
ADO.NET 2.0 in Visual Basic 2005ADO.NET 2.0 in Visual Basic 2005

2

PreliminariesPreliminaries

• First you have to import the namespace containing
the ADO.NET classes

• Namespace with ADO.NET classes

Imports System.Data

• Namespace with ADO.NET classes specific for SQL
Server (.NET Framework Data Provider for SQL
Server)

Imports System.Data.SqlClient

3

ConnectionConnection

• In ADO.NET you use a Connection object to connect
to a specific data source by supplying necessary
authentication information in a connection string. The
Connection object you use depends on the type of
data source.

• To connect to Microsoft SQL Server 7.0 or later, use
the SqlConnection object of the .NET Framework
Data Provider for SQL Server

4

ConnectionConnection

Dim connection As New SqlConnection(_

"Data Source=192.168.0.252; User ID =si;” & _
“Password=sistemi;" & _

"Initial Catalog=AdventureWorks")

connection.Open()

5

Connection String KeywordsConnection String Keywords

• “Data source” or “server”= name of database server,
optionally followed by \instance_name

• “User ID” and “Password”: SQL Server
authentication, for example:
– “User ID=myuser;Password=mypassword;Initial

Catalog=AdventureWorks;Server=MySqlServer“
– Username must be an SQL Server login

• “Integrated Security=true”: the Windows
authentication is used, no username and password
must be specified

• “Initial Catalog” or “Database”= the database to
connect to

6

CommandsCommands

• After establishing a connection to a data source, you
can execute commands and get results from the data
source using a Command object.

• You can create a command using the Command
constructor, which takes as arguments (both optional)
– an SQL statement to execute at the data source,

– a Connection object.

• You can also create a command for a particular
connection using the CreateCommand method of
the Connection object.

7

Creating a CommandCreating a Command

Dim cmd As New SqlCommand(_

“SELECT * FROM Person.Contact”, _

connection)

8

Execute MethodsExecute Methods

• The Command object exposes several Execute
methods that you can use to perform the intended
action.
– When returning results as a stream of data, use

ExecuteReader to return a DataReader object.
– Use ExecuteScalar to return a singleton value.

– Use ExecuteNonQuery to execute commands
that do not return rows

9

ExecuteReaderExecuteReader

Dim reader As SqlDataReader = cmd.ExecuteReader()

Try

While reader.Read()

Console.WriteLine(String.Format("{0}, {1}", _

reader(0), reader(1)))

End While

Finally ' Always call Close when done reading.

reader.Close()

End Try

10

DataReaderDataReader

• You can use the ADO.NET DataReader to retrieve a
read-only, forward-only stream of data from a
database.

• Results are returned as the query executes, and are
stored in the network buffer on the client until you
request them using the Read method of the
DataReader.

11

DataReaderDataReader

• You use the Read method of the DataReader object
to obtain a row from the results of the query.

• You can access each column of the returned row by
passing the name or ordinal reference of the column
to the DataReader.

12

ExecuteReaderExecuteReader

Dim reader As SqlDataReader = cmd.ExecuteReader()

Try

While reader.Read()

 Console.WriteLine(String.Format("{0}, {1}", _

 reader("ContactID"),reader("NameStyle")))

End While

Finally ' Always call Close when done reading.

reader.Close()

End Try

13

ExecuteReaderExecuteReader

• For best performance, the DataReader provides a
series of methods that allow you to access column
values in their native data types (GetDateTime,
GetDouble, GetGuid, GetInt32, and so on).

• They take only the column number, not the column
name

14

DataReaderDataReader

Do While reader.Read()

Console.WriteLine(vbTab & "{0}" & vbTab & "{1}", _

reader.GetInt32(0), reader.GetBoolean(1))

Loop

reader.Close()

15

DataReaderDataReader

• The DataReader is a good choice when retrieving
large amounts of data because the data is not
cached in memory.

• You should always call the Close method when you
have finished using the DataReader object.

• Note that while a DataReader is open, the
Connection is in use exclusively by that
DataReader. You cannot execute any commands for
the Connection, including creating another
DataReader, until the original DataReader is closed.

16

Multiple Result SetsMultiple Result Sets

• If multiple result sets are returned, the DataReader
provides the NextResult method to iterate through
the result sets in order.

