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Ranking web pages 

 Web pages are not equally “important” 
 www.joe-schmoe.com v www.stanford.edu 

 Inlinks as votes 
 www.stanford.edu has 23,400 inlinks 
 www.joe-schmoe.com has 1 inlink 

 Are all inlinks equal? 
 Recursive question!  

http://www.stanford.edu/
http://www.joe-schmoe.com/


Simple recursive formulation 

 Each link’s vote is proportional to the 
importance of its source page 

 If page P with importance x has n 
outlinks, each link gets x/n votes 

 Page P’s own importance is the sum of 
the votes on its inlinks 



Simple “flow” model 

The web in 1839 
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Solving the flow equations 

 3 equations, 3 unknowns, no constants 
 No unique solution 
 All solutions equivalent modulo scale factor 

 Additional constraint forces uniqueness 
 y+a+m = 1 
 y = 2/5, a = 2/5, m = 1/5 

 Gaussian elimination method works for 
small examples, but we need a better 
method for large graphs 



Matrix formulation 
 Matrix M has one row and one column for each 

web page 
 Suppose page j has n outlinks 

 If j ! i, then Mij=1/n 

 Else Mij=0 
 M is a column stochastic matrix 

 Columns sum to 1 
 Suppose r is a vector with one entry per web 

page 
 ri is the importance score of page i 
 Call it the rank vector 
 |r| = 1 

 
 
 
 



Example 
Suppose page j  links to 3 pages, including i 
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Eigenvector formulation 

 The flow equations can be written  
r = Mr 

 So the rank vector is an eigenvector of 
the stochastic web matrix 
 In fact, its first or principal eigenvector, with 

corresponding eigenvalue 1 



Example 
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Power Iteration method 

 Simple iterative scheme (aka relaxation) 
 Suppose there are N web pages 
 Initialize: r0 = [1/N,….,1/N]T 
 Iterate: rk+1 = Mrk 

 Stop when |rk+1 - rk|1 < ε 
 |x|1 = ∑1≤i≤N|xi| is the L1 norm  
 Can use any other vector norm e.g., 

Euclidean 
 



Power Iteration Example 
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Random Walk Interpretation 

 Imagine a random web surfer 
 At any time t, surfer is on some page P 
 At time t+1, the surfer follows an outlink 

from P uniformly at random 
 Ends up on some page Q linked from P 
 Process repeats indefinitely 

 Let p(t) be a vector whose ith 
component is the probability that the 
surfer is at page i at time t 
 p(t) is a probability distribution on pages 



The stationary distribution 

 Where is the surfer at time t+1? 
 Follows a link uniformly at random 
 p(t+1) = Mp(t) 

 Suppose the random walk reaches a 
state such that p(t+1) = Mp(t) = p(t) 
 Then p(t) is called a stationary distribution 

for the random walk 
 Our rank vector r satisfies r = Mr 
 So it is a stationary distribution for the 

random surfer 
 
 



Existence and Uniqueness 

 A central result from the theory of random 
walks (aka Markov processes): 

 
 For graphs that satisfy certain 

conditions, the stationary distribution is 
unique and eventually will be reached no 
matter what the initial probability 
distribution at time t = 0. 



Spider traps 

 A group of pages is a spider trap if there 
are no links from within the group to 
outside the group 
 Random surfer gets trapped 

 Spider traps violate the conditions 
needed for the random walk theorem 



Microsoft becomes a spider trap 
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Random teleports 

 The Google solution for spider traps 
 At each time step, the random surfer 

has two options: 
 With probability β, follow a link at random 
 With probability 1-β, jump to some page 

uniformly at random 
 Common values for β are in the range 0.8 to 

0.9 
 Surfer will teleport out of spider trap 

within a few time steps 



Random teleports (β = 0.8) 
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Random teleports (β = 0.8) 
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Matrix formulation 

 Suppose there are N pages 
 Consider a page j, with set of outlinks O(j) 
 We have Mij = 1/|O(j)| when j!i and Mij = 0 

otherwise 
 The random teleport is equivalent to 
 adding a teleport link from j to every other 

page with probability (1-β)/N 
 reducing the probability of following each 

outlink from 1/|O(j)| to β/|O(j)| 
 Equivalent: tax each page a fraction (1-β) 

of its score and redistribute evenly  



Page Rank 
 Construct the N£N matrix A as follows 
 Aij = βMij + (1-β)/N 

 Verify that A is a stochastic matrix 
 The page rank vector r is the principal 

eigenvector of this matrix 
 satisfying r = Ar 

 Equivalently, r is the stationary 
distribution of the random walk with 
teleports 



