
JDBCJDBC

Taken from
http://java.sun.com/products/jdbc/learning.html

see also the book: Fisher, Ellis, Bruce, “JDBC
API Tutorial and Reference”, Third Edition,

Addison Wesley

2

Getting StartedGetting Started

• Install Java on your machine: The JDBC library is
included in the J2SE distribution

• Install a driver on your machine: the driver is
provided by the database vendor or by a third party.
– the installation consists of just copying the driver

onto your machine; there is no special
configuration needed.

3

Types of JDBC DriversTypes of JDBC Drivers

• According to the JDBC specification, there are four types of
JDBC driver architectures:

• Type 1
– Drivers that implement the JDBC API as a mapping to

another data access API, such as Open Database
Connectivity (ODBC). Drivers of this type are generally
dependent on a native library, which limits their portability.

– If you download either the Solaris or Windows versions of
JDK1.1 or higher, you will automatically get the JDBC-ODBC
Bridge driver, which does not itself require any special
configuration.

• Type 2
– Drivers that are written partly in the Java™ programming

language and partly in native code. The drivers use a native
client library specific to the data source to which they
connect. Because of the native code, their portability is
limited.

4

Types of JDBC DriversTypes of JDBC Drivers

• Type 3

– Drivers that use a pure Java client and communicate
with a database using a database-independent
protocol. The database then communicates the
client's requests to the data source.

• Type 4

– Drivers that are pure Java and implement the
network protocol for a specific data source. The client
connects directly to the data source.

5

ScenarioScenario

• Small coffee house called The Coffee Break, where
coffee beans are sold by the pound

• The database contains only two tables, one for types
of coffee and one for coffee suppliers.

6

JDBC APIJDBC API

• To use the JDBC API is necessary to include in your
file the command

import java.sql.*;
• For some functionalities you need to include also the

JDBC Optional Package

import javax.sql.*;

• Make sure the .jar file containing the JDBC driver is in
the classpath or use an IDE such as Eclipse

7

Establishing a ConnectionEstablishing a Connection

• Two steps:

1. loading the driver

2. making the connection.

8

Loading the DriverLoading the Driver

• Your driver documentation will give you the class
name to use. For instance, if the class name is
jdbc.DriverXYZ , you would load the driver with the
following line of code:
– Class.forName("jdbc.DriverXYZ");

• Calling Class.forName locates the driver class, loads,
and links it, and registers it with the DriverManager

9

Loading the DriverLoading the Driver

• For the JDBC-ODBC Bridge driver
– Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

• For the SQL Server driver

– Class.forName("com.microsoft.sqlserver.jdbc.SQL
ServerDriver");

• For the DB2 driver
Class.forName("com.ibm.db2.jcc.DB2Driver");

10

Making the ConnectionMaking the Connection

Connection con = DriverManager.getConnection(url);

Connection con = DriverManager.getConnection(url, "myLogin",
"myPassword");

• The url follows the syntax specified by the driver.
• JDBC-ODBC Bridge driver: the JDBC URL will start with

jdbc:odbc: . The rest of the URL is the ODBC data source
name.

• If you are using ODBC to access an ODBC data source called
"Fred“ with username “Fernanda” and password “J8”, for
example, the code would be

String url = "jdbc:odbc:Fred";

Connection con = DriverManager.getConnection(url, "Fernanda",
"J8");

11

SQL Server Driver UrlSQL Server Driver Url

Type 4 driver:
jdbc:sqlserver://serverName\instance:port;property=value
[;property=value]
• jdbc:sqlserver:// (Required) is the protocol and the sub-

protocol and is constant.
• serverName (Optional) is the address of the server to connect

to. This could be a DNS or IP address, or it could be localhost or
127.0.0.1 for the local computer. If not specified in the
connection URL, the server name must be specified in the
properties collection.

• instanceName (Optional) is the instance to connect to on
serverName. If not specified, a connection to the default
instance is made.

• port (Optional) is the port to connect to on serverName. The
default is 1433. If you are using the default, you do not have to
specify the port, nor its preceding ':', in the URL.

12

SQL Server driver UrlSQL Server driver Url

• property (Optional) is one or more option connection
properties. Any property from a list can be specified.
Properties can only be delimited by using the semi-
colon (';'), and they cannot be duplicated.

• Most important properties:
– user or userName: the username of the user

connecting to the database

– password: the password

13

SQL Server Driver Url ExamplesSQL Server Driver Url Examples

• Connect to the default database on the local
computer:

jdbc:sqlserver://localhost;user=MyUserName;password
=prova

• Connect to a named instance on the local machine:

jdbc:sqlserver://localhost\si2006;user=MyUserName;pa
ssword=prova

• Connect on the non-default port 4000 to the local
machine:

jdbc:sqlserver://localhost:4000;user=MyUserName;pass
word=prova

14

SQL Server Driver Connection ExamplesSQL Server Driver Connection Examples

• Note that if you specify an instance name, you should
use double \ in the url

Connection con = DriverManager.getConnection(

“jdbc:sqlserver://localhost\\si2006”, "myLogin",
"myPassword");

Connection con = DriverManager.getConnection(

“jdbc:sqlserver://192.168.0.252”, “utente", “Infonew1");

15

DB2 Driver URLsDB2 Driver URLs

Type 4 Driver
jdbc:db2://serverName[:port]/database:property=value;[…

n]
• jdbc:db2:// (Required) is the protocol and the sub-

protocol and is constant.
• serverName is the address of the server to connect to.

This could be a DNS or IP address, (in our case
192.168.0.252).

• port is the port to connect to on serverName. In our
case 50000

• database is the database to connect to on serverName.
In our case PROVA

16

DB2 Driver URLsDB2 Driver URLs

• property (Optional) is one or more option connection
properties. Any property from a list can be specified.
Properties can only be delimited by using the semi-
colon (';'), and they cannot be duplicated.

• Most important properties:
– user: the username of the user connecting to the

database

– password: the password

17

DB2 Driver URLs ExamplesDB2 Driver URLs Examples

• jdbc:db2://10.17.2.91:50000/PROVA
• jdbc:db2://192.168.0.252:50000/PROVA

18

DriverManager.getConnectionDriverManager.getConnection

• Making the Connection
• Connection con = DriverManager.getConnection(url,

“utente", “Infonew1");
• The connection returned by the method

DriverManager.getConnection is an open connection
you can use to create JDBC statements that pass
your SQL statements to the DBMS.

• In the previous example, con is an open connection,
and we will use it in the examples that follow.

19

COFFES TableCOFFES Table

• It contains the essential information about the coffees
sold at The Coffee Break, including the coffee
names, the ID of their supplier their prices, the
number of pounds sold the current week, and the
number of pounds sold to date.