17

Multiple Result SetsMultiple Result Sets

Dim command As SqlCommand = New SqlCommand(_
"SELECT CurrencyCode, Name FROM Sales.Currency;" & _
"SELECT DepartmentID, Name FROM HumanResources.Department", _

connection)
Dim reader As SqlDataReader = command.ExecuteReader()
Dim nextResult As Boolean = True
Do Until Not nextResult

Console.WriteLine(vbTab & reader.GetName(0) & vbTab & _
reader.GetName(1))

 Do While reader.Read()
 Console.WriteLine(vbTab & reader(0) & vbTab & _

reader.GetString(1))
 Loop
 nextResult = reader.NextResult()
Loop
reader.Close()

18

Returning a Single ValueReturning a Single Value

• You may need to return database information that is
simply a single value rather than in the form of a table
or data stream.

• For example, you may want to return the result of an
aggregate function such as COUNT(*), SUM(Price),
or AVG(Quantity).

• The Command object provides the capability to
return single values using the ExecuteScalar
method.

• The ExecuteScalar method returns as a scalar value
the value of the first column of the first row of the
result set

19

Returning a Single ValueReturning a Single Value

' Assumes that connection is a valid SqlConnection
object.

Dim ordersCMD As SqlCommand = New _

SqlCommand(_

 "SELECT COUNT(*) FROM Sales.Store", connection)

Dim count As Int32 = CInt(ordersCMD.ExecuteScalar())

Console.WriteLine("Number of stores={0}", count)

20

Modifying DataModifying Data

• You can execute stored procedures or data definition
language statements (for example, CREATE TABLE
and ALTER COLUMN)

• You can execute INSERT, UPDATE and DELETE
statements

• These commands do not return rows as a query
would, so the Command object provides an
ExecuteNonQuery to process them.

21

Creating a TableCreating a Table

Dim connection As New SqlConnection(_

 "Data Source=192.168.0.252;User ID=si;
Password=sistemi;" & _

 "Initial Catalog=prova").

connection.Open()

Dim queryString As String = "CREATE TABLE “ & _
“IMPIEGATI_MAT " & _

 "(ID INT PRIMARY KEY, NOME VARCHAR(20), COGNOME
VARCHAR(20), CITTA VARCHAR(50), ETA INT)"

 Dim command As SqlCommand = New
SqlCommand(queryString, connection)

 command.ExecuteNonQuery()

22

Modifying DataModifying Data

 Dim connection As New SqlConnection(_
 "Data Source=192.168.0.252;User ID=si;

Password=sistemi;" & _
 "Initial Catalog=prova")
 connection.Open()
 Dim queryString As String = "INSERT INTO " & _
 "IMPIEGATI_MAT " & _
 "Values('Mario', 'Rossi', 'Ferrara', 30)"
 Dim command As SqlCommand = New _

SqlCommand(queryString, connection)
 Dim recordsAffected As Int32 = command.ExecuteNonQuery()
Console.WriteLine("{0} records affected", _
 recordsAffected)

23

Using ParametersUsing Parameters

• The ? syntax for parameters can not be used
• Parameters must have a name
• Each SqlCommand has a list of parameters

associated to it

• They must be explicitly added to the parameters list

• Then their value can be set

24

Using ParametersUsing Parameters

Dim connection As New SqlConnection(_
"Data Source=192.168.0.252; User ID =si;” & _
“Password=sistemi; " & _
"Initial Catalog=AdventureWorks")
connection.Open()
Dim cmd As New SqlCommand("SELECT * FROM “& _

“Person.Contact C where C.ContactID=@ID", _
 connection)
 connection.Open()
 cmd.Parameters.Add("@ID", SqlDbType.Int)
 cmd.Parameters("@ID").Value = 1

25

Using ParametersUsing Parameters

 Dim reader As SqlDataReader = cmd.ExecuteReader()

 Try

 While reader.Read()

Console.WriteLine(String.Format("{0}, {1}",
reader(0), reader(1)))

 End While

Finally ' Always call Close when done reading.

 reader.Close()

 End Try

26

Reuse of SqlCommandReuse of SqlCommand

• You can reset the CommandText property and reuse
the SqlCommand object.

• However, you must close the SqlDataReader before
you can execute a new or previous command.