Dead ends 

 Pages with no outlinks are “dead ends” 
for the random surfer 
 Nowhere to go on next step 

 
 



Microsoft becomes a dead end 
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Dealing with dead-ends 

 Teleport 
 Follow random teleport links with probability 

1.0 from dead-ends 
 Adjust matrix accordingly 

 Prune and propagate 
 Preprocess the graph to eliminate dead-ends  
 Might require multiple passes 
 Compute page rank on reduced graph 
 Approximate values for deadends by 

propagating values from reduced graph 
 

 



Computing page rank 

 Key step is matrix-vector multiplication 
 rnew = Arold 

 Easy if we have enough main memory to 
hold A, rold, rnew 

 Say N = 1 billion pages 
 We need 4 bytes for each entry (say) 
 2 billion entries for vectors, approx 8GB 
 Matrix A has N2 entries 
 1018 is a large number! 



Rearranging the equation 

r = Ar, where 
Aij = βMij + (1-β)/N 
ri = ∑1≤j≤N Aij rj 
ri = ∑1≤j≤N [βMij + (1-β)/N] rj 

    = β ∑1≤j≤N Mij rj + (1-β)/N ∑1≤j≤N rj  
   = β ∑1≤j≤N Mij rj + (1-β)/N, since |r| = 1 
r = βMr + [(1-β)/N]N 
where [x]N is an N-vector with all entries x 

 



Sparse matrix formulation 
 We can rearrange the page rank equation: 

 r = βMr + [(1-β)/N]N 
 [(1-β)/N]N is an N-vector with all entries (1-β)/N 

 M is a sparse matrix! 
 10 links per node, approx 10N entries 

 So in each iteration, we need to: 
 Compute rnew = βMrold 
 Add a constant value (1-β)/N to each entry in rnew 
 

 
 



Sparse matrix encoding 

 Encode sparse matrix using only 
nonzero entries 
 Space proportional roughly to number of 

links 
 say 10N, or 4*10*1 billion = 40GB 
 still won’t fit in memory, but will fit on disk 

0 3 1, 5, 7 

1 5 17, 64, 113, 117, 245 

2 2 13, 23 

source 
node degree destination nodes 



Basic Algorithm  
 Assume we have enough RAM to fit rnew, plus 

some working memory 
 Store rold and matrix M on disk 

 
Basic Algorithm: 
 Initialize: rold = [1/N]N 
 Iterate: 

 Update: Perform a sequential scan of M and rold to 
update rnew 

 Write out rnew to disk as rold for next iteration 
 Every few iterations, compute |rnew-rold| and stop if it 

is below threshold 
 Need to read in both vectors into memory 

 
 



Update step 
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Initialize all entries of rnew to (1-β)/N 
For each page p (out-degree n): 
 Read into memory: p, n, dest1,…,destn, rold(p) 
 for j = 1..n: 
  rnew(destj) += β*rold(p)/n 
  



Analysis 

 In each iteration, we have to: 
 Read rold and M 
 Write rnew back to disk 
 IO Cost = 2|r| + |M| 

 What if we had enough memory to fit 
both rnew and rold? 

 What if we could not even fit rnew in 
memory? 
 10 billion pages 



Block-based update algorithm 
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Analysis of Block Update 

 Similar to nested-loop join in databases 
 Break rnew into k blocks that fit in memory 
 Scan M and rold once for each block 

 k scans of M and rold 
 k(|M| + |r|) + |r| = k|M| + (k+1)|r| 

 Can we do better? 
 Hint: M is much bigger than r (approx 

10-20x), so we must avoid reading it k 
times per iteration 



Block-Stripe Update algorithm 
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Block-Stripe Analysis 

 Break M into stripes 
 Each stripe contains only destination nodes 

in the corresponding block of rnew 
 Some additional overhead per stripe 
 But usually worth it 

 Cost per iteration 
 |M|(1+ε) + (k+1)|r| 
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