COF_NAME SUP_ID PRICE SALES TOTAL

Colombian 101 7.99 0 0

French_Roast 49 8.99 0 0

Espresso 150 9.99 0 0

Colombian_Decaf 101 8.99 0 0

French_Roast_Decaf 49 9.99 0 0

20

SUPPLIERS TableSUPPLIERS Table

• SUPPLIERS gives information about each of the
suppliers:

SUP_ID SUP_NA
ME

STREET CITY STATE ZIP

101 Acme, Inc. 99 Market
Street

Groundsville CA 95199

49 Superior
Coffee

1 Party
Place

Mendocino CA 95460

150 The High
Ground

100 Coffee
Lane

Meadows CA 93966

21

CREATE TABLE COFFESCREATE TABLE COFFES

CREATE TABLE COFFEES
(COF_NAME VARCHAR(32),
SUP_ID INTEGER,
PRICE FLOAT,
SALES INTEGER,
TOTAL INTEGER)

22

Table CreationTable Creation

String createTableCoffees = "CREATE TABLE”+

“ COFFEES (COF_NAME VARCHAR(32), “+

“SUP_ID INTEGER, PRICE FLOAT, " +

"SALES INTEGER, TOTAL INTEGER)";

23

Creating JDBC StatementsCreating JDBC Statements

• A Statement object is what sends your SQL
statement to the DBMS.

• You simply create a Statement object and then
execute it, supplying the appropriate execute method
together with the SQL statement you want to send.

• For a SELECT statement, the method to use is
executeQuery . For statements that create or modify
tables, the method to use is executeUpdate.

24

Creating JDBC StatementsCreating JDBC Statements

• It takes an instance of an active connection to create
a Statement object. In the following example, we use
our Connection object con to create the Statement
object stmt :

Statement stmt = con.createStatement();

25

Executing StatementsExecuting Statements

• At this point stmt exists, but it does not have an SQL
statement to pass on to the DBMS. We need to
supply that to the method we use to execute stmt.
For example, in the following code fragment, we
supply executeUpdate with the SQL statement from
the example above:

stmt.executeUpdate(createTableCoffees);
• We used the method executeUpdate because the

SQL statement contained in createTableCoffees is a
DDL (data definition language) statement.
executeUpdate is also used to execute SQL
statements that update a table.

26

Inserting Data in COFFEESInserting Data in COFFEES

Statement stmt = con.createStatement();
stmt.executeUpdate("INSERT INTO COFFEES " +
"VALUES ('Colombian', 101, 7.99, 0, 0)");

• The code that follows inserts a second row into the
table COFFEES. Note that we can just reuse the
Statement object stmt rather than having to create a
new one for each execution.

stmt.executeUpdate("INSERT INTO COFFEES " +
"VALUES ('French_Roast', 49, 8.99, 0, 0)");

27

Inserting the Remaining Data in COFFEESInserting the Remaining Data in COFFEES

stmt.executeUpdate("INSERT INTO COFFEES " +

 "VALUES ('Espresso', 150, 9.99, 0, 0)");

stmt.executeUpdate("INSERT INTO COFFEES " +

 "VALUES ('Colombian_Decaf', 101, 8.99, 0, 0)");

stmt.executeUpdate("INSERT INTO COFFEES " +

 "VALUES ('French_Roast_Decaf', 49, 9.99, 0, 0)");

28

Selecting Data from COFFEESSelecting Data from COFFEES

ResultSet rs = stmt.executeQuery("SELECT“ +

” COF_NAME, PRICE FROM COFFEES");
• JDBC returns results in a ResultSet object, so we

need to declare a ResultSet variable to hold our
results.

29

Retrieving ResultsRetrieving Results

• The variable rs, which is an instance of ResultSet,
contains the rows of coffees and prices shown above.

• In order to access the names and prices, we will go
to each row and retrieve the values according to their
types. The method next moves what is called a
cursor to the next row and makes that row (called
the current row) the one upon which we can operate.

• Since the cursor is initially positioned just above the
first row of a ResultSet object, the first call to the
method next moves the cursor to the first row and
makes it the current row.

• Successive invocations of the method next move the
cursor down one row at a time from top to bottom.

30

nextnext

• next returns true if the successive row is a valid row
otherwise it returns false

• If it is called when the cursor is on the last row it
returns false

• It can be used for cycles

31

Retrieving ResultsRetrieving Results

• We use the getXXX method of the appropriate type to
retrieve the value in each column. For example, the
first column in each row of rs is COF_NAME, which
stores a value of SQL type VARCHAR .

• The method for retrieving a value of SQL type
VARCHAR is getString.

• The second column in each row stores a value of
SQL type FLOAT, and the method for retrieving
values of that type is getFloat.

32

Retrieving ResultsRetrieving Results

String query = "SELECT COF_NAME, PRICE “+

“ FROM COFFEES";

ResultSet rs = stmt.executeQuery(query);

while (rs.next()) {

String s = rs.getString("COF_NAME");

float n = rs.getFloat("PRICE");

System.out.println(s + " " + n);

}

33

DetailsDetails

String s = rs.getString("COF_NAME");
• The method getString will retrieve (get) the value

stored in the column COF_NAME in the current row
of rs. The value that getString retrieves has been
converted from an SQL VARCHAR to a String in the
Java programming language, and it is assigned to the
String object s.

• The situation is similar with the method getFloat
except that it retrieves the value stored in the column
PRICE, which is an SQL FLOAT, and converts it to a
Java float before assigning it to the variable n .

34

getXXXgetXXX

• JDBC offers two ways to identify the column from
which a getXXX method gets a value.

• One way is to give the column name, as was done in
the example above.

• The second way is to give the column index (number
of the column), with 1 indicating the first column, 2 ,
the second, and so on:

String s = rs.getString(1);

float n = rs.getFloat(2);

35

getXXXgetXXX

• Using the column number is slightly more efficient,
and there are some cases where the column number
is required.

• In general, though, supplying the column name is
essentially equivalent to supplying the column
number.

36

getXXXgetXXX

• JDBC allows a lot of latitude as far as which getXXX
methods you can use to retrieve the different SQL
types.

• For example, the method getInt can be used to
retrieve any of the numeric or character types. The
data it retrieves will be converted to an int; that is, if
the SQL type is VARCHAR, JDBC will attempt to
parse an integer out of the VARCHAR.

• The method getInt is recommended for retrieving only
SQL INTEGER types, however, and it cannot be
used for the SQL types BINARY, VARBINARY,
LONGVARBINARY, DATE, TIME, or TIMESTAMP.

37

getXXXgetXXX

• Although the method getString is recommended for
retrieving the SQL types CHAR and VARCHAR , it is
possible to retrieve any of the basic SQL types with it.

• For instance, if it is used to retrieve a numeric type,
getString will convert the numeric value to a Java
String object.

