
International Text inInternational Text in
SQL ServerSQL Server

2

International ConsiderationsInternational Considerations

• Aim: supporting the storage and manipulation of multilingual
data

• For example, consider a database of customers in North
America that must handle three major languages:
– Spanish names and addresses for Mexico
– French names and addresses for Quebec
– English names and addresses for the rest of Canada and

the United States
• Issues:

– Non-ASCII character representation
– Date and time
– Sorting and comparison of strings

3

LocaleLocale

• A locale is a set of information associated with a place or a
culture—the name and identifier of the spoken language, the
script used to write the language, and cultural conventions.

• SQL Server 2005 supports all 135 locales supported by
Windows XP.

• Among them are five Chinese language locales (Hong Kong
SAR, Macau SAR, the People's Republic of China, Singapore,
and Taiwan); thirteen English language locales (Australia,
Belize, Canada, Caribbean, Ireland, Jamaica, New Zealand,
Philippines, South Africa, Trinidad, the United Kingdom, the
United States of America, and Zimbabwe); and six French
language locales (Belgium, Canada, France, Luxembourg,
Monaco, and Switzerland).

4

Four different localesFour different locales

Locale English
(U.S.A.) French (France) Japanese United Arab

Emirates

Country/region United States France Japan United Arab
Emirates

Language English French Japanese Arabic

Written scripts Latin Latin Kana, kanji Arabic

Reading order Left to right Left to right Left to right Right to left

Windows-defined
code page 1252 1252 932 1256

Time format 1:00 pm 13:00 13:00 1:00 p

Calendar Gregorian Gregorian Gregorian
(Localized)

Gregorian
(Localized)

Default paper size U.S. Letter A4 A4 A4

Decimal separator . , . ,

List separator , ; , ;

Thousands
separator , space , ,

5

International Transact-SQLInternational Transact-SQL

• Guidelines for making Transact-SQL statements more portable
from one language to another:
– When you perform month and day-of-week comparisons and

operations, use the numeric date parts instead of the name
strings. Different language settings return different names for
the months and weekdays. For example,
DATENAME(MONTH,GETDATE()) returns May when the
language is set to U.S. English and returns Mai when the
language is set to German. Instead, use a function such as
DATEPART that uses the number of the month instead of
the name. Do not code any logic that depends on the
displayed names being from a specific language.

6

International Transact-SQLInternational Transact-SQL

– When you specify dates in comparisons or for
input to INSERT or UPDATE statements, use
constants that are interpreted the same way for all
language settings:

• ADO, OLE DB, and ODBC applications should
use the ODBC timestamp, date, and time
escape clauses of:
{ ts 'yyyy-mm-dd hh:mm:ss[.fff] '} such as:
{ ts '1998-09-24 10:02:20' }
{ d 'yyyy-mm-dd'} such as: { d '1998-09-24' }
{ t 'hh:mm:ss'} such as: { t '10:02:20'}

7

International Transact-SQLInternational Transact-SQL

• Applications that use other APIs, or Transact-SQL
scripts, stored procedures, and triggers should use the
CONVERT statement with an explicit style parameter for
all conversions between the datetime and smalldate
data types and character string data types. For example,
the following statement is interpreted in the same way for
all language or date format connection settings:

SELECT *

FROM AdventureWorks.Sales.SalesOrderHeader

WHERE OrderDate = CONVERT(DATETIME, '19960719',
101)

8

Non-ASCI character representationNon-ASCI character representation

• In order to represent characters outside the 128 that
are defined by ASCII there are two options
– Using code pages
– Using Unicode

9

Code PagesCode Pages

• A code page is an assigment of international characters to the
bit configurations of one or two bytes

• Most code pages require one byte, a few require two
• Code pages define the meaning of the bytes in char, varchar

and text
• Depending on the chosen code page, the strings in char,

varchar and text are interpreted differently
• Code page is the traditional IBM term used for a specific

character encoding table
• The term code page originated from IBMs EBCDIC mainframe

systems
• The IBM PC code pages are also known as the OEM code

pages or the windows ansi code pages

10

Code PagesCode Pages

• Each European language, such as German or
Spanish, has its own single-byte code page. The bit
patterns used to represent the Latin alphabet
characters A through Z are the same for all the code
pages, but the bit patterns used to represent
accented characters vary from one code page to the
next.

