
Link Analysis Algorithms
Page Rank

Source: http://infolab.stanford.edu/~ullman/mining/2009/index.html
Anand Rajaraman, Jeffrey D. Ullman

http://infolab.stanford.edu/~ullman/mining/2009/index.html

Ranking web pages

 Web pages are not equally “important”
 www.joe-schmoe.com v www.stanford.edu

 Inlinks as votes
 www.stanford.edu has 23,400 inlinks
 www.joe-schmoe.com has 1 inlink

 Are all inlinks equal?
 Recursive question!

http://www.stanford.edu/
http://www.joe-schmoe.com/

Simple recursive formulation

 Each link’s vote is proportional to the
importance of its source page

 If page P with importance x has n
outlinks, each link gets x/n votes

 Page P’s own importance is the sum of
the votes on its inlinks

Simple “flow” model

The web in 1839

Yahoo

M’soft Amazon

y

a m

y/2

y/2

a/2

a/2

m

y = y /2 + a /2
a = y /2 + m
m = a /2

Solving the flow equations

 3 equations, 3 unknowns, no constants
 No unique solution
 All solutions equivalent modulo scale factor

 Additional constraint forces uniqueness
 y+a+m = 1
 y = 2/5, a = 2/5, m = 1/5

 Gaussian elimination method works for
small examples, but we need a better
method for large graphs

Matrix formulation
 Matrix M has one row and one column for each

web page
 Suppose page j has n outlinks

 If j ! i, then Mij=1/n

 Else Mij=0
 M is a column stochastic matrix

 Columns sum to 1
 Suppose r is a vector with one entry per web

page
 ri is the importance score of page i
 Call it the rank vector
 |r| = 1

Example
Suppose page j links to 3 pages, including i

i

j

M r r

=
i

1/3

Eigenvector formulation

 The flow equations can be written
r = Mr

 So the rank vector is an eigenvector of
the stochastic web matrix
 In fact, its first or principal eigenvector, with

corresponding eigenvalue 1

Example

Yahoo

M’soft Amazon

y 1/2 1/2 0
a 1/2 0 1
m 0 1/2 0

y a m

y = y /2 + a /2
a = y /2 + m
m = a /2

r = Mr

 y 1/2 1/2 0 y
 a = 1/2 0 1 a
 m 0 1/2 0 m

Power Iteration method

 Simple iterative scheme (aka relaxation)
 Suppose there are N web pages
 Initialize: r0 = [1/N,….,1/N]T
 Iterate: rk+1 = Mrk

 Stop when |rk+1 - rk|1 < ε
 |x|1 = ∑1≤i≤N|xi| is the L1 norm
 Can use any other vector norm e.g.,

Euclidean

Power Iteration Example

Yahoo

M’soft Amazon

y 1/2 1/2 0
a 1/2 0 1
m 0 1/2 0

y a m

y
a =
m

1/3
1/3
1/3

1/3
1/2
1/6

5/12
 1/3
 1/4

3/8
11/24
1/6

2/5
2/5
1/5

. . .

Random Walk Interpretation

 Imagine a random web surfer
 At any time t, surfer is on some page P
 At time t+1, the surfer follows an outlink

from P uniformly at random
 Ends up on some page Q linked from P
 Process repeats indefinitely

 Let p(t) be a vector whose ith
component is the probability that the
surfer is at page i at time t
 p(t) is a probability distribution on pages

The stationary distribution

 Where is the surfer at time t+1?
 Follows a link uniformly at random
 p(t+1) = Mp(t)

 Suppose the random walk reaches a
state such that p(t+1) = Mp(t) = p(t)
 Then p(t) is called a stationary distribution

for the random walk
 Our rank vector r satisfies r = Mr
 So it is a stationary distribution for the

random surfer

Existence and Uniqueness

 A central result from the theory of random
walks (aka Markov processes):

 For graphs that satisfy certain

conditions, the stationary distribution is
unique and eventually will be reached no
matter what the initial probability
distribution at time t = 0.