38

Updating TablesUpdating Tables

• Suppose that after a successful first week, the owner
of The Coffee Break wants to update the SALES
column in the table COFFEES by entering the
number of pounds sold for each type of coffee. The
SQL statement to update one row might look like this:

39

Updating TablesUpdating Tables

String updateString = "UPDATE COFFEES " +

"SET SALES = 75 " +

"WHERE COF_NAME LIKE 'Colombian'";

• Using the Statement object stmt , this JDBC code
executes the SQL statement contained in
updateString :

stmt.executeUpdate(updateString);

40

Seeing the ResultsSeeing the Results

String query = "SELECT COF_NAME, SALES FROM”+

“COFFEES WHERE COF_NAME LIKE 'Colombian'";

ResultSet rs = stmt.executeQuery(query);

while (rs.next()) {

String s = rs.getString("COF_NAME");

int n = rs.getInt("SALES");

System.out.println(n + " pounds of " + s +

" sold this week.");

}

41

Seeing the ResultsSeeing the Results

• Prints the following:

75 pounds of Colombian sold this week.
• Since the WHERE clause limited the selection to only

one row, there was just one row in the ResultSet rs
and one line was printed as output. Accordingly, it is
possible to write the code without a while loop:

rs.next();

String s = rs.getString(1);

int n = rs.getInt(2);

System.out.println(n + " pounds of " + s +

" sold this week.");

42

Updating the TOTALUpdating the TOTAL

String updateString = "UPDATE COFFEES " +

"SET TOTAL = TOTAL + 75 " +

"WHERE COF_NAME LIKE 'Colombian'";

stmt.executeUpdate(updateString);

String query = "SELECT COF_NAME, TOTAL “

+”FROM COFFEES WHERE COF_NAME LIKE “+ “'Colombian'";

ResultSet rs = stmt.executeQuery(query);

while (rs.next()) {

String s = rs.getString(1);

int n = rs.getInt(2);

System.out.println(n + " pounds of " + s + " sold to date.");

}

43

Prepared StatementsPrepared Statements

• PreparedStatement is a subclass of Statement.
• It is given an SQL statement when it is created.
• Two advantages:

– In most cases, this SQL statement will be sent to
the DBMS right away, where it is compiled. This
means that when the PreparedStatement is
executed, the DBMS can just run the
PreparedStatement 's SQL statement without
having to compile it first.

– The SQL statement can have parameters

44

Creating a PreparedStatement ObjectCreating a PreparedStatement Object

• With the prepareStatement method of a Connection
object

PreparedStatement updateSales =
con.prepareStatement(

"UPDATE COFFEES SET SALES = ? WHERE “+
“COF_NAME LIKE ?");

• The question marks are placeholders for parameters

45

Supplying Values for PreparedStatement Supplying Values for PreparedStatement
ParametersParameters

• You will need to supply values to be used in place of
the question mark placeholders, if there are any,
before you can execute a PreparedStatement object.

• You do this by calling one of the setXXX methods
defined in the class PreparedStatement .

• In general, there is a setXXX method for each type in
the Java programming language.

updateSales.setInt(1, 75);

updateSales.setString(2, "Colombian");
• First argument: parameter position
• Second argument: parameter value

46

Executing a Prepared StatementExecuting a Prepared Statement

PreparedStatement updateSales =
con.prepareStatement(

"UPDATE COFFEES SET SALES = ? WHERE “+
“COF_NAME LIKE ?");

updateSales.setInt(1, 75);

updateSales.setString(2, "Colombian");

updateSales.executeUpdate():

executeUpdate takes no argument because the SQL
statement is already stored in PreparedStatement

47

Changing ParametersChanging Parameters

• Once a parameter has been set with a value, it will
retain that value until it is reset to another value or
the method clearParameters is called

48

Changing ParametersChanging Parameters

updateSales.setInt(1, 100);

updateSales.setString(2, "French_Roast");

updateSales.executeUpdate();

// changes SALES column of French Roast row to 100

updateSales.setString(2, "Espresso");

updateSales.executeUpdate();

// changes SALES column of Espresso row to 100 (the

// first parameter stayed 100, and the second

// parameter was set to "Espresso")

49

Using a Loop to Set ValuesUsing a Loop to Set Values

PreparedStatement updateSales;
String updateString = "update COFFEES " +

 "set SALES = ? where COF_NAME like ?";
updateSales = con.prepareStatement(updateString);
int [] salesForWeek = {175, 150, 60, 155, 90};
String [] coffees = {"Colombian", "French_Roast", "Espresso",

 "Colombian_Decaf", "French_Roast_Decaf"};
int len = coffees.length;
for(int i = 0; i < len; i++) {

updateSales.setInt(1, salesForWeek[i]);
updateSales.setString(2, coffees[i]);
updateSales.executeUpdate();

}

50

Return Values for the Method executeUpdateReturn Values for the Method executeUpdate

• The return value for executeUpdate is an int that
indicates how many rows of a table were updated.

updateSales.setInt(1, 50);

updateSales.setString(2, "Espresso");

int n = updateSales.executeUpdate();

// n = 1 because one row had a change in it
• When the method executeUpdate is used to execute

a DDL statement, such as in creating a table, it
returns the int 0.

int n = executeUpdate(createTableCoffees); // n = 0

51

Return Values for the Method executeUpdateReturn Values for the Method executeUpdate

• When the return value for executeUpdate is 0, it can
mean one of two things:

1. the statement executed was an update statement
that affected zero rows,

2. the statement executed was a DDL statement.

52

Creating SUPPLIERSCreating SUPPLIERS

• We need to create the table SUPPLIERS and
populate it with values.

String createSUPPLIERS = "create table SUPPLIERS "+

"(SUP_ID INTEGER, SUP_NAME VARCHAR(40), " +

 "STREET VARCHAR(40), CITY VARCHAR(20), " +

 "STATE CHAR(2), ZIP CHAR(5))";

stmt.executeUpdate(createSUPPLIERS);

53

Populating SUPPLIERS with ValuesPopulating SUPPLIERS with Values

stmt.executeUpdate("insert into SUPPLIERS values (101, " +

 "'Acme, Inc.', '99 Market Street', 'Groundsville', " +

"'CA', '95199'");

stmt.executeUpdate("Insert into SUPPLIERS values (49," +

 "'Superior Coffee', '1 Party Place', 'Mendocino', 'CA', '95460'");

stmt.executeUpdate("Insert into SUPPLIERS values (150, " +

 "'The High Ground', '100 Coffee Lane', 'Meadows', 'CA', " +

"'93966'");

ResultSet rs = stmt.executeQuery("select * from SUPPLIERS");

SUP_ID SUP_NAME STREET CITY STATE ZIP

101 Acme, Inc. 99 Market
Street

Groundsville CA 95199

49 Superior
Coffee

1 Party
Place

Mendocino CA 95460

150 The High
Ground

100 Coffee
Lane

Meadows CA 93966

54

Query with a JoinQuery with a Join

String query = "SELECT COFFEES.COF_NAME " +
 "FROM COFFEES, SUPPLIERS " +
 "WHERE SUPPLIERS.SUP_NAME LIKE 'Acme, Inc.' " +
 "and SUPPLIERS.SUP_ID = COFFEES.SUP_ID";
ResultSet rs = stmt.executeQuery(query);
System.out.println("Coffees bought from Acme, Inc.: ");
while (rs.next()) {
 String coffeeName = rs.getString("COF_NAME");
 System.out.println(" " + coffeeName);
}

55

TransactionsTransactions

• When a connection is created, it is in auto-commit
mode.

• This means that each individual SQL statement is
treated as a transaction and will be automatically
committed right after it is executed.