• Single-byte character sets cannot store all the
characters used by many languages. Some Asian
languages have thousands of characters; therefore,
they must use 2 bytes per character. Code pages
have also been defined around them. They actually
use a mixture of single-byte and double-byte widths

11

Code pages that SQL Server 2005 supports Code pages that SQL Server 2005 supports

Code page Description Number of bytes

1258 Vietnamese 1

1257 Baltic 1

1256 Arabic 1

1255 Hebrew 1

1254 Turkish 1

1253 Greek 1

1252 Latin1 (ANSI) 1

1251 Cyrillic 1

1250 Central European 1

950 Chinese (Traditional) 2

949 Korean 2

936 Chinese (Simplified) 2

932 Japanese 2

874 Thai 1

850 Multilingual (MS-DOS Latin1) 1

437 MS-DOS U.S. English 1

12

UnicodeUnicode

• The strings in nchar, nvarchar and ntext are
interpreted as Unicode characters

• The Unicode UCS-2 encoding scheme is used and
cannot be changed.

• Under this mechanism, all Unicode characters are
stored by using 2 bytes.

• Unicode string constants are specified in SQL scripts
with a leading N: N'A Unicode string'.

13

UnicodeUnicode

• Storing data in multiple languages within one
database is difficult to manage when you use only
character data and code pages.

• For example, if we have to store
– Spanish names and addresses for Mexico

– French names and addresses for Quebec

– English names and addresses for the rest of
Canada and the United States

• We must find a code page that will handle the
characters of all three languages

14

UnicodeUnicode

• You must also take care to guarantee the correct
translation of characters from one of the languages
when read by clients running a code page for another
language.

• The easiest way to manage character data in
international databases is to always use the Unicode
nchar, nvarchar, and ntext data types, instead of
their non-Unicode equivalents, char, varchar, and
text.

• Because Unicode is designed to cover all the
characters of all the languages of the world, there is
no need for different code pages to handle different
sets of characters.

15

UnicodeUnicode

• If all the applications that work with international
databases also use Unicode variables instead of non-
Unicode variables, character translations do not have
to be performed anywhere in the system. Clients will
see the same characters in the data as all other
clients.

• SQL Server 2005 stores all textual system catalog
data in columns having Unicode data types. The
names of database objects, such as tables, views,
and stored procedures, are stored in Unicode
columns. This enables applications to be developed
by using only Unicode, and helps avoid all issues with
code page conversions.

16

Unicode StandardUnicode Standard

• Unicode is an industry standard designed to allow
text and symbols from all languages to be
consistently represented and manipulated by
computers.

• SQL Server 2005 supports the Unicode Standard,
Version 3.2, published in 2002.

• The UCS-2 encoding contains most characters widely
used in businesses around the world.

• Differently from other Unicode encodings, the
character codes have a fixed length of two bytes

17

Unicode StandardUnicode Standard

• Unicode reserves 1,114,112 (= 220 + 216) code points, and
currently assigns characters to more than 96,000 of those code
points. The first 256 codes correspond with those of ISO 8859-
1, the most popular 8-bit character encoding in the Western
world. As a result, the first 128 characters are also identical to
ASCII.

• The Unicode code space for characters is divided into 17
planes, each with 65,536 (= 216) code points.

• The first plane (plane 0), the Basic Multilingual Plane (BMP), is
where most characters have been assigned so far. The BMP
contains characters for almost all modern languages, and a
large number of special characters. Most of the allocated code
points in the BMP are used to encode Chinese, Japanese, and
Korean (CJK) characters.

18

Basic Multilingual PlaneBasic Multilingual Plane

 Black = Latin scripts and symbols
 Light Blue = Linguistic scripts
 Blue = Other European scripts
 Orange = Middle Eastern and SW Asian

scripts
 Light Orange = African scripts
 Green = South Asian scripts
 Purple = Southeast Asian scripts
 Red = East Asian scripts
 Light Red = Unified CJK Han
 Yellow = Aboriginal scripts
 Magenta = Symbols
 Dark Grey = Diacritics
 Light Grey = UTF-16 surrogates and

private use
 Cyan = Miscellaneous characters
 White = Unused

Each numbered box represents 256

codepoints.

