

failure)
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Warm Restart

1. Start from the last record of the log and, scanning backwards 

the log, find the last checkpoint

2. Build the UNDO and REDO sets of transactions identifiers

1. UNDO is initialized with the transactions active at the time 

of checkpoint, REDO is initialized with an empty set

2. Scan the log forward

• Add to UNDO the transaction with B

• Move from UNDO to REDO the transaction with C

3. Scan the log backward until the first operation of the oldest 

transaction in the UNDO and REDO sets, undoing all the 

operations of the transactions in UNDO (Undo phase)

4. Scan the log forward, redoing all the operations of the 

transactions in REDO (Redo phase)
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Atomicity and Durability

• Atomicity is preserved: 

– transactions active at the time of failure are 

undone

– Transactions with an abort record after the last 

checkpoint are undone

• Durability is preserved: 

– Transactions that committed before the last 

checkpoint had their pages written to disk at the 

time of the checkpoint

– Transactions that committed after the last 

checkpoint are redone
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Example of a Warm Restart

B(T1)

B(T2)

U(T2, O1, B1, A1)

I(T1, O2, A2)

B(T3)

U(T2,O3,B3,A3)

C(T1)

B(T4)

U(T3,O2,B4,A4)

U(T4,O3,B5,A5)

CK(T2,T3,T4)

C(T4)

B(T5)

U(T3,O3,B6,A6)

U(T5,O4,B7,A7)

D(T3,O5,B8)

A(T3)

C(T5)

I(T2,O6,A9)

C

A

C

C

T1

T2

T3

T4

T5

Checkpoint

Nothing

Undo

Undo

Redo

Redo

Time of failure
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1. Scan Backward for the Checkpoint

B(T1)

B(T2)

U(T2, O1, B1, A1)

I(T1, O2, A2)

B(T3)

U(T2,O3,B3,A3)

C(T1)

B(T4)

U(T3,O2,B4,A4)

U(T4,O3,B5,A5)

CK(T2,T3,T4)

C(T4)

B(T5)

U(T3,O3,B6,A6)

U(T5,O4,B7,A7)

D(T3,O5,B8)

A(T3)

C(T5)

I(T2,O6,A9)
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2. Build the UNDO and REDO Sets

1   UNDO={T2,T3,T4}, REDO={}

2   C(T4): UNDO={T2,T3}, REDO={T4}

3   B(T5): UNDO={T2,T3,T5}, REDO={T4}

4   C(T5): UNDO={T2,T3}, REDO={T4,T5}

B(T1)

B(T2)

10 U(T2, O1, B1, A1)

I(T1, O2, A2)

B(T3)

9   U(T2,O3,B3,A3)

C(T1)

B(T4)

8   U(T3,O2,B4,A4)

11 U(T4,O3,B5,A5)

1   CK(T2,T3,T4)

2   C(T4)

3   B(T5)

7   U(T3,O3,B6,A6)

12 U(T5,O4,B7,A7)

6   D(T3,O5,B8)

A(T3)

4  C(T5)

5  I(T2,O6,A9)
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3. Undo Phase

1   UNDO={T2,T3,T4}, REDO={}

2   C(T4): UNDO={T2,T3}, REDO={T4}

3   B(T5): UNDO={T2,T3,T5}, REDO={T4}

4   C(T5): UNDO={T2,T3}, REDO={T4,T5}

Undo

5   D(O6)

6   I(O5,B8)

7   O3 = B6

8   O2 = B4

9   O3 =B3

10 O1=B1

B(T1)

B(T2)

10 U(T2, O1, B1, A1)

I(T1, O2, A2)

B(T3)

9   U(T2,O3,B3,A3)

C(T1)

B(T4)

8   U(T3,O2,B4,A4)

11 U(T4,O3,B5,A5)

1   CK(T2,T3,T4)

2   C(T4)

3   B(T5)

7   U(T3,O3,B6,A6)

12 U(T5,O4,B7,A7)

6   D(T3,O5,B8)

A(T3)

