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NoSQL 

• The term NoSQL was first used in 1998 for a 
relational database that omitted the use of SQL 

• The term was picked up again in 2009 and used for 
conferences of advocates of non-relational databases 

• Class of non-relational data storage systems 
• Usually do not require a fixed table schema nor do 

they use the concept of joins 
• All NoSQL offerings relax one or more of the ACID 

properties 
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NoSQL 

• Stands for Not Only SQL 
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NoSQL 

• “NoSQLers came to share how they had overthrown 
the tyranny of slow, expensive relational databases in 
favor of more efficient and cheaper ways of 
managing data.” 

Computerworld magazine 
• Web 2.0 startups have begun their business without 

Oracle and even without MySQL  
• Instead, they built their own datastores influenced by 

Amazon’s Dynamo and Google’s Bigtable in order to 
store and process huge amounts of data like they 
appear e.g. in social community or cloud computing 
applications 
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NoSQL 

• Most of these datastores became open source 
software. 

• For example, Cassandra originally developed for a 
new search feature by Facebook is now part of the 
Apache Software Project. 
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NoSQL features 

• Avoidance of Unneeded Complexity: Relational 
databases provide a variety of features and strict 
data consistency. But this rich feature set and the 
ACID properties implemented by RDBMSs might be 
more than necessary for particular applications and 
use cases. 

• High Throughput: Some NoSQL databases provide 
a significantly higher data throughput than traditional 
RDBMSs 

• Horizontal Scalability and Running on Commodity 
Hardware: Machines can be added and removed (or 
crash) without causing the same operational efforts to 
perform sharding in RDBMS cluster-solutions 
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NoSQL features 

• Avoidance of Expensive Object-Relational 
Mapping:  Most of the NoSQL databases are 
designed to store data structures that are either 
simple or more similar to the ones of object-oriented 
programming languages compared to relational data 
structures 

• Complexity and Cost of Setting up Database 
Clusters 

• Compromising Reliability for Better Performance 
• The Current “One size fit’s it all” Databases 

Thinking Was and Is Wrong 
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NoSQL features 

• The Myth of Effortless Distribution and 
Partitioning of Centralized Data Models: data 
models originally designed with a single database in 
mind often cannot easily be partitioned and 
distributed among database servers 

• Movements in Programming Languages and 
Development Frameworks: provide abstractions for 
database access trying to hide the use of SQL and 
relational databases 
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NoSQL Features 

• Requirements of Cloud Computing: two major 
requirements of datastores in cloud computing 
environments 

1. High until almost ultimate scalability—especially in 
the horizontal direction 

2. Low administration overhead 
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NoSQL Features 

• The RDBMS plus Caching-Layer 
Pattern/Workaround vs. Systems Built from 
Scratch with Scalability in Mind: Shard MySQL to 
handle high write loads, cache objects in memcached 
to handle high read loads, and then write a lot of glue 
code to make it all work together. 

• Memchached: partitioned—though transient— in-
memory database  

• It replicates most frequently requested parts of a 
database to main memory, rapidly deliver this data to 
clients and therefore disburden database servers 
significantly. 
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Main memory 

• As—compared to the 1970s—enormous amounts of 
main memory have become cheap and available 

• “The overwhelming majority of OLTP databases are 
less than 1 Tbyte in size and growing [. . . ] quite 
slowly”  

• Such databases are “capable of main memory 
deployment now or in near future”. Stonebraker et al.  

• The OLTP market a main memory market even today 
or in near future.  
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CAP Theorem 

• Consistency meaning if and how a system is in a 
consistent state after the execution of an operation.  

• A distributed system is typically considered to be 
consistent if after an update operation of some writer 
all readers see his updates in some shared data 
source.  