• To disable auto-commit mode:

con.setAutoCommit(false);

• where con is an active connection

56

TransactionsTransactions

• To commit a transaction use

con.commit();
• To roll back a transaction use

con.rollback();

• To set a transaction isolation level use the
Connection method setTransactionIsolation that
takes an int

• To find out what transaction isolation level your
DBMS is set to, use the Connection method
getTransactionIsolation that returns an int

57

Isolation LevelsIsolation Levels

• Five constants defined in the Connection interface:
– TRANSACTION_NONE
– TRANSACTION_READ_UNCOMMITTED

– TRANSACTION_READ_COMMITTED

– TRANSACTION_REPEATABLE_READ
– TRANSACTION_SERIALIZABLE

• Example

con.setTransactionIsolation(

Connection.TRANSACTION_READ_COMMITTED);

58

Isolation LevelsIsolation Levels

• Even though JDBC allows you to set a transaction
isolation level, doing so will have no effect unless the
driver and DBMS you are using support it.

59

ExampleExample

PreparedStatement updateSales;
PreparedStatement updateTotal;
String updateString=“UPDATE COFFEES SET SALES = ? WHERE “+

COF_NAME = ?”;
String updateStatement=“UPDATE COFFEES SET TOTAL = TOTAL + ?

WHERE “+
COF_NAME = ?”;

String query = "select COF_NAME, SALES, TOTAL from COFFEES";
try {

con = DriverManager.getConnection(url,"myLogin", "myPassword");
updateSales = con.prepareStatement(updateString);
updateTotal = con.prepareStatement(updateStatement);
int [] salesForWeek = {175, 150, 60, 155, 90};
String [] coffees = {"Colombian", "French_Roast", "Espresso",
"Colombian_Decaf","French_Roast_Decaf"};

60

ExampleExample

int len = coffees.length;
con.setAutoCommit(false);
for (int i = 0; i < len; i++) {

updateSales.setInt(1, salesForWeek[i]);
updateSales.setString(2, coffees[i]);
updateSales.executeUpdate();
updateTotal.setInt(1, salesForWeek[i]);
updateTotal.setString(2, coffees[i]);
updateTotal.executeUpdate();
con.commit();
}

61

ExampleExample

con.setAutoCommit(true);
updateSales.close(); updateTotal.close();
stmt = con.createStatement();
ResultSet rs = stmt.executeQuery(query);
while (rs.next()) {

String c = rs.getString("COF_NAME");
int s = rs.getInt("SALES");
int t = rs.getInt("TOTAL");
System.out.println(c + " " + s + " " + t);

}
stmt.close();
con.close();

}

62

ExampleExample

catch(SQLException ex) {
System.err.println("SQLException: " + ex.getMessage());
if (con != null) {
try {

System.err.print("Transaction is being ");
System.err.println("rolled back");
con.rollback();

}
catch(SQLException excep) {

System.err.print("SQLException: ");
System.err.println(excep.getMessage());

}
}

63

Stored ProceduresStored Procedures

String createProcedure =

"create procedure SHOW_SUPPLIERS " +

 "as " +

 "select SUPPLIERS.SUP_NAME, “+

“COFFEES.COF_NAME " +

 "from SUPPLIERS, COFFEES " +

 "where SUPPLIERS.SUP_ID = COFFEES.SUP_ID " +

 "order by SUP_NAME";

Statement stmt = con.createStatement();

stmt.executeUpdate(createProcedure);

64

Stored ProceduresStored Procedures

• The procedure SHOW_SUPPLIERS will be compiled
and stored in the database as a database object that
can be called, similar to the way you would call a
method.

65

Calling a Stored Procedure from JDBCCalling a Stored Procedure from JDBC

• The first step is to create a CallableStatement object.
• As with Statement and PreparedStatement objects,

this is done with an open Connection object.
• A CallableStatement object contains a call to a stored

procedure; it does not contain the stored procedure
itself.

CallableStatement cs = con.prepareCall(

"{call SHOW_SUPPLIERS}");

ResultSet rs = cs.executeQuery();

66

Escape SyntaxEscape Syntax

• {call SHOW_SUPPLIERS} is the escape syntax for
stored procedures.

• When the driver encounters "{call
SHOW_SUPPLIERS}" , it will translate this escape
syntax into the native SQL used by the database to
call the stored procedure named
SHOW_SUPPLIERS .

67

Execution of the CallableStatementExecution of the CallableStatement

• Note that the method used to execute cs is executeQuery
because cs calls a stored procedure that contains one query
and thus produces one result set.

• If the procedure had contained one update or one DDL
statement, the method executeUpdate would have been the one
to use.

• It is sometimes the case, however, that a stored procedure
contains more than one SQL statement, in which case it will
produce more than one result set, more than one update count,
or some combination of result sets and update counts. In this
case, where there are multiple results, the method execute
should be used to execute the CallableStatement .

68

ParametersParameters

• The class CallableStatement is a subclass of
PreparedStatement , so a CallableStatement object
can take input parameters just as a
PreparedStatement object can.

69

ExceptionsExceptions

try {

Class.forName("myDriverClassName");

} catch(java.lang.ClassNotFoundException e) {

System.err.print("ClassNotFoundException: ");

System.err.println(e.getMessage());

}

70

ExceptionsExceptions

try {

// Code that could generate an exception goes here.

// If an exception is generated, the catch block below

// will print out information about it.

} catch(SQLException ex) {

System.err.println("SQLException: " +
ex.getMessage());

}

71

ExceptionsExceptions

• If you were to run CreateCOFFEES.java twice, you
would get an error message similar to this:

SQLException: There is already an object named

 'COFFEES' in the database.

Severity 16, State 1, Line 1

• This example illustrates printing out the message
component of an SQLException object, which is
sufficient for most situations.

72

ExceptionsExceptions

• The SQLException object contains three parts:
– the message (a string that describes the error),
– the SQL state (a string identifying the error

according to the X/Open SQLState conventions),

– the vendor error code (a number that is the driver
vendor's error code number)

73

ExampleExample

try {// Code that could generate an exception goes here.
// If an exception is generated, the catch block below
// will print out information about it.

} catch(SQLException ex) {
System.out.println("\n--- SQLException caught ---\n");
while (ex != null) {

System.out.println("Message: "+ ex.getMessage ());
System.out.println("SQLState: "+ ex.getSQLState ());
System.out.println("ErrorCode: "+ ex.getErrorCode ());
ex = ex.getNextException();
System.out.println("");

}
}

74

ExampleExample

• If you try to create the table COFFEES twice, you would get the
following printout:

--- SQLException caught ---
Message: There is already an object named 'COFFEES'

in the database. Severity 16, State 1, Line 1
SQLState: 42501
ErrorCode: 2714
• SQLState is a code defined in X/Open and ANSI-92 that

identifies the exception. Two examples of SQLState code
numbers and their meanings follow:
– 08001 -- No suitable driver
– HY011 -- Operation invalid at this time

• The vendor error code is specific to each driver, so you need to
check your driver documentation for a list of error codes and
what they mean.

75

Moving the Cursor in Scrollable Result SetMoving the Cursor in Scrollable Result Set

• Up to now we have seen the features in the JDBC
1.0 API

• One of the new features in the JDBC 2.0 API is the
ability to move a result set's cursor backward as well
as forward.

• There are also methods that let you move the cursor
to a particular row and check the position of the
cursor.