4  C(T5)

5  I(T2,O6,A9)
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4. Redo Phase

1   UNDO={T2,T3,T4}, REDO={}

2   C(T4): UNDO={T2,T3}, REDO={T4}

3   B(T5): UNDO={T2,T3,T5}, REDO={T4}

4   C(T5): UNDO={T2,T3}, REDO={T4,T5}

5   D(O6)

6   I(O5,B8)

7   O3 = B6 Undo

8   O2 = B4

9   O3 =B3

10 O1=B1

Redo

11 O3 = A5

12 O4 = A7

B(T1)

B(T2)

10 U(T2, O1, B1, A1)

I(T1, O2, A2)

B(T3)

9   U(T2,O3,B3,A3)

C(T1)

B(T4)

8   U(T3,O2,B4,A4)

11 U(T4,O3,B5,A5)

1   CK(T2,T3,T4)

2   C(T4)

3   B(T5)

7   U(T3,O3,B6,A6)

12 U(T5,O4,B7,A7)

6   D(T3,O5,B8)

A(T3)

4  C(T5)

5  I(T2,O6,A9)
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Cold Restart

1. The last backup of the database is restored, i.e., the 

data from the backup is copied over the database

2. The last dump record in the log is found

3. The log is scanned forward applying all the 

operations recorded up to the point of failure

4. A warm restart is performed
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Fail-Stop Model

Normal behavior Stop

Restart

Fail

Fail

Boot
End of restart
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Concurrency Control

• DBMS must support a high number of transaction per 

second (tps): 10, 100 or 1000 tps

• It is not possible to execute the transactions 

sequentially

• It is necessary to execute them in parallel

• Abstraction: 

– Database objects are indicated with letters (x, y ,z)

– Two operations

• Read x: r(x)

• Write x: w(x)
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Anomalies

• The concurrent execution of transactions can cause a 

number of anomalies:

– Lost update

– Dirty read

– Inconsistent read (nonrepeatable read)

– Ghost update

– Phantom insert
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Lost Update

• Two identical transactions (two updates):

– T1 : r(x), x = x + 1, w(x)

– T2 : r(x), x = x + 1, w(x)

• Initially x=2, after a sequential execution x=4

• A concurrent execution

T1 T2
bot
r1(x)
x = x + 1

bot
r2(x)
x = x + 1

w1(x)
commit

w2(x)
commit

• At the end x=3, an update is lost
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Dirty Read

T1 T2
bot
r1(x)
x = x + 1
w1(x)

bot
r2(x) 

abort
commit

• Initially x=2, at the end x=2 but T2 has read the value 

3 and may have acted on it

• x=3 is an intermediate (“dirty”) value that should not 

be read by other transactions
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Inconsistent Read (Nonrepeatable Read)

T1 T2

bot

r1(x)

bot

r2(x)

x = x + 1

w2(x)

commit

r1(x)

commit

• T1 reads twice and reads two different values 

for x
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Ghost Update

• Assume there is a constraint x + y = 1000

T1 T2

bot

r1(x)

bot

r2(x)

x = x - 100

r2(y)

y = y + 100

w2(x)

w2(y)

commit

r1(y)

s = x + y

commit

• At the end s = 1100: the constraint is violated, even if T2 (if fully 

executed) respects the constraint 
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Phantom Insert (or Delete)

T1 T2

bot

“Compute the total number of 

units of product A sold in the last 

year”

bot

“insert (or delete) a sale of

product A"

commit

“Compute the total number of 

units of product A sold in the last 

year”

commit

• The second value computed will be different from the first
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Formal Model of a Transaction

• A transaction is modeled as a sequence of read and 

write operations indexed with the transaction number

• Operations apart from reads and writes do not 

influence concurrency control

• Example:

T1 : r1(x) r1(z) w1(x) w1(z)

• Schedule: a sequence of operations performed by a 

number of transactions as they are executed by the 

DBMS

• Example:

S1 : r1(x) r2(z) w1(x) w2(z)
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Scheduler

• The Concurrency Manager is also called Scheduler

• Its job is to accept or reject operation requested by 

the transactions so that the resulting schedule is 

acceptable

• Commit projection assumption: all the transaction 

have a commit result. The aborted transactions are 

not considered in the schedule.

• For the moment we do not consider the dirty read 

anomaly
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Serial and Serializable Schedules

• A schedule is serial if the operation of the various

transactions are executed in sequence, e.g.