• Availability and especially high availability meaning 
that a system is designed and implemented in a way 
that allows it to continue operation (i.e. allowing read 
and write operations) if e.g. nodes in a cluster crash 
or some hardware or software parts are down due to 
upgrades. 
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CAP Theorem 

• Partition Tolerance understood as the ability of the 
system to continue operation in the presence of 
network partitions. These occur if two or more 
“islands” of network nodes arise which (temporarily or 
permanently) cannot connect to each other 
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CAP Theorem 

It is impossible for a distributed computer system to 
simultaneously provide all three of the following 
guarantees 
• Consistency: all nodes see the same data at the 

same time 
• Availability: every request receives a response about 

whether it was successful or failed 
• Partition Tolerance: the system continues to operate 

despite arbitrary message loss 
You have to choose only two. In almost all cases, 
you would choose availability over consistency 
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CAP Theorem 

16 



ACID vs. BASE 

• The internet with its wikis, blogs, social networks etc. 
creates an enormous and constantly growing amount 
of data needing to be processed, analyzed and 
delivered.  

• Companies, organizations and individuals offering 
applications or services in this field have to determine 
their individual requirements regarding performance, 
reliability, availability, consistency and durability 

• For a growing number of applications and use-cases 
(including web applications, especially in large and 
ultra-large scale, and even in the e-commerce 
sector), availability and partition tolerance are more 
important than strict consistency. 
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BASE 

• The BASE approach forfeits the ACID properties of 
consistency and isolation in favor of “availability, 
graceful degradation, and performance” 

• The acronym BASE is composed of the following 
characteristics: 
– Basically available 
– Soft-state 
– Eventual consistency 

• An application works basically all the time (basically 
available), does not have to be consistent all the time 
(soft-state) but will be in some known state eventually 
(eventual consistency) 
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Strict Consistency 

• All read operations must return data from the latest 
completed write operation, regardless of which 
replica the operations went to 

• This implies that either read and write operations for 
a given dataset have to be executed on the same 
node or that strict consistency is assured by a 
distributed transaction protocol (like two-phase-
commit or Paxos). 

• As we have seen above, such a strict consistency 
cannot be achieved together with availability and 
partition tolerance according to the CAP-theorem 
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Eventual Consistency 

• Readers will see writes, as time goes on 
• In a steady state, the system will eventually return the 

last written value 
• Clients therefore may face an inconsistent state of 

data as updates are in progress.  
• For instance, in a replicated database updates may 

go to one node which replicates the latest version to 
all other nodes that contain a replica of the modified 
dataset so that the replica nodes eventually will have 
the latest version. 
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Eventual Consistency 

• An eventually consistent system may provide more 
differentiated, additional guarantees to its clients 

• Read Your Own Writes (RYOW) Consistency 
signifies that a client sees his updates immediately 
after they have been issued and completed, 
regardless if he wrote to one server and in the 
following reads from different servers.  

• Updates by other clients are not visible to him 
instantly 
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Versioning of Datasets in Distributed 
Scenarios 

• If datasets are distributed among nodes, they can be 
read and altered on each node and no strict 
consistency is ensured by distributed transaction 
protocols 

• Questions arise on how “concurrent” modifications 
and versions are processed and to which values a 
dataset will eventually converge to. 
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Solutions to versioning 

• Timestamps seem to be an obvious solution for 
developing a chronological order. However, 
timestamps “rely on synchronized clocks and don’t 
capture causality” 

• Optimistic Locking implies that a unique counter or 
clock value is saved for each piece of data. When a 
client tries to update a dataset it has to provide the 
counter/clock-value of the revision it likes to update 

• Vector Clocks are an alternative approach to 
capture order and allow reasoning between updates 
in a distributed system 
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Solutions to versioning 

• Multiversion Storage means to store a timestamp 
for each table cell. These timestamps “don’t 
necessarily need to correspond to real life”, but can 
also be some artificial values that can be brought into 
a definite order.  

• For a given row multiple versions can exist 
concurrently.  