27

Reuse of SqlCommandReuse of SqlCommand

 Dim connection As New SqlConnection(_
 "Data Source=192.168.0.252;User ID=si;Password=sistemi;" & _
 "Initial Catalog=prova")
 connection.Open()
 Dim queryString As String = "INSERT INTO " & _
 "IMPIEGATI_MAT " & _
 "Values('Andrea', 'Bianchi', 'Rovigo', 31)"
 Dim command As SqlCommand = New SqlCommand(queryString,

connection)
 Dim recordsAffected As Int32 = command.ExecuteNonQuery()
 Console.WriteLine("{0} records affected", recordsAffected)
 command.CommandText = " INSERT INTO " & _
 "IMPIEGATI_MAT " & _
 "Values('Giovanni', 'Verdi', 'Bologna', 40)"
 recordsAffected = command.ExecuteNonQuery()
 Console.WriteLine("{0} records affected", recordsAffected)

28

DataSetDataSet

• The ADO.NET DataSet is a memory-resident
representation of data that provides a consistent
relational programming model regardless of the
source of the data it contains.

• A DataSet represents a complete set of data
including the tables that contain, order, and constrain
the data, as well as the relationships between the
tables.

• A DataSet can be populated with tables of data from
an existing relational data source using a
DataAdapter

29

DataSetDataSet

• A DataSet object is a collection of DataTable objects
• A DataTable object stores a table of data
• A DataSet object contains also information on the

relations among the tables and on the constraints.

30

Populating a DataSetPopulating a DataSet

• By means of a DataAdapter
• To create a DataAdapter, pass to the constructor a

string containing an SQL command and an open
connection.

• Alternatively, pass a Command object. This will be
stored in the SelectCommand property

• The Fill method of the DataAdapter is used to
populate a DataSet with the results of the
SelectCommand of the DataAdapter. Fill takes as
its arguments a DataSet to be populated, and a
DataTable object, or the name of the DataTable to
be filled with the rows returned from the
SelectCommand.

31

Populating a DataSetPopulating a DataSet

Dim connection As New SqlConnection(_

 "Data Source=192.168.0.252;User
ID=si;Password=sistemi;" & _

 "Initial Catalog=prova") connection.Open()

 Dim queryString As String = _

 "SELECT* FROM " & _

 "IMPIEGATI_MAT"

 Dim adapter As SqlDataAdapter = New SqlDataAdapter(_

 queryString, connection)

 Dim impiegati As DataSet = New DataSet

 adapter.Fill(impiegati, "IMPIEGATI_MAT")

32

Showing DataShowing Data

• To show data to the user, use a DataGridView
• If grdDemo is an object of type DataGridView

 grdDemo.DataSource = impiegati

 grdDemo.DataMember = "IMPIEGATI_MAT"

The first statement select the DataSource of the
DataGridView, the second selects the table to show

33

DataGridViewDataGridView

34

Editing Data in a DataSetEditing Data in a DataSet

• You have to choose a DataTable

• You can access the content of a DataTable by using the Rows
collection of the DataTable.

• ds.Tables(“TableName”) returns the DataTable object with name
“TableName” from the DataSet ds

• ds.Tables(“TableName”).Rows(0) returns the row number 0 from
“TableName”

• ds.Tables(“TableName”).Rows(0)(ColumnNumber)

• ds.Tables(“TableName”).Rows(0)(ColumnName)

• Return the value of the column with ColumnNumber or
ColumnName

35

Editing Data in a DatasetEditing Data in a Dataset

Dim row As DataRow = _

impiegati.Tables(“impiegati").Rows(0)

row(“Nome") = “Maria"

36

Adding a RowAdding a Row

• You can add new rows of data to a DataTable.
• To add a new row, declare a new variable as type

DataRow.
• A new DataRow object is returned when you call the

NewRow method of DataTable.
• The DataTable then creates the DataRow object

based on the structure of the table
• You then can manipulate the newly added row using

the column index or the column name
• After data is inserted into the new row, the Add

method is used to add the row to the
DataRowCollection.