Spider traps

 A group of pages is a spider trap if there
are no links from within the group to
outside the group
 Random surfer gets trapped

 Spider traps violate the conditions
needed for the random walk theorem

Microsoft becomes a spider trap

Yahoo

M’soft Amazon

y 1/2 1/2 0
a 1/2 0 0
m 0 1/2 1

y a m

y
a =
m

1
1
1

1
1/2
3/2

3/4
1/2
7/4

5/8
3/8
2

0
0
3

. . .

Random teleports

 The Google solution for spider traps
 At each time step, the random surfer

has two options:
 With probability β, follow a link at random
 With probability 1-β, jump to some page

uniformly at random
 Common values for β are in the range 0.8 to

0.9
 Surfer will teleport out of spider trap

within a few time steps

Random teleports (β = 0.8)

Yahoo

M’soft Amazon

1/2

1/2

0.8*1/2

0.8*1/2

0.2*1/3

0.2*1/3

0.2*1/3

y 1/2
a 1/2
m 0

y
 1/2
 1/2
 0

y

0.8*
 1/3
 1/3
 1/3

y

+ 0.2*

 1/2 1/2 0
 1/2 0 0
 0 1/2 1

 1/3 1/3 1/3
 1/3 1/3 1/3
 1/3 1/3 1/3

y 7/15 7/15 1/15
a 7/15 1/15 1/15
m 1/15 7/15 13/15

0.8 + 0.2

Random teleports (β = 0.8)

Yahoo

M’soft Amazon

 1/2 1/2 0
 1/2 0 0
 0 1/2 1

 1/3 1/3 1/3
 1/3 1/3 1/3
 1/3 1/3 1/3

y 7/15 7/15 1/15
a 7/15 1/15 1/15
m 1/15 7/15 13/15

0.8 + 0.2

y
a =
m

1
1
1

1.00
0.60
1.40

0.84
0.60
1.56

0.776
0.536
1.688

 7/11
 5/11
21/11

. . .

Matrix formulation

 Suppose there are N pages
 Consider a page j, with set of outlinks O(j)
 We have Mij = 1/|O(j)| when j!i and Mij = 0

otherwise
 The random teleport is equivalent to
 adding a teleport link from j to every other

page with probability (1-β)/N
 reducing the probability of following each

outlink from 1/|O(j)| to β/|O(j)|
 Equivalent: tax each page a fraction (1-β)

of its score and redistribute evenly

Page Rank
 Construct the N£N matrix A as follows
 Aij = βMij + (1-β)/N

 Verify that A is a stochastic matrix
 The page rank vector r is the principal

eigenvector of this matrix
 satisfying r = Ar

 Equivalently, r is the stationary
distribution of the random walk with
teleports

Dead ends

 Pages with no outlinks are “dead ends”
for the random surfer
 Nowhere to go on next step

Microsoft becomes a dead end

Yahoo

M’soft Amazon

y
a =
m

1
1
1

1
0.6
0.6

0.787
0.547
0.387

0.648
0.430
0.333

0
0
0

. . .

 1/2 1/2 0
 1/2 0 0
 0 1/2 0

 1/3 1/3 1/3
 1/3 1/3 1/3
 1/3 1/3 1/3

y 7/15 7/15 1/15
a 7/15 1/15 1/15
m 1/15 7/15 1/15

0.8 + 0.2

Non-
stochastic!

Dealing with dead-ends

 Teleport
 Follow random teleport links with probability

1.0 from dead-ends
 Adjust matrix accordingly

 Prune and propagate
 Preprocess the graph to eliminate dead-ends
 Might require multiple passes
 Compute page rank on reduced graph
 Approximate values for deadends by

propagating values from reduced graph

Computing page rank

 Key step is matrix-vector multiplication
 rnew = Arold

 Easy if we have enough main memory to
hold A, rold, rnew

 Say N = 1 billion pages
 We need 4 bytes for each entry (say)
 2 billion entries for vectors, approx 8GB
 Matrix A has N2 entries
 1018 is a large number!