• Besides the most recent version a reader may also 
request the “most recent before T” version. 
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Vector clocks 

• A vector clock is defined as a tuple V [0], V [1], ...,V 
[n] of clock values 

• In a distributed scenario node i maintains such a 
tuple of clock values, which represent the state of 
itself and the other (replica) nodes’ state it is aware 
about at a given time (Vi[0] for the clock value of the 
first node, Vi[1] for the clock value of the second 
node, . . . Vi[i] for itself, . . . Vi[n] for the clock value of 
the last node).  

• Clock values may be real timestamps derived from a 
node’s local clock, version/revision numbers or some 
other ordinal values. 
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Vector clocks 

• As an example, the vector clock on node number 2 
may take on the following values: 

• V2[0] = 45, V2[1] = 3, V2[2] = 55 
• This reflects that from the perspective of the second 

node, the following updates occurred to the dataset 
the vector clock refers to:  
– an update on node 1 produced revision 3 
– an update on node 0 lead to revision 45  
– the most recent update is encountered on node 2 

itself which produced revision 55. 
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Vector clocks updates 

• Vector clocks are updated in a way defined by the 
following rules 
– If an internal operation happens at node i, this 

node will increment its clock Vi[i]. This means that 
internal updates are seen immediately by the 
executing node 

– If node i sends a message to node k, it first 
advances its own clock value Vi[i] and attaches 
the vector clock Vi to the message to node k. 
Thereby, he tells the receiving node about his 
internal state and his view of the other nodes at 
the time the message is sent. 
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Vector clocks updates 

– If node i receives a message from node j, it first 
advances its vector clock Vi[i] and then merges its 
own vector clock with the vector clock Vmessage 
attached to the message from node j so that: 

• Vi = max(Vi, Vmessage) 
To compare two vector clocks Vi and Vj in order to 
derive a partial ordering, the following rule is applied: 

• Vi > Vj, if ∀k Vi[k] > Vj [k] 
If neither Vi > Vj nor Vi < Vj applies, a conflict 
caused by concurrent updates has occurred and 
needs to be resolved by e.g. a client application. 
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Vector clocks for consistency 

• Vector clocks can be utilized to resolve consistency 
between writes on multiple replicas 

• Replica nodes do typically not maintain a vector clock 
for clients but clients participate in the vector clock 
scenario in such a way that they keep a vector clock 
of the last replica node they have talked to and use 
this vector clock depending on the client consistency 
model that is required; e.g. for monotonic read 
consistency a client attaches this last vector clock it 
received to requests and the contacted replica node 
makes sure that the vector clock of its response is 
greater than the vector clock the client submitted. 
This means that the client can be sure to see only 
newer versions of some piece of data 29 



Advantages of vector clocks 

• Compared to the alternative approaches mentioned 
above (timestamps, optimistic locking with revision 
numbers, multiversion storage) the advantages of 
vector clocks are: 
– No dependence on synchronized clocks 
– No total ordering of revision numbers required 
– No need to store and maintain multiple revisions 

of a piece of data on all nodes 
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Partitioning 

• Assuming that data in large scale systems exceeds 
the capacity of a single machine and should also be 
replicated to ensure reliability and allow scaling 
measures such as load-balancing, ways of 
partitioning the data of such a system have to be 
thought about. 

• Approaches: 
– Memory Caches 
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Memory Caches 

• Can be seen as partitioned—though transient—in-
memory databases as they replicate most frequently 
requested parts of a database to main memory, 
rapidly deliver this data to clients and therefore 
disburden database servers significantly (e.g. 
memcached).  

• In the case of memcached the memory cache 
consists of an array of processes with an assigned 
amount of memory that can be launched on several 
machines in a network and are made known to an 
application via configuration. 
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Memory Caches 

• The memcached protocol whose implementation is 
available in different programming languages to be 
used in client applications provides a simple key-
/value-store API.  

• It stores objects placed under a key into the cache by 
hashing that key against the configured memcached-
instances 
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Clustering 

• Clustering of database servers is another approach 
to partition data which strives for transparency 
towards clients who should not notice talking to a 
cluster of database servers instead of a single server.  