S2 : r0(x) r0(y) w0(x) r1(y) r1(x) w1(y) r2(x) r2(y) r2(z) w2(z)

• A schedule is serializable if it is equivalent to one of 

the serial schedules with the same transactions

• It requires a notion of equivalence between 

schedules

• Two schedules are equivalent if they produce the 

same result

• A schedule is acceptable if it is serializable

• Impossible to check in practice without executing the 

schedule. Simpler notions are used.
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View Equivalence

• Definitions:

– ri(x) reads from wj(x) in a schedule S if wj(x) 
precedes ri(x) in S and there is no wk(x) between 
ri(x) and wj(x) in S 

– wi(x) in a schedule S is a final write if it is the last 
write of x in S

• Two schedules Si and Sj are view equivalent (Si V

Sj) if they have the same relation reads from and the 
same final write for every object x

• A schedule is view serializable if it is view equivalent 
to a serial schedule

• VSR is the set of view serializable schedules
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Examples of View Serializability

• S3 : w0(x) r2(x) r1(x) w2(x) w2(z)

– Reads from={(r2(x),w0(x)),(r1(x),w0(x))}

– Final writes={w2(x),w2(z)}

• S4 : w0(x) r1(x) r2(x) w2(x) w2(z)

– Reads from={(r1(x),w0(x)),(r2(x),w0(x))}

– Final writes={w2(x),w2(z)}

• S3 is view-equivalent to the serial schedule S4 (so it is 

view-serializable) 
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Examples of View Serializability

• S5 : w0(x) r1(x) w1(x) r2(x) w1(z)

– Reads from={(r1(x),w0(x)),(r2(x),w1(x))}

– Final writes={w1(x),w1(z)}

• S6 : w0(x) r1(x) w1(x) w1(z) r2(x)

– Reads from={(r1(x),w0(x)),(r2(x), w1(x))}

– Final writes={w1(x),w1(z)}

• S5 is view-equivalent to the serial schedule S6 (so it is 

view-serializable) 



51

Examples of View Serializability

• S7 : r1(x) r2(x) w2(x) w1(x) (lost update)

– Reads from={}

– Final writes={w1(x)}

• Serial schedules

– S8 : r1(x) w1(x) r2(x) w2(x)

• Reads from={(r2(x),w1(x))}

• Final writes={w2(x)}

– S9 : r2(x) w2(x) r1(x) w1(x)

• Reads from={(r1(x),w2(x))}

• Final writes={w1(x)}

• S7 not view serializable
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Examples of View Serializability

• S10 : r1
1(x) r2(x) w2(x) r2

1(x) (inconsistent read)

– Reads from={(r2
1(x), w2(x))}

– Final writes={w2(x)}

• Serial schedules

– S11 : r1
1(x) r2

1(x) r2(x) w2(x)

• Reads from={}

• Final writes={w2(x)}

– S12 : r2(x) w2(x) r1
1(x) r2

1(x)

• Reads from={(r1
1(x),w2(x)),(r2

1(x),w2(x))}

• Final writes={w2(x)}

• S10 not view serializable
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Examples of View Serializability

• S13 : r1(y) r2(y) r2(z) w2(y) w2(z) r1(z) (ghost update)

– Reads from={(r1(z),w2(z))}

– Final writes={w2(y),w2(z)}

• Serial schedules

– S14 : r1(y) r1(z) r2(y) r2(z) w2(y) w2(z)

• Reads from={}

• Final writes={w2(y),w2(z)}

– S15 : r2(y) r2(z) w2(y) w2(z) r1(y) r1(z)

• Reads from={(r1(y),w2(y)),(r1(z),w2(z))}

• Final writes={w2(y),w2(z)}

• S13 not view serializable
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View Serializability

• To determine whether two schedules are view 

equivalent has linear complexity

• To determine whether a schedule is view serializable 

is an NP-hard problem

– It can not be used in practice
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Conflict Equivalence

• Definition:

– Given two operations ai and aj (i j), ai is in conflict with aj (i
j), if they work on the same object and at least one of them is

a write. Two cases:

• Conflict read-write (rw o wr) 

• Conflict write-write (ww).