Rearranging the equation

r = Ar, where
Aij = βMij + (1-β)/N
ri = ∑1≤j≤N Aij rj
ri = ∑1≤j≤N [βMij + (1-β)/N] rj

 = β ∑1≤j≤N Mij rj + (1-β)/N ∑1≤j≤N rj
 = β ∑1≤j≤N Mij rj + (1-β)/N, since |r| = 1
r = βMr + [(1-β)/N]N
where [x]N is an N-vector with all entries x

Sparse matrix formulation
 We can rearrange the page rank equation:

 r = βMr + [(1-β)/N]N
 [(1-β)/N]N is an N-vector with all entries (1-β)/N

 M is a sparse matrix!
 10 links per node, approx 10N entries

 So in each iteration, we need to:
 Compute rnew = βMrold
 Add a constant value (1-β)/N to each entry in rnew

Sparse matrix encoding

 Encode sparse matrix using only
nonzero entries
 Space proportional roughly to number of

links
 say 10N, or 4*10*1 billion = 40GB
 still won’t fit in memory, but will fit on disk

0 3 1, 5, 7

1 5 17, 64, 113, 117, 245

2 2 13, 23

source
node degree destination nodes

Basic Algorithm
 Assume we have enough RAM to fit rnew, plus

some working memory
 Store rold and matrix M on disk

Basic Algorithm:
 Initialize: rold = [1/N]N
 Iterate:

 Update: Perform a sequential scan of M and rold to
update rnew

 Write out rnew to disk as rold for next iteration
 Every few iterations, compute |rnew-rold| and stop if it

is below threshold
 Need to read in both vectors into memory

Update step

0 3 1, 5, 6

1 4 17, 64, 113, 117
2 2 13, 23

src degree destination
0
1
2
3
4
5
6

0
1
2
3
4
5
6

rnew rold

Initialize all entries of rnew to (1-β)/N
For each page p (out-degree n):
 Read into memory: p, n, dest1,…,destn, rold(p)
 for j = 1..n:
 rnew(destj) += β*rold(p)/n

Analysis

 In each iteration, we have to:
 Read rold and M
 Write rnew back to disk
 IO Cost = 2|r| + |M|

 What if we had enough memory to fit
both rnew and rold?

 What if we could not even fit rnew in
memory?
 10 billion pages

Block-based update algorithm

0 4 0, 1, 3, 5

1 2 0, 5
2 2 3, 4

src degree destination
0
1

2
3

4
5

0
1
2
3
4
5

rnew rold

Analysis of Block Update

 Similar to nested-loop join in databases
 Break rnew into k blocks that fit in memory
 Scan M and rold once for each block

 k scans of M and rold
 k(|M| + |r|) + |r| = k|M| + (k+1)|r|

 Can we do better?
 Hint: M is much bigger than r (approx

10-20x), so we must avoid reading it k
times per iteration

Block-Stripe Update algorithm

0 4 0, 1

1 2 0
2 2 1

src degree destination

0
1

2
3

4
5

0
1
2
3
4
5

rnew

rold

0 4 5

1 2 5
2 2 4

0 4 3
2 2 3

Block-Stripe Analysis

 Break M into stripes
 Each stripe contains only destination nodes

in the corresponding block of rnew
 Some additional overhead per stripe
 But usually worth it

 Cost per iteration
 |M|(1+ε) + (k+1)|r|

	Diapositiva numero 1
	Ranking web pages
	Simple recursive formulation
	Simple “flow” model
	Solving the flow equations
	Matrix formulation
	Example
	Eigenvector formulation
	Example
	Power Iteration method
	Power Iteration Example
	Random Walk Interpretation
	The stationary distribution
	Existence and Uniqueness
	Spider traps
	Microsoft becomes a spider trap
	Random teleports
	Random teleports ( = 0.8)
	Random teleports ( = 0.8)
	Matrix formulation
	Page Rank
	Dead ends
	Microsoft becomes a dead end
	Dealing with dead-ends
	Computing page rank
	Rearranging the equation
	Sparse matrix formulation
	Sparse matrix encoding
	Basic Algorithm
	Update step
	Analysis
	Block-based update algorithm
	Analysis of Block Update
	Block-Stripe Update algorithm
	Block-Stripe Analysis