• While this approach can help to scale the persistence 
layer of a system to a certain degree many criticize 
that clustering features have only been added on top 
of DBMSs that were not originally designed for 
distribution 
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Separating Reads from Writes 

• Write-operations for all or parts of the data are routed 
to master(s) 

• A number of replica-servers satisfy read requests 
(slaves).  

• If the master replicates to its clients asynchronously 
there are no write lags but if the master crashes 
before completing replication to at least one client the 
write-operation is lost 

• If the master replicates writes synchronously the 
update does not get lost, but write lags cannot be 
avoided. If the master crashes the slave with the 
most recent version of data can be elected as the 
new master.  
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Separating Reads from Writes 

• The master-/slave-model works well if the read/write 
ratio is high.  

• The replication of data can happen either by transfer 
of state (i.e. copying of the recent version of data or 
delta towards the former version) or by transfer of 
operations which are applied to the state on the 
slaves nodes and have to arrive in the correct order 
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Sharding 

• Sharding means to partition the data in such a way 
that data typically requested and updated together 
resides on the same node and that load and storage 
volume is roughly evenly distributed among the 
servers 

• Data shards may also be replicated for reasons of 
reliability and load-balancing and it may be either 
allowed to write to a dedicated replica only or to all 
replicas maintaining a partition of the data.  

• To allow such a sharding scenario there has to be a 
mapping between data partitions (shards) and 
storage nodes that are responsible for these shards. 
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Sharding 

• This mapping can be static or dynamic, determined 
by a client application, by some dedicated “mapping-
service/component” or by some network 
infrastructure between the client application and the 
storage nodes 

• The downside of sharding scenarios is that joins 
between data shards are not possible, so that the 
client application or proxy layer inside or outside the 
database has to issue several requests and 
postprocess (e.g. filter, aggregate) results instead. 
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Sharding 

• In a partitioned scenario knowing how to map 
database objects to servers is key. An obvious 
approach may be a simple hashing of database-
object primary keys against the set of available 
database nodes in the following manner: 

• partition = hash(o) mod n with o = object to hash, n = 
number of nodes 

• The downside of this procedure is that at least parts 
of the data have to be redistributed whenever nodes 
leave and join 
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Sharding 

• In a setting where nodes may join and leave at 
runtime (e.g. due to node crashes, temporal 
unattainability, maintenance work) a different 
approach such as consistent hashing has to be found 
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Consistent Hashing 

• The basic idea behind the consistent hashing 
algorithm is to hash both objects and nodes using the 
same hash function 

• Not only hashing objects but also machines has the 
advantage that machines get an interval of the hash-
function’s range and adjacent machines can take 
over parts of the interval of their neighbors if those 
leave and can give parts of their own interval away if 
a new node joins and gets mapped to an adjacent 
interval 
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Consistent Hashing 

• The consistent hashing approach has the advantage 
that client applications can calculate which node to 
contact in order to request or write a piece of data 
and there is no metadata server necessary as in 
systems like the the Google File System (GFS) which 
has such a central (though clustered) metadata 
server that contains the mappings between storage 
servers and data partitions 
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Consistent Hashing 

• Three red colored 
nodes A, B and C and 
four blue colored 
objects 1–4 are mapped 
to a hash-function’s 
result range pictured as 
a ring. 

• Objects are mapped by 
moving clockwise  

• objects 4 and 1 are 
mapped to node A, 
object 2 to node B and 
object 3 to node C. 43 



Consistent Hashing 

• When a node leaves 
the system, objects will 
get mapped to their 
adjacent node (in 
clockwise direction) and 
when a node enters the 
system it will get 
hashed onto the ring 
and will overtake 
objects 
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Consistent Hashing 

• Node C left and node D 
entered the system, so 
that now objects 3 and 
4 will get mapped to 
node D 

• By changing the 
number of nodes not all 
objects have to be 
remapped to the new 
set of nodes but only 
part of the objects. 
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Virtual Nodes 

• Issues with this procedure:  at first, the distribution of 
nodes on the ring is actually random as their 
positions are determined by a hash function and the 
intervals between nodes may be “unbalanced” which 
in turn results in an unbalanced distribution of cache 
objects on these nodes 

• Solution:  hash a number of representatives/ 
replicas—also called virtual nodes—for each physical 
node onto the ring 
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Virtual Nodes 

• The number of virtual nodes 
for a physical can be 
defined individually 
according to its hardware 
capacity (cpu, memory, disk 
capacity) and does not have 
to be the same for all 
physical nodes.  