• Scrollable result sets make it possible to create a GUI
(graphical user interface) tool for browsing result
sets.

• Another use is moving to a row in order to update it.

76

Scrollable ResultSetScrollable ResultSet

• The following line of code illustrates one way to
create a scrollable ResultSet object:

Statement stmt = con.createStatement(

ResultSet.TYPE_SCROLL_SENSITIVE,

ResultSet.CONCUR_READ_ONLY);

ResultSet srs = stmt.executeQuery(

"SELECT COF_NAME, PRICE FROM COFFEES");

77

Scrollable ResultSetScrollable ResultSet

• Two arguments to the method createStatement.
– The first argument is one of three constants added to the

ResultSet API to indicate the type of a ResultSet object:
TYPE_FORWARD_ONLY ,
TYPE_SCROLL_INSENSITIVE , and
TYPE_SCROLL_SENSITIVE .

– The second argument is one of two ResultSet constants for
specifying whether a result set is read-only or updatable:
CONCUR_READ_ONLY and CONCUR_UPDATABLE .

• If you specify a type, you must also specify whether it is read-
only or updatable.

• Also, you must specify the type first, and because both
parameters are of type int , the compiler will not complain if you
switch the order.

78

TYPE_FORWARD_ONLYTYPE_FORWARD_ONLY

• Specifying the constant TYPE_FORWARD_ONLY
creates a nonscrollable result set, that is, one in
which the cursor moves only forward.

• If you do not specify any constants for the type and
updatability of a ResultSet object, you will
automatically get one that is
TYPE_FORWARD_ONLY and
CONCUR_READ_ONLY (as is the case when you
are using only the JDBC 1.0 API).

79

TYPE_SCROLL_INSENSITIVE or TYPE_SCROLL_INSENSITIVE or
TYPE_SCROLL_SENSITIVETYPE_SCROLL_SENSITIVE

• You will get a scrollable ResultSet object if you specify one of
the following ResultSet constants:
TYPE_SCROLL_INSENSITIVE or TYPE_SCROLL_SENSITIVE
The difference between the two has to do with whether a result
set reflects changes that are made to it while it is open and
whether certain methods can be called to detect these changes.

• Generally speaking,
– a result set that is TYPE_SCROLL_INSENSITIVE does not

reflect changes made by others while it is still open and
– one that is TYPE_SCROLL_SENSITIVE does.

• All three types of result sets will make changes visible if they are
closed and then reopened.

• No matter what type of result set you specify, you are always
limited by what your DBMS and driver actually provide

80

Scrollable ResultSetScrollable ResultSet

• Once you have a scrollable ResultSet object, srs in
the previous example, you can use it to move the
cursor around in the result set.

• Even when a result set is scrollable, the cursor is
initially positioned before the first row.

81

next and previousnext and previous

• The counterpart to the method next, is the new
method previous, which moves the cursor backward
(one row towards the beginning of the result set).

• next and previous return false when the cursor goes
beyond the result set (to the position after the last
row or before the first row), which makes it possible
to use them in a while loop.

82

Using previousUsing previous

srs.afterLast();

while (srs.previous()) {

String name = srs.getString("COF_NAME");

float price = srs.getFloat("PRICE");

System.out.println(name + " " + price);

}

afterLast moves the cursor explicitly to the position after
the last row

83

Moving the CursorMoving the Cursor

• The methods first, last, beforeFirst, and afterLast
move the cursor to the row indicated in their names.

• The method absolute will move the cursor to the row
number indicated in the argument passed to it.
– If the number is positive, the cursor moves the

given number from the beginning, so calling
absolute(1) puts the cursor on the first row.

– If the number is negative, the cursor moves the
given number from the end, so calling absolute(-1)
puts the cursor on the last row.

84

absoluteabsolute

• The following line of code moves the cursor to the
fourth row of srs :

srs.absolute(4);
• If srs has 500 rows, the following line of code will

move the cursor to row 497:

srs.absolute(-4);

85

Relative MovesRelative Moves

• Three methods move the cursor to a position relative
to its current position.
– next
– previous

– relative: you can specify how many rows to move
from the current row. A positive number moves the
cursor forward the given number of rows; a
negative number moves the cursor backward the
given number of rows.

86

relative Examplerelative Example

srs.absolute(4); // cursor is on the fourth row

. . .

srs.relative(-3); // cursor is on the first row

. . .

srs.relative(2); // cursor is on the third row

87

getRowgetRow

• The method getRow lets you check the number of the
row where the cursor is positioned.

srs.absolute(4);

int rowNum = srs.getRow(); // rowNum should be 4

srs.relative(-3);

int rowNum = srs.getRow(); // rowNum should be 1

srs.relative(2);

int rowNum = srs.getRow(); // rowNum should be 3

88

Position TestsPosition Tests

• Four additional methods let you verify whether the
cursor is at a particular position.

• The position is stated in their names: isFirst , isLast ,
isBeforeFirst , isAfterLast .

• These methods all return a boolean and can
therefore be used in a conditional statement.

89

isAfterLast ExampleisAfterLast Example

if (!srs.isAfterLast()) {

srs.afterLast();

}

while (srs.previous()) {

String name = srs.getString("COF_NAME");

float price = srs.getFloat("PRICE");

System.out.println(name + " " + price);

}

90

Making Updates to Updatable Result SetsMaking Updates to Updatable Result Sets

• With the JDBC 2.0 API it is possible to update rows in
a result set using methods in the Java programming
language rather than having to send an SQL
command.

• You need to create a ResultSet object that is
updatable. In order to do this, you supply the
ResultSet constant CONCUR_UPDATABLE to the
createStatement method.

91

Making Updates to Updatable Result SetsMaking Updates to Updatable Result Sets

• An updatable ResultSet object does not necessarily
have to be scrollable, but when you are making
changes to a result set, you generally want to be able
to move around in it.

• With a scrollable result set, you can move to rows
you want to change, and if the type is
TYPE_SCROLL_SENSITIVE, you can get the new
value in a row after you have changed it.

92

ExampleExample

Connection con = DriverManager.getConnection(

"jdbc:mySubprotocol:mySubName");

Statement stmt = con.createStatement(

ResultSet.TYPE_SCROLL_SENSITIVE,

ResultSet.CONCUR_UPDATABLE);

ResultSet uprs = stmt.executeQuery(

"SELECT COF_NAME, PRICE FROM COFFEES");

93

NotesNotes

• Just specifying that a result set be updatable does
not guarantee that the result set you get is updatable.

• If a driver does not support updatable result sets, it
will return one that is readonly.

• The query you send can also make a difference. In
order to get an updatable result set, the query must
generally specify the primary key as one of the
columns selected, and it should select columns from
only one table.

94

NotesNotes

• The following line of code checks whether the
ResultSet object uprs is updatable.