19

Unicode EncodingsUnicode Encodings

• Unicode defines two mapping methods:
– the UTF (Unicode Transformation Format) encodings
– the UCS (Universal Character Set) encodings

• The encodings include:
– UTF-7 — a relatively unpopular 7-bit encoding, often considered

obsolete
– UTF-8 — an 8-bit, variable-width encoding
– UCS-2 — a 16-bit, fixed-width encoding that only supports the

BMP
– UTF-16 — a 16-bit, variable-width encoding
– UCS-4 and UTF-32 — functionally identical 32-bit fixed-width

encodings
– UTF-EBCDIC — an unpopular encoding intended for EBCDIC

based mainframe systems

20

Storage Effects of Unicode Storage Effects of Unicode

• All non-East Asian languages and the Thai language store non-
Unicode characters in single bytes. Therefore, storing these
languages as Unicode uses two times the space that is used
specifying a non-Unicode code page.

• On the other hand, the non-Unicode code pages of many other
Asian languages specify character storage in double-byte
character sets (DBCS). Therefore, for these languages, there is
almost no difference in storage between non-Unicode and
Unicode.

• The non-Unicode code pages that specify character data
storage in double-byte character sets are: Simplified Chinese,
Traditional Chinese, Japanese and Korean.

21

Unicode Best PracticesUnicode Best Practices

• Storing character data in a specific code page may
make sense if both of the following are true:

– Conserving storage space is an issue, because of
hardware limitations. Or, you are performing
frequent sorts of lots of data, and testing indicates
that a Unicode storage mechanism severely affects
performance.

– You are sure the code pages of all clients
accessing this data match yours, and that this
situation will not unexpectedly change.

22

CollationsCollations

• Collations specify the rules for how strings of
character data are sorted and compared, based on
the norms of particular languages and locales.

• For example, in an ORDER BY clause, an English
speaker would expect the character string 'Chiapas'
to come before 'Colima' in ascending order. But a
Spanish speaker in Mexico might expect words
beginning with 'Ch' to appear at the end of a list of
words starting with 'C'.

• The Latin1_General collation will sort 'Chiapas'
before 'Colima' in an ORDER BY ASC clause, while
the Traditional_Spanish collation will sort 'Chiapas'
after 'Colima'.

23

CollationsCollations

• When a collation is specified for non-Unicode
character data, such as char, varchar, and text data,
a particular code page is associated with the
collation. For example, if a char column in a table is
defined with the Latin1_General collation, the data in
that column is interpreted and displayed by SQL
Server using the code points of the 1252 code page.

• Collations specified for Unicode data, such as nchar,
nvarchar, and ntext, do not have specific code
pages associated with them, because Unicode data
handles virtually all characters of all the world's
languages.

24

CollationsCollations

• SQL Server 2005 provides two groups of collations:
Windows collations and SQL collations.

• Windows collations are collations defined for SQL
Server to support Windows locales.

• SQL collations are for backward compatibility only
• By specifying a Windows collation for SQL Server,

the instance of SQL Server uses the same code
pages and sorting and comparison rules as an
application that is running on a computer for which
you have specified the associated Windows locale.
For example, the French Windows collation for SQL
Server matches the collation attributes of the French
locale for Windows.

25

Windows CollationsWindows Collations

• There are more Windows locales than there are SQL Server
Windows collations.

• The names of Windows locales are based on a language and
territory, for example, French (Canada). However, several
languages share common alphabets and rules for sorting and
comparing characters. For example, 33 Windows locales,
including all the Portuguese and English Windows locales, use
the Latin1 code page (1252) and follow a common set of rules
for sorting and comparing characters. The SQL Server Windows
collation, based on the Latin1_General code page and sorting
rules, supports all 33 of these Windows locales

26

CollationsCollations

• SQL Server 2005 collations can be specified at any level:
– Instance, Database, Column, Expression

• When you install an instance of SQL Server 2005, you specify
the default collation for that instance.