• By appending e.g. a replica 
counter to a node’s id which 
then gets hashed, these 
virtual nodes should 
distribute points for this 
node all over the ring. 47 



Replication Factor 

• If a node has left the scene, data stored on this node 
becomes unavailable, unless it has been replicated to 
other nodes before 

• In the opposite case of a new node joining the others, 
adjacent nodes are no longer responsible for some 
pieces of data which they still store but not get asked 
for anymore as the corresponding objects are no 
longer hashed to them by requesting clients.  

• Solution: a replication factor (r) is introduced: not only 
the next node but the next r (physical!) nodes in 
clockwise direction become responsible for an object 
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Replication Factor 

• The uppercase letters 
represent storage 
nodes and the circles 
with arrows represent 
data objects which are 
mapped onto the ring at 
the depicted positions. 

• r=3 so for every data 
object three physical 
nodes are responsible 
which are listed in 
square brackets in the 
figure. 49 



Read and write operations 

• Introducing replicas in a partitioning scheme—
besides reliability benefits—also makes it possible to 
spread workload for read requests that can go to any 
physical node responsible for a requested piece of 
data.  
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Membership Changes 

• In a partitioned database where nodes may join and 
leave the system at any time without impacting its 
operation all nodes have to communicate with each 
other, especially when membership changes. 
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New node 

• When a new node joins the system the following 
actions have to happen 
1. The newly arriving node announces its presence 

and its identifier to adjacent nodes or to all nodes 
via broadcast. 

2. The neighbors of the joining node react by 
adjusting their object and replica ownerships. 

3. The joining node copies datasets it is now 
responsible for from its neighbors. This can be 
done in bulk and also asynchronously. 

4. If, in step 1, the membership change has not 
been broadcasted to all nodes, the joining node 
is now announcing its arrival 52 



New node 

• Node X joins a system 
for which r=3 

• It is hashed between A 
and B, so that the 
nodes H, A and B 
transfer data to the new 
node X and after that 
the nodes B, C and D 
can drop parts of their 
data for which node X is 
now responsible as a 
third replica (in addition 
to nodes H, A and B). 
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Node leaving 

• When a node leaves the system the following actions 
have to occur 

• Nodes within the system need to detect whether a 
node has left as it might have crashed and not been 
able to notify the other nodes of its departure. It is 
also common in many systems that no notifications 
get exchanged when a node leaves.  

• If a node’s departure has been detected, the 
neighbors of the node have to react by exchanging 
data with each other and adjusting their object and 
replica ownerships. 
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Node leaving 

• Node B leaves the 
system. Nodes C, D 
and E become 
responsible for new 
intervals of hashed 
objects and therefore 
have to copy data from 
nodes in 
counterclockwise 
direction and also 
reorganize their 
internal representation 
of the intervals 
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Cluster management 

56 

• Internal nodes may need to find each other  
• Since nodes may fail and recover, a configuration file 

doesn't really suffice 
• We need a way of keeping some kind of consistent 

view of the cluster state 



Omniscient Master 

• When nodes join/leave or change state, they talk to a 
master 

• That master holds the authoritative view of the world 
• Pros: simplicity, single consistent view of the cluster 
• Cons: potential Single Point of Failure (SPOF) unless 

master is made highly available. Not partition-
tolerant. 
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Gossip 

• Gossip is one method to propagate a view of cluster 
status 
– Every t seconds, on each node: 
– The node selects some other node to chat with. 
– The node reconciles its view of the cluster with its 

gossip buddy 
– Each node maintains a “timestamp" for itself and 

for the most recent information it has from every 
other node 

• Information about cluster state spreads in O(log n) 
rounds (eventual consistency) 

• Scalable and no SPOF, but state is only eventually 
consistent 58 



Storage Layout 

• It determines how the disk is accessed and therefore 
directly implicate performance.  