• int concurrency = uprs.getConcurrency();
• The variable concurrency will be one of the following:

– 1007 to indicate
ResultSet.CONCUR_READ_ONLY

– 1008 to indicate
ResultSet.CONCUR_UPDATABLE

95

uprs Contentuprs Content

COF_NAME PRICE

------------------ -----

Colombian 7.99

French_Roast 8.99

Espresso 9.99

Colombian_Decaf 8.99

French_Roast_Decaf 9.99

96

Updating a Result Set ProgrammaticallyUpdating a Result Set Programmatically

• Suppose that we want to raise the price of French
Roast Decaf coffee to 10.99. Using the JDBC 1.0
API, the update would look something like this:

stmt.executeUpdate(

 "UPDATE COFFEES SET PRICE = 10.99 " +

 "WHERE COF_NAME = 'French_Roast_Decaf'");

• In JDBC 2.0

uprs.last();

uprs.updateFloat("PRICE", 10.99f);

97

Update OperationsUpdate Operations

• Update operations in the JDBC 2.0 API affect column
values in the row where the cursor is positioned,

• All of the update methods you call will operate on that
row until you move the cursor to another row.

• The ResultSet.updateXXX methods generally take
two parameters:
– the column to update, either by column name or

by column number.
– the new value to put in that column.

• There is a different updateXXX method for updating
each data type (updateString, updateBigDecimal,
updateInt, and so on)

98

Update OperationsUpdate Operations

• At this point, the price in uprs for French Roast Decaf
will be 10.99, but the price in the table COFFEES in the
database will still be 9.99.

• To make the update take effect in the database, we
must call the ResultSet method updateRow.

uprs.updateRow();

• Note that you must call the method updateRow before
moving the cursor. If you move the cursor to another
row before calling updateRow, the updates are lost,
that is, the row will revert to its previous column values.

99

Update OperationsUpdate Operations

• Suppose that you realize that the update you made is
incorrect.

• You can restore the previous value by calling the
cancelRowUpdates method if you call it before you
have called the method updateRow.

• Once you have called updateRow, the method
cancelRowUpdates will no longer work.

uprs.last();

 uprs.updateFloat("PRICE", 10.99f);

 . . .

 uprs.cancelRowUpdates();

100

Update OperationsUpdate Operations

• If you want to update the price for Colombian_Decaf,
you have to move the cursor to the row containing
that variety of coffee.

• Because the row for Colombian_Decaf immediately
precedes the row for French_Roast_Decaf, you can
call the method previous to position the cursor on the
row for Colombian_Decaf.

 uprs.previous();

 uprs.updateFloat("PRICE", 9.79f);

 uprs.updateRow();

101

NotesNotes

• All cursor movements refer to rows in a ResultSet
object, not rows in the underlying database.

• The ordering of the rows in the result set has nothing
at all to do with the order of the rows in the base
table.

• In fact, the order of the rows in a database table is
indeterminate. The driver keeps track of which rows
were selected, and it makes updates to the proper
rows, but they may be located anywhere in the table.

102

Inserting and Deleting Rows Inserting and Deleting Rows
ProgrammaticallyProgrammatically

• With the JDBC 1.0 API

stmt.executeUpdate("INSERT INTO COFFEES " +

"VALUES ('Kona', 150, 10.99, 0, 0)");

103

Inserting and Deleting Rows Inserting and Deleting Rows
ProgrammaticallyProgrammatically

• In the JDBC 2.0 API every ResultSet object has a row called
the insert row, a special row in which you can build a new row.

• Steps:

1. move the cursor to the insert row, which you do by invoking
the method moveToInsertRow.

2. set a value for each column in the row. You do this by
calling the appropriate updateXXX method for each value.

3. call the method insertRow to insert the row you have just
populated with values into the result set. This method
simultaneously inserts the row into both the ResultSet
object and the database table from which the result set was
selected.

104

ExampleExample

Statement stmt = con.createStatement(

 ResultSet.TYPE_SCROLL_SENSITIVE,

 ResultSet.CONCUR_UPDATABLE);

 ResultSet uprs = stmt.executeQuery(

 "SELECT * FROM COFFEES");

105

ExampleExample

uprs.moveToInsertRow();

uprs.updateString("COF_NAME", "Kona");

uprs.updateInt("SUP_ID", 150);

uprs.updateFloat("PRICE", 10.99f);

uprs.updateInt("SALES", 0);

uprs.updateInt("TOTAL", 0);

uprs.insertRow();

106

Example (Alternative Solution)Example (Alternative Solution)

uprs.moveToInsertRow();

uprs.updateString(1, "Kona");

uprs.updateInt(2, 150);

uprs.updateFloat(3, 10.99f);

uprs.updateInt(4, 0);

uprs.updateInt(5, 0);

uprs.insertRow();

107

updateXXXupdateXXX

• In both updates and insertions, calling an updateXXX
method does not affect the underlying database
table.

• The method updateRow must be called to have
updates occur in the database.

• For insertions, the method insertRow inserts the new
row into the result set and the database at the same
time.

108

InsertingInserting

• What happens if you insert a row without supplying a value for
every column in the row?

• If a column has a default value or accepts SQL NULL values,
you can get by with not supplying a value.

• If a column does not have a default value and does not accept
NULL, you will get an SQLException if you fail to set a value for
it.

• You will also get an SQLException if a required table column is
missing in your ResultSet object.

• In the example above, the query was SELECT * FROM
COFFEES, which produced a result set with all the columns of
all the rows. When you want to insert one or more rows, your
query does not have to select all rows, but you should generally
select all columns.

109

InsertingInserting

• After you have called the method insertRow, you can
start building another row to be inserted,

• Note that you if you move the cursor from the insert
row before calling the method insertRow, you will lose
all of the values you have added to the insert row.

110

Moving from the Insert RowMoving from the Insert Row

• When you call the method moveToInsertRow, the
result set keeps track of which row the cursor is
sitting on, which is, by definition, the current row.

• The method moveToCurrentRow, which you can
invoke only when the cursor is on the insert row,
moves the cursor from the insert row back to the row
that was previously the current row.

• To move the cursor from the insert row back to the
result set, you can also invoke any of the methods
that move the cursor: first, last, beforeFirst, afterLast,
absolute, previous, relative.

111

Deleting a Row ProgrammaticallyDeleting a Row Programmatically

• You simply move the cursor to the row you want to
delete and then call the method deleteRow.

• Example:

uprs.absolute(4);

uprs.deleteRow();

• These two lines of code remove the fourth row from
uprs and also from the database.

112

IssueIssue

• With some JDBC drivers, a deleted row is removed
and is no longer visible in a result set.

• Some JDBC drivers use a blank row as a placeholder
(a "hole") where the deleted row used to be.

• If there is a blank row in place of the deleted row, you
can use the method absolute with the original row
positions to move the cursor because the row
numbers in the result set are not changed by the
deletion.

• You can use methods in the DatabaseMetaData
interface to discover the exact behavior of your
driver.

113

Seeing Changes in Result SetsSeeing Changes in Result Sets

• Result sets vary greatly in their ability to reflect
changes made in their underlying data.

• If you modify data in a ResultSet object, the change
will always be visible if you close it and then reopen it
during a transaction.

• You will also see changes made by others when you
reopen a result set if your transaction isolation level
makes them visible.

114

Seeing Changes in Result SetsSeeing Changes in Result Sets

• So when can you see visible changes you or others made while
the ResultSet object is still open? (Generally, you will be most
interested in the changes made by others because you know
what changes you made yourself.)