37

Adding a RowAdding a Row

 Dim imp As DataTable = _

 impiegati.Tables("IMPIEGATI_MAT")

 Dim workRow As DataRow = imp.NewRow()

workRow(“ID”)=4

 workRow("NOME") = "Stefano"

workRow(2) = "Zucchi"

workRow(3) = "Roma"

workRow("ETA") = 25

imp.Rows.Add(workRow)

38

Deleting a RowDeleting a Row

• Use the Delete method of the DataRow object.
• The Delete method marks the row for deletion.

39

Deleting a RowDeleting a Row

Dim imp As DataTable = _

 impiegati.Tables("IMPIEGATI_MAT")

 For Each row As DataRow In imp.Rows

 If row(2) = "Verdi" Then

 row.Delete()

 End If

 Next

40

Changes to the DatabaseChanges to the Database

• Updating the DataSet does not update the database
from which the data was taken to populate it

41

RowStateRowState

• Each DataRow object has a RowState property that
you can examine to determine the current state of the
row.

• Moreover, a row can have various version
• For example, after you have made a modification to a

column in a row, the row will have a row state of
Modified, and two row versions: Current, which
contains the current row values, and Original, which
contains the row values before the column was
modified.

42

RowStateRowState

• Main row states:
– Unchanged: No changes have been made since

it was created by DataAdapter.Fill.
– Added: The row has been added to the table

– Modified: Some element of the row has been
changed

– Deleted: The row has been deleted from a table

43

Updating the Data SourceUpdating the Data Source

• The Update method of the DataAdapter is called to
resolve changes from a DataSet back to the data
source.

• The Update method, like the Fill method, takes as
arguments an instance of a DataSet, and an optional
DataTable object or DataTable name. The DataSet
instance is the DataSet that contains the changes
that have been made, and the DataTable identifies
the table from which to retrieve the changes.

44

Updating the Data SourceUpdating the Data Source

• When you call the Update method, the DataAdapter analyzes
the changes that have been made and executes the appropriate
command (INSERT, UPDATE, or DELETE).

• When the DataAdapter encounters a change to a DataRow, it
uses the InsertCommand, UpdateCommand, or
DeleteCommand to process the change.

• This allows you to maximize the performance of the ADO.NET
application by specifying command syntax at design-time and,
where possible, through the use of stored procedures.

• You must explicitly set the commands before calling Update.

45

Command GenerationCommand Generation

• If Update is called and the appropriate command
does not exist for a particular update (for example, no
DeleteCommand for deleted rows), an exception is
thrown

• If your DataTable maps to or is generated from a
single database table, you can take advantage of the
SqlCommandBuilder object to automatically
generate the DeleteCommand, InsertCommand,
and UpdateCommand of the DataAdapter.

• The table schema retrieved by the SelectCommand
property determines the syntax of the automatically
generated INSERT, UPDATE, and DELETE
statements

46

Command GenerationCommand Generation

• The SqlCommandBuilder must execute the
SelectCommand in order to return the metadata
necessary to construct the INSERT, UPDATE, and
DELETE SQL commands.

• As a result, an extra trip to the data source is
necessary, which can hinder performance. To
achieve optimal performance, specify your
commands explicitly rather than using the
SqlCommandBuilder

• The SelectCommand must also return at least one
primary key or unique column. If none are present, an
InvalidOperation exception is generated, and the
commands are not generated.

47

Command GenerationCommand Generation

 Dim connection As New SqlConnection(_
 "Data Source=192.168.0.252;User

ID=si;Password=sistemi;" & _
 "Initial Catalog=prova")
 connection.Open()
Dim queryString As String = _
 "SELECT * FROM " & _
 "IMPIEGATI_MAT"
Dim adapter As SqlDataAdapter = New

SqlDataAdapter(_
 queryString, connection)

48

Command GenerationCommand Generation

Dim builder As SqlCommandBuilder = New
SqlCommandBuilder(adapter)

 builder.QuotePrefix = "["

 builder.QuoteSuffix = "]"

Dim impiegati As DataSet = New DataSet

 adapter.Fill(impiegati, "IMPIEGATI_MAT")

 grdDemo.DataSource = impiegati

 grdDemo.DataMember = "IMPIEGATI_MAT"

49

Update CommandUpdate Command

• Updates rows at the data source for all rows in the
table with a RowState of Modified. Updates the
values of all columns except for columns that are not
updateable, such as identities or expressions.
Updates all rows where the column values at the data
source match the primary key column values of the
row, and where the remaining columns at the data
source match the original values of the row.