• Two schedules Si and Sj are conflict equivalent (Si C Sj) if

every couple of actions that are in conflict appear in the same

order in the two schedules, i.e., if the conflicts relation is the 

same

• A schedule is conflict serializable if it is conflict equivalent to a 

serial schedule

• CSR is the set of conflict serializable schedules
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Example of Conflict Serializability

• S16= w0(x)   r1(x)  w0(z)  r1(z)  r2(x)  r3(z)  w3(z)  w1(x)

• Conflicts={(w0(x),r1(x)),(w0(x),r2(x)),(w0(x),w1(x)),

(w0(z),r1(z)),(w0(z),r3(z)),(w0(z),w3(z)),(r1(z),w3(z)),

(r2(x),w1(x)) }

• S17=w0(x)  w0(z)  r2(x)   r1(x)  r1(z)  w1(x)  r3(z)  w3(z)

• Conflicts={(w0(x),r2(x)),(w0(x),r1(x)),(w0(x),w1(x)),

(w0(z),r1(z)),(w0(z),r3(z)),(w0(z),w3(z)), (r2(x),w1(x)), 

(r1(z),w3(z))}

• S16 is conflict-equivalent to the serial schedule S17
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VSR and CSR

• Every schedule conflict-serializable is view-

serializable, but not viceversa

– CSR  VSR

• Example of CSRVSR:

• r1(x) w2(x) w1(x) w3(x) 

– view-serializable: view-equivalent to r1(x) w1(x) 

w2(x) w3(x) 

– not conflict-serializable
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Proof that CSR  VSR

• S1CSR=>  S2 serial such that S1 C S2

• We prove that conflict-equivalence C implies view-
equivalence V , i.e. S1 C S2=> S1  V S2

• Suppose S1 C S2 

S1 and S2 have:

– The same final writes: otherwise, there would be 
two writes in a different order and, since two writes 
are in conflict, S1 and S2 would not be  C

– The same relation reads from: otherwise, there 
would be two writes in a different order or a write 
and a read in a different order and S1 and S2

would not be  C
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CSR and VSR

All schedules

Serial 

schedules
CSR

VSR

Serializable

schedules
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Test of Conflict Serializability

• By means of the conflict graph G:

– A node for every transaction

– An arc from transaction Ti to transaction Tj if there 

exist at least one conflict between an action ai of 

Ti and an action aj of Tj and ai precedes aj

• SCSR  G is acyclic
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Proof of SCSR  G is acyclic

• If S CSR then S C to a serial schedule Ss.
Suppose that the transaction in Ss are ordered
according to the TID: T1, T2, …, Tn.  Since Ss has all
the actions involved in conflicts in the same order as
in S, in G there can be only arcs (i,j) with i<j so G 
can’t have cycles because a cycle requires at least
one arc (i,j) with i>j

• If G is acyclic, then it exists a topological order
among the nodes, i.e. an assignment of integers to 
nodes such that G contains only arcs (i,j) with i<j. The 
serial schedule whose transactions are ordered
according to the topological order is C to S because
for every conflict (i,j) we have i<j
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Example of a conflict graph

S16= w0(x)   r1(x)  w0(z)  r1(z)  r2(x)  r3(z)  w3(z)  w1(x)

T0

T1

T3

T2

•The graph is acyclic, S16 is conflict serializable
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Practical Considerations

• Checking the acyclicity of a graph has a linear 
complexity, so the test of conflict serializability is 
linear.

• However, it is still not practically viable because the 
graph must be built at runtime and continually 
modified

– Every time an action is requested to the 
scheduler, it must update the graph and test for 
acyclicity

• Moreover, we are still under the commit projection 
assumption

• In practice locking is used
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Lock

• New operations:

– r_lock(x): sets a read lock on x (shared lock)

– w_lock(x): sets a write lock on x (exclusive lock)

– unlock(x): frees any locks on x

• A read action r(x) to be successfull must be preceded by a 

r_lock(x) or a w_lock(x) and followed by an unlock(x) 

• A write action w(x) to be successfull must be preceded by a 

w_lock(x) and followed by an unlock(x) 