• The answer depends on the type of ResultSet object you have.
• With a ResultSet object that is TYPE_SCROLL_SENSITIVE,

you can always see visible updates made by you and others to
existing column values. You may see inserted and deleted rows,
but the only way to be sure is to use DatabaseMetaData
methods that return this information.

115

Seeing Changes in Result SetsSeeing Changes in Result Sets

• Visible updates depend on the transaction isolation
level.

• With the isolation level READ COMMITTED, a
TYPE_SCROLL_SENSITIVE result set will not show
any changes before they are committed, but it can
show changes that may have other consistency
problems.

116

Seeing Changes in Result SetsSeeing Changes in Result Sets

• In a ResultSet object that is
TYPE_SCROLL_INSENSITIVE, you cannot see
changes made to it by others while it is still open, but
you may be able to see your own changes with some
implementations.

• This is the type of ResultSet object to use if you want
a consistent view of data and do not want to see
changes made by others.

117

Getting the Most Recent DataGetting the Most Recent Data

• You can do this using the method refreshRow, which
gets the latest values for a row straight from the
database.

• This method can be relatively expensive, especially if
the DBMS returns multiple rows each time you call
refreshRow. Nevertheless, its use can be valuable if it
is critical to have the latest data.

• Even when a result set is sensitive and changes are
visible, an application may not always see the very
latest changes that have been made to a row if the
driver retrieves several rows at a time and caches
them.

118

Getting the Most Recent DataGetting the Most Recent Data

• Note that the result set should be sensitive; if you use
the method refreshRow with a ResultSet object that
is TYPE_SCROLL_INSENSITIVE, refreshRow does
nothing.

119

ExampleExample

Statement stmt = con.createStatement(
 ResultSet.TYPE_SCROLL_SENSITIVE,
 ResultSet.CONCUR_READ_ONLY);
 ResultSet srs = stmt.executeQuery(SELECT COF_NAME,
 PRICE FROM COFFEES);
 srs.absolute(4);
 float price1 = srs.getFloat("PRICE");
 // do something. . .
 srs.absolute(4);
 srs.refreshRow();
 float price2 = srs.getFloat("PRICE");
 if (price2 > price1) {
 // do something. . .
 }

120

Making Batch UpdatesMaking Batch Updates

• A batch update is a set of multiple update statements
that is submitted to the database for processing as a
batch.

• Sending batch updates can, in some situations, be
much more efficient than sending update statements
separately.

• It is a JDBC 2.0 feature

121

Using Statement Objects for Batch UpdatesUsing Statement Objects for Batch Updates

• Statement, PreparedStatement and
CallableStatement objects have a list of commands
that is associated with them.

• This list may contain statements for updating,
inserting, or deleting a row; and it may also contain
DDL statements such as CREATE TABLE and DROP
TABLE.

• It cannot, however, contain a statement that would
produce a ResultSet object, such as a SELECT
statement.

• In other words, the list can contain only statements
that produce an update count.

122

Using Statement Objects for Batch UpdatesUsing Statement Objects for Batch Updates

• The list, which is associated with a Statement object
at its creation, is initially empty.

• You can add SQL commands to this list with the
method addBatch and empty it with the method
clearBatch.

• When you have finished adding statements to the list,
you call the method executeBatch to send them all to
the database to be executed as a unit, or batch.

123

ExampleExample

con.setAutoCommit(false);
Statement stmt = con.createStatement();
stmt.addBatch("INSERT INTO COFFEES " +
 "VALUES('Amaretto', 49, 9.99, 0, 0)");
stmt.addBatch("INSERT INTO COFFEES " +
 "VALUES('Hazelnut', 49, 9.99, 0, 0)");
stmt.addBatch("INSERT INTO COFFEES " +
 "VALUES('Amaretto_decaf', 49, 10.99, 0, 0)");
stmt.addBatch("INSERT INTO COFFEES " +
 "VALUES('Hazelnut_decaf', 49, 10.99, 0, 0)");
 int [] updateCounts = stmt.executeBatch();
 con.commit();
 con.setAutoCommit(true);

124

NotesNotes

• To allow for correct error handling, you should always
disable auto-commit mode before beginning a batch
update.

• executeBatch: the DBMS will execute the commands
in the order in which they were added to the list of
commands.

• If all four commands execute successfully, the DBMS
will return an update count for each command in the
order in which it was executed.

• The update counts, int values indicating how many
rows were affected by each command, are stored in
the array updateCounts.

125

Parameterized Batch Update Parameterized Batch Update

 con.setAutoCommit(false);
 PreparedStatement pstmt = con.prepareStatement(
 "INSERT INTO COFFEES VALUES(?, ?, ?, ?, ?)");
 pstmt.setString(1, "Amaretto"); pstmt.setInt(2, 49);
 pstmt.setFloat(3, 9.99); pstmt.setInt(4, 0);
 pstmt.setInt(5, 0);
 pstmt.addBatch();

 pstmt.setString(1, "Hazelnut"); pstmt.setInt(2, 49);
 pstmt.setFloat(3, 9.99); pstmt.setInt(4, 0);
 pstmt.setInt(5, 0);
 pstmt.addBatch();

 int [] updateCounts = pstmt.executeBatch();
 con.commit();
 con.setAutoCommit(true);

126

Batch Update ExceptionsBatch Update Exceptions

• You will get a BatchUpdateException when you call
the method executeBatch if

1. one of the SQL statements you added to the
batch produces a result set (usually a query) or

2. one of the SQL statements in the batch does not
execute successfully for some other reason.

127

Batch Update ExceptionsBatch Update Exceptions

• A BatchUpdateException contains an array of update
counts that is similar to the array returned by the
method executeBatch.

• In both cases, the update counts are in the same
order as the commands that produced them.

• This tells you how many commands in the batch
executed successfully and which ones they are.

128

Batch Update ExceptionsBatch Update Exceptions

• BatchUpdateException is derived from
SQLException.
This means that you can use all of the methods
available to an SQLException object with it.

129

ExampleExample

try {
 // make some updates
 } catch(BatchUpdateException b) {
 System.err.println("----BatchUpdateException----");
 System.err.println("SQLState: " + b.getSQLState());
 System.err.println("Message: " + b.getMessage());
 System.err.println("Vendor: " + b.getErrorCode());
 System.err.print("Update counts: ");
 int [] updateCounts = b.getUpdateCounts();
 for (int i = 0; i < updateCounts.length; i++) {
 System.err.print(updateCounts[i] + " ");
 }
 System.err.println("");
 }

130

SQL-99 Data TypesSQL-99 Data Types

• The JDBC 2.0 API provides interfaces that represent
the mapping of the new SQL3 (SQL-99) data types
into the Java programming language.

• With these new interfaces, you can work with SQL3
data types the same way you do other data types.

131

Using Data SourcesUsing Data Sources

• Alternative way to connect to a database
• DataSource objects should be used whenever

possible
• Advantages

– code portability

– connection pooling
– distributed transactions.

• This functionality is integral to Enterprise JavaBeans
(EJB) technology.

132

DataSourceDataSource

• A DataSource object represents a particular DBMS or
some other data source, such as a file.

• The system administrator has to deploy the DataSource
objects so that the programmers can start using them.