50

UpdateUpdate

 Dim row As DataRow = _

 impiegati.Tables("IMPIEGATI_MAT").Rows(0)

 row("Nome") = "Marianna"

' Without the SqlCommandBuilder, this line would fail.

 adapter.Update(impiegati, "IMPIEGATI_MAT")

51

Insert CommandInsert Command

• Inserts a row at the data source for all rows in the
table with a RowState of Added. Inserts values for all
columns that are updateable (but not columns such
as identities, expressions, or timestamps).

52

InsertInsert

 Dim imp As DataTable = _
 impiegati.Tables("IMPIEGATI_MAT")
 Dim workRow As DataRow = imp.NewRow()
 workRow("ID") = 5
 workRow("Nome") = "Andrea"
 workRow(2) = "Biagi"
 imp.Rows.Add(workRow)
 ' Without the SqlCommandBuilder, this line would fail.
 adapter.Update(impiegati, "IMPIEGATI_MAT")
 connection.Close()

53

Delete CommandDelete Command

• Deletes rows at the data source for all rows in the
table with a RowState of Deleted. Deletes all rows
where the column values match the primary key
column values of the row, and where the remaining
columns at the data source match the original values
of the row.

54

DeleteDelete

Dim imp As DataTable =
impiegati.Tables("IMPIEGATI_MAT")

 For Each row As DataRow In imp.Rows

 If row(1) = "Marianna" Then

 row.Delete()

 End If

 Next

 ' Without the SqlCommandBuilder, this line would
fail.

 adapter.Update(impiegati, "IMPIEGATI_MAT")

55

Optimistic Concurrency ControlOptimistic Concurrency Control

• The logic for generating commands automatically for UPDATE
and DELETE statements is based on optimistic concurrency--
that is, records are not locked for editing and can be modified by
other users or processes at any time.

• Because a record could have been modified after it was
returned from the SELECT statement, but before the UPDATE
or DELETE statement is issued, the automatically generated
UPDATE or DELETE statement contains a WHERE clause,
specifying that a row is only updated if it contains all original
values and has not been deleted from the data source. This is
done to avoid new data being overwritten.

• Where an automatically generated update attempts to update a
row that has been deleted or that does not contain the original
values found in the DataSet, the command does not affect any
records and a DBConcurrencyException is thrown.

56

Manually Setting the Update CommandsManually Setting the Update Commands

• To specify a different concurrency control, the update
commands can be manually set

57

TransactionsTransactions

• To perform a transaction

1. Call the BeginTransaction method of the SqlConnection
object to mark the start of the transaction. The
BeginTransaction method returns a reference to a
SqlTransaction object.

2. Assign the SqlTransaction object to the Transaction
property of the SqlCommand to be executed. If a
command is executed on a connection with an active
transaction, and the SqlTransaction object has not
been assigned to the Transaction property of the
Command object, an exception is thrown.

58

TransactionsTransactions

3. Execute the required commands.

4. Call the Commit method of the SqlTransaction
object to complete the transaction, or call the
Rollback method to abort the transaction. If the
connection is closed or disposed before either
the Commit or Rollback methods have been
executed, the transaction is rolled back.

59

TransactionsTransactions

Using connection As SqlConnection = New
SqlConnection(connectString)

 connection.Open()
 ' Start a local transaction.
 Dim sqlTran As SqlTransaction = connection.BeginTransaction()
 ' Enlist the command in the current transaction.
 Dim command As SqlCommand = connection.CreateCommand()
 command.Transaction = sqlTran
 Try
 command.CommandText = _
 "INSERT INTO Production.ScrapReason(Name)

VALUES('Wrong size')"
 command.ExecuteNonQuery()

60

TransactionsTransactions

command.CommandText = _

 "INSERT INTO Production.ScrapReason(Name)
VALUES('Wrong color')"

 command.ExecuteNonQuery()

 sqlTran.Commit()

 Console.WriteLine("Both records were written to database.")

 Catch ex As Exception

 Console.WriteLine(ex.Message)

 Console.WriteLine("Neither record was written to database.")

 sqlTran.Rollback()

 End Try

End Using

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