• An object can be read locked by multiple transactions (shared 

lock) but can be write locked only by a single transaction 

(exclusive lock)
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Lock operations

• When a lock request is not successfull, the transaction is put in 
a queue and has to wait

• The waiting ends when the resource becomes free and there 
are no other transactions in the front of the queue

• A counter is kept for each resource that contains the number of 
transactions having a read lock on the resource 

• An unlock operation on a r_locked resource decrements the 
counter and frees the resource only if the counter goes to 0

Successful?/ New 

Resource state Previous resource state

Request free r_locked w_locked

r_lock YES / r_locked YES / r_locked NO / w_locked

w_lock YES / w_locked NO   / r_locked NO / w_locked

unlock error YES / depends YES / free
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Locking

• Information about locks are stored in a lock table

• The scheduler in this case is also called a lock 

manager

• When a transaction has to read and write a resource, 

can request a read lock and then increment it to a 

write lock or request a write lock from the beginning

• Locking prevents conflicts on resource access but 

doesn’t ensure serializability

• A further condition is required: Two Phase Locking
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Two Phase Locking (2PL)

• A transaction, after having released a lock, can 

not acquire other locks

• Thus, every transaction goes through two phases:

– Lock acquisition (growing phase)

– Lock release (shrinking phase)

• 2PL is the set of schedules respecting two phase 

locking

• It is used in practice
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2PLCSR

• Every schedule that respects two phase locking is 

also conflict serializable, but not vicecersa

• Example of 2PLCSR:

r1(x) w1(x) r2(x) w2(x) r3(y) w1(y) 

– Not in 2PL

– Conflict-serializabile

T1

T2

T3
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Proof that 2PL  CSR

• S  2PL

• Suppose that S CSR

• Then there is a cycle in G: T1, T2, …Tn, T1

• Since there is a conflict between T1 and T2, there is a resource 

x on which the transactions conflict. For T2 to proceed it is 

necessary that T1 releases its lock on x

• Since there is a conflict between Tn and T1, there is a resource 

y on which the transactions conflict. For T1 to proceed it is 

necessary for T1 to acquire a lock on y

• Thus S does not respect two phase locking, against the 

hypothesis.

• Thus S  CSR



70

Anomalies

• Two phase locking avoids all the anomalies apart 

from dirty read and phantom insert
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Example: Ghost Update

T1 T2 x y

bot free free

bot

w_lock2(x) 2:write

r_lock1(x) 1:wait

r2(x)

x=x-100

w_lock2(y) 2:write

r2(y)

y=y+100

w2(x)

w2(y)

commit

unlock2(x) 1:read

r1(x)

unlock2(y) free

r_lock1(y) 1:read

eot

r1(y)

s=x+y

commit

eot



72

Dirty Read

• The dirty read anomalies remain, because we have 

used up to now the commit projection assumption

• In order to remove that assumption and to avoid dirty 

reads, we use a restriction of two phase locking:

• Strict Two Phase Locking (STPL): a transaction 

can release the locks only after commit or abort

• This is the concurrency control method used in 

practice

• With STPL the dirty read anomaly can not occur 

because data written by a transaction can be read by 

another only after the transaction has committed
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Phantom Insert (or Delete)

• To avoid phantom insert we need a different type of 

locks:

– The locks desribed up to now consider only 

objects already present in the database

– To avoid phantom insert we need a lock that 

depends on a condition (predicate lock):

• E.g. We want to lock all the tuples of the table 

Sales relative to product A

• Predicate locks are implemented by using indexes or, 

in case there are no indexes, the whole table is 

locked
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Sets

All schedules

Serial 

schedules
CSR

VSR
2PL

Serializable

schedules
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Lock Management

• The lock manager offers the following functions

– r_lock(T,x,errcode,timeout)

– w_lock(T,x,errcode,timeout)

– unlock(T,x)

• If a request can not be satisfied, the transaction is put in a 

queue associated with the resource and the process has to wait

• When a resource is released, the lock manager assigns the 

resource to the first transaction in the queue

• If a timeout expires, the transaction can request a rollback or 

request again the lock

• Lock table: for each resource, two state bits and a counter



76

Hierarchical Locks

• Different granularity levels for the locks

DB

Table1 Table2 ...... Tablen

Parititon1 Partition2  ........ Partitionn

Tuple1 Tuple2   ..... Tuplen
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Hierarchical Locks