• Deploying a DataSource object consists of three tasks:

1.Creating an instance of the DataSource class

2.Setting its properties

3.Registering it with a naming service that uses the
Java Naming and Directory Interface (JNDI) API

133

DataSource AdvantagesDataSource Advantages

• A DataSource object is a better alternative than the
DriverManager facility for getting a connection.
– Programmers no longer have to hard code the

driver name or JDBC URL in their applications,
which makes them more portable.

134

DataSource AdvantagesDataSource Advantages

– DataSource properties make maintaining code
much simpler. If there is a change, the system
administrator can simply update the data source's
properties, and you don't have to worry about
changing every application that makes a
connection to the data source. For example, if the
data source was moved to a different server, all
the system administrator would need to do is set
the serverName property to the new server name.

– Pooled connections.
– Distributed transaction.

135

JDBC 3.0 FunctionalitiesJDBC 3.0 Functionalities

• Savepoints
• Getting the keys automatically generated by the

database.

136

SavepointsSavepoints

• Intermediate points within a transaction
• You can roll back to a savepoint, thus undoing only

part of the work
– Everything before the savepoint will be saved and

everything afterwards will be rolled back
• To set a savepoint
Savepoint save=con.setSavepoint();
• To delete a savepoint
con.releaseSavepoint(save);
• To roll back to a savepoint
con.rollback(save);

137

ExampleExample

• Rising the prices of the most popular coffes, up to a
limit

• If a price gets too high, roll back to the most recent
price increase

• Two increase rounds,

– the first for the coffes with more than 7000 pounds

– the second for the coffes with more than 8000
pounds

138

ExampleExample

con.setAutoCommit(false);

String query = "SELECT COF_NAME, PRICE FROM COFFEES "
+ "WHERE TOTAL > ?";

String update = "UPDATE COFFEES SET PRICE = ? " +

"WHERE COF_NAME = ?";

PreparedStatement getPrice = con.prepareStatement(query);

PreparedStatement updatePrice = con.prepareStatement(

update);

getPrice.setInt(1, 7000);

ResultSet rs = getPrice.executeQuery();

Savepoint save1 = con.setSavepoint();

139

ExampleExample

while (rs.next()) {

String cof = rs.getString("COF_NAME");

float oldPrice = rs.getFloat("PRICE");

float newPrice = oldPrice + (oldPrice * .05f);

updatePrice.setFloat(1, newPrice);

updatePrice.setString(2, cof);

updatePrice.executeUpdate();

System.out.println("New price of " + cof + " is " + newPrice);

if (newPrice > 11.99) {

con.rollback(save1);

}

}

140

ExampleExample

getPrice = con.prepareStatement(query);

updatePrice = con.prepareStatement(update);

getPrice.setInt(1, 8000);

rs = getPrice.executeQuery();

System.out.println();

Savepoint save2 = con.setSavepoint();

141

ExampleExample

while (rs.next()) {
String cof = rs.getString("COF_NAME");
float oldPrice = rs.getFloat("PRICE");
float newPrice = oldPrice + (oldPrice * .05f);
updatePrice.setFloat(1, newPrice);
updatePrice.setString(2, cof);
updatePrice.executeUpdate();
System.out.println("New price of " + cof + " is " +
newPrice);
if (newPrice > 11.99) {

con.rollback(save2);
}

}

142

ExampleExample

con.commit();

Statement stmt = con.createStatement();

rs = stmt.executeQuery("SELECT COF_NAME, " +

"PRICE FROM COFFEES");

System.out.println();

while (rs.next()) {

String name = rs.getString("COF_NAME");

float price = rs.getFloat("PRICE");

System.out.println("Current price of " + name +

" is " + price);

}

con.close();

143

Getting Automatically Generated KeysGetting Automatically Generated Keys

• Some DBMS automatically generate a key for a row
that is inserted in a table.

• If you later want to update that row, you can use this
key to identify the row

• You can find out whether your driver supports
automatically generated keys with

DatabaseMetaData dbmd=con.getMetaData();

Boolean b = dbmd.supportsGetGeneratedKeys();

144

Getting Automatically Generated KeysGetting Automatically Generated Keys

• If your driver supports them and you want to use
them, you have to tell the Statement object to do it

stmt.executeUpdate(sqlstring,

Statement.RETURN_GENERATED_KEYS);

• For a prepared statement

pstmt=con.prepareStatement(sqlString,

Statement.RETURN_GENERATED_KEYS);

145

Getting Automatically Generated KeysGetting Automatically Generated Keys

• After executing the statement, you retrieve the
generated keys with

ResultSet keys=stmt.getGeneratedKeys();
• Each key will be a row in keys.

• It is possible for a key to be more than one column,
so the row will have as many columns as the key

146

Getting Automatically Generated KeysGetting Automatically Generated Keys

• Another way to signal the driver that it should prepare
for returning generated keys is to pass it an array
with the column names

• In this case

String [] keyArray={“KEY”};

Stmt.executeUpdate(sqlString,keyArray);

147

MetadataMetadata

• A DatabaseMetaData object provides information
about a database or a DBMS

• The developers of the driver implemented the
DatabaseMetaData interface so that its method
return information about the driver and the database

• A ResultSetMetaData object provides information
about the columns in a particular ResultSet instance

• A ParameterMetaData object provides information
about the parameters in a PreparedStatement object

148

RowsetsRowsets

• A RowSet object is similar to a ResultSet object but it
allows to work on the data also if the computer is
disconnected from the database

• Example:
– The user retrieves the data on a portable pc

– The user disconnects from the network

– The user works on the data
– When the user reconnects to the network, the data

is synchronized with the data on the DBMS
• Rowsets optimize the sending of data through a

network

149

Alternative ApproachesAlternative Approaches

• SQLJ: extension of the Java language
• Embedded approach
• SQL programs must be preprocessed to obtain Java

programs

150

SQLJSQLJ

JDBC

PreparedStatement stmt =
conn.prepareStatement("SELECT
LASTNAME" + " , FIRSTNME" + " ,
SALARY" + " FROM DSN8710.EMP" + "
WHERE SALARY BETWEEN ? AND ?");
stmt.setBigDecimal(1, min);
stmt.setBigDecimal(2, max);
ResultSet rs = stmt.executeQuery();

while (rs.next()) {
lastname = rs.getString(1);
firstname = rs.getString(2);
salary = rs.getBigDecimal(3); //
Print row... }
rs.close();
stmt.close();

SQLJ

#sql private static iterator
EmployeeIterator(String, String,
BigDecimal); ...
EmployeeIterator iter;
#sql [ctx] iter = { SELECT LASTNAME
, FIRSTNME , SALARY FROM
DSN8710.EMP WHERE SALARY
BETWEEN :min AND :max };
while (true) {
#sql { FETCH :iter INTO :lastname,
:firstname, :salary };
if (iter.endFetch()) break; //
Print row... }

iter.close();

151

Java Persistence APIJava Persistence API

• API of Java Enterprise Edition
• Allows the persistent storage (on disk) of Java

objects
• Performed by means of an object relational mapping

that allow the storage in relational databases

• Contains also a special query language

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151