• Each time that you create a database, you can specify the
default collation used for the database. If you do not specify a
collation, the default collation for the database is the default
collation for the instance.

• Whenever you define a character column, variable, or
parameter, you can specify the collation of the object. If you do
not specify a collation, the object is created by using the default
collation of the database.

27

Windows Collations NamesWindows Collations Names

<Windows_collation_name>::=
CollationDesignator_<ComparisonStyle>

<ComparisonStyle>::=
 CaseSensitivity_AccentSensitivity [_KanatypeSensitive
[_WidthSensitive]] | { _BIN | _BIN2 }

• CollationDesignator :Specifies the base collation rules used by the
Windows collation. The base collation rules cover the following:

– The alphabet or language whose sorting rules are applied when
dictionary sorting is specified

– The code page used to store non-Unicode character data.

– Some examples are:

• Latin1_General, French, Turkish

28

Windows Collations NamesWindows Collations Names

• CaseSensitivity
– CI specifies case-insensitive, CS specifies case-sensitive.

• AccentSensitivity
– AI specifies accent-insensitive, AS specifies accent-

sensitive.
• KanatypeSensitive

– Omitted specifies kanatype-insensitive, KS specifies
kanatype-sensitive.

• WidthSensitivity
– Omitted specifies width-insensitive, WS specifies width-

sensitive.
• BIN, BIN2: Specify a binary sort order

29

Windows Collations Names ExamplesWindows Collations Names Examples

• Latin1_General_CI_AS : Collation uses the Latin1
General dictionary sorting rules, code page 1252. Is
case-insensitive and accent-sensitive.

• Estonian_CS_AS : Collation uses the Estonian
dictionary sorting rules, code page 1257. Is case-
sensitive and accent-sensitive.

• Latin1_General_BIN : Collation uses code page 1252
and binary sorting rules. The Latin1 General dictionary
sorting rules are ignored.

30

SortingSorting

• Kana-sensitive (_KS): Distinguishes between the two
types of Japanese kana characters: Hiragana and
Katakana. If this option is not selected, SQL Server
considers Hiragana and Katakana characters to be
equal for sorting purposes.

• Width-sensitive (_WS): Distinguishes between a
single-byte character and the same character when
represented as a double-byte character. If this option
is not selected, SQL Server considers the single-byte
and double-byte representation of the same
character to be identical for sorting purposes.

31

SortingSorting

• For Windows collations, the nchar, nvarchar, and
ntext Unicode data types have the same sorting
behavior as char, varchar, and text non-Unicode
data types.

• For binary collations on Unicode data types, the
locale is not considered in data sorts. For example,
Latin_1_General_BIN and Japanese_BIN yield
identical sorting results when used on Unicode data.

32

Some Windows CollationsSome Windows Collations

Windows System Locale LCID (Locale ID) Default Collation Code page

Chinese (PRC) 0x804 Chinese_PRC_CI_AS 936

Chinese (PRC) 0x20804 Chinese_PRC_Stroke_CI_AS 936

Dutch (Belgium) 0x813 Latin1_General_CI_AS 1252

Dutch (Netherlands) 0x413 Latin1_General_CI_AS 1252

English (India) 0x4009 Latin1_General_CI_AS 1252

English (United Kingdom) 0x809 Latin1_General_CI_AS 1252

English (United States) 0x409 SQL_Latin1_General_CP1_CI_AS 1252

French (Belgium) 0x80c French_CI_AS 1252

French (France) 0x40c French_CI_AS 1252

German (Germany) 0x407 Latin1_General_CI_AS 1252

Greek 0x408 Greek_CI_AS 1253

Gujarati (India) 0x447 Indic_Genelal_90 Unicode

Italian (Italy) 0x410 Latin1_General_CI_AS 1252

Japanese 0x411 Japanese_CI_AS 932

Japanese (Unicode) 0x10411 Japanese_Unicode 932

Korean (Extended Wansung) 0x0412 Korean_Wansung_CI_AS 949

Spanish (Mexico) 0x80a Modern_Spanish_CI_AS 1252

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