• More locks:

– XL: exclusive lock (=write lock)

– SL: shared lock (=read lock)

– ISL: intentional shared lock, intention of shared 

locking a descendent of the current node

– IXL: intentional exclusive lock, intention of 

exclusive locking a descendent of the current 

node

– SIXL: shared intentional-exclusive lock.  Current 

node locked in an shared way, intention of 

exclusive locking a descendant
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Hierarchical Locks

• To ask for a SL or ISL lock on a node you need to 

have a SL or ISL lock on the parent. 

• To ask for an IXL, XL or SIXL lock on a node you 

need to have a SIXL or IXL lock on the parent

• Example: to exclusively lock a tuple you need:

– Lock the root with IXL

– Lock the table with IXL

– Lock the partition with IXL

– Lock the tuple with XL

• At the end, the locks must be released in the 

opposite order
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Hierarchical Locks

• Compatibility rules:

Request
Resource state

ISL IXL SL SIXL XL

ISL OK OK OK OK NO

IXL OK OK NO NO NO

SL OK NO OK NO NO

SIXL OK NO NO NO NO

XL NO NO NO NO NO
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Hierarchical Locks

• Choice of the lock level

• Tradeoff:

– Too high level locks can reduce parallelism

– Too low level locks cause a high overhead of the 

lock manager
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Deadlock

• Caused by the waiting requirements of 2PL 

• Example: two transactions lock each a resource and 

wait for the other to unlock its resource

– T1: r(x), w(y)

– T2: r(y), w(x)

– Schedule:

r_lock1(x), r_lock2(y), r1(x), r2(y) w_lock1(y), 

w_lock2(x)
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Deadlock Avoidance

• Three techniques:

1. Timeout

2. Deadlock prevention

3. Deadlock detection
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Timeout

• Wait only for a fixed amount of time, if after it the 

resource is not free then the transaction is aborted.

• Tradeoff in the choice of timeout: 

– too low may cause abort also when a deadlock

did not occur

– too high may waste time
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Deadlock prevention

• Request of all the resources at the same time

• Timestamp: the wait of Ti on Tj is allowed only if i<j. 

Otherwise a transaction is killed. Strategy types

– Preemptive strategy: may kill the transaction that 

owns the resource

– Nonpreemptive: kills only the transaction making 

the request. 



85

Deadlock prevention

• Possible strategy: kill the transaction that has done
the least work (preemptive strategy)

• Problem: a transaction using at the beginning a higly
contended resource may be repeatedly killed
(starvation) since it is always the transaction that has
done the least work

• Solution: use the same timestamp when a transaction 
is restarted. In this way it will eventually wait for the 
resource. If it gets the resource and a younger 
transaction requests it that has made the same 
amount of work, higher priority is assigned to older 
transaction and the younger transaction is killed

• Infrequent in DBMS due to the high number of killed 
transaction, deadlock detection better because of the 
rarity of deadlock
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Deadlock detection

• Wait graph: nodes->transactions, arcs->waits

• Search for a cycle in the wait graph, at fixed 

intervals or when a wait timeout expires

• If a cycle is identified, a transaction is killed
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Concurrency Management in SQL:1999

• Transactions can be defined read only (only shared locks) or 

read write

• The isolation level can be chosen for each transaction: 

Lost 

updates

Dirty 

reads

Inconsist

ent reads

Ghost 

updates

Phantom 

inserts

read

uncommitted

no yes yes yes yes

read committed no no yes yes yes

repeatable 

read

no no no no yes

serializable no no no no no
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Isolation Levels

• On writes we always have Strict 2PL (thus Lost updates are 

always avoided)

• read uncommitted:

– Does not require shared locks for reads and does not

respects exclusive locks from other transactions for reads

(useful for read only transactions)

• read committed:

– Requires shared locks for reads (and respect others’), but

without 2PL

• repeatable read:

– Strict 2PL also for reads, with locks on tuples

• serializable:

– Strict 2PL with predicate locks