• Furthermore, the storage layout defines which kind of 
data (e.g. whole rows, whole columns, subset of 
columns) can be read en bloque 
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Row-Based Storage Layout 

• Means that a table of a relational model gets 
serialized as its lines are appended and flushed to 
disk  

• The advantages of this storage layout are that at first 
whole datasets can be read and written in a single IO 
operation and that secondly one has a good locality 
of access (on disk and in cache) of different columns 

• On the downside, operating on columns is expensive 
as a considerable amount data (in a naïve 
implementation all of the data) has to be read. 
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Columnar Storage Layout 

• Serializes tables by appending their columns and 
flushing them to disk  

• Therefore operations on columns are fast and cheap 
while operations on rows are costly and can lead to 
seeks in a lot or all of the columns.  

• A typical application field for this type of storage 
layout is analytics where an efficient examination of 
columns for statistical purposes is important. 
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Columnar Storage Layout with Locality 
Groups 

• Is similar to column-based storage but adds the 
feature of defining so called locality groups that are 
groups of columns expected to be accessed together 
by clients.  

• The columns of such a group may therefore be 
stored together and physically separated from other 
columns and column groups  

• The idea of locality groups was introduced in 
Google’s Bigtable paper.  
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Log Structured Merge Trees 

• (LSM-trees aka «The BigTable model») in contrast to 
the storage layouts explained before do not describe 
how to serialize logical datastructures (like tables, 
documents etc.) but how to efficiently use memory 
and disk storage in order to satisfy read and write 
requests in an efficient, performant and still safely 
manner. 

• The idea is to hold chunks of data in memory (in so 
called Memtables), maintaining on-disk commit-logs 
for these in-memory data structures and flushing the 
memtables to disk from time to time into so called 
SSTables 
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Log Structured Merge Trees 

• Random IO for writes is bad (and impossible in some 
distributed file systems) 

• LSM Trees convert random writes to sequential 
writes 

• Writes go to a commit log and in-memory storage 
(Memtable) 

• The Memtable is occasionally flushed to disk 
(SSTable) 

• The disk stores are periodically compacted 
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LSM Data Layout 
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Read path 
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Write path 
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LSM Memtable Flush 
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LSM Compaction 

69 

SSTables are immutable and get compacted 
over time by copying the compacted SSTable 
to another area of the disk while preserving the 
original SSTable and removing the latter after 
the compactation process has happened 



Query Models 

• Substantial differences in the querying capabilities 
the different NoSQL datastores offer  

• Whereas key/value stores by design often only 
provide a lookup by primary key or some id field and 
lack capabilities to query any further fields, other 
datastores like the document databases CouchDB 
and MongoDB allow for complex queries 

• This is not surprising as in the design of many 
NoSQL databases rich dynamic querying features 
have been omitted in favor of performance and 
scalability 
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Data models 

• key-/value-stores 
• document databases 
• column-oriented databases 
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Key-/value-stores 

• Simple data model: a map/dictionary, allowing clients 
to put and request values per key.  

• Besides the data-model and the API, modern key-
value stores favor high scalability over consistency 
and therefore most of them also omit rich ad-hoc 
querying and analytics features (especially joins and 
aggregate operations are set aside) 

• Often, the length of keys to be stored is limited to a 
certain number of bytes while there is less limitation 
on values 

• A large number of this class of NoSQL stores has 
been heavily influenced by Amazon’s Dynamo 

72 



Amazon’s Dynamo 

• The interface Dynamo provided to client applications 
consists of only two operations: 
– get(key), returning a list of objects and a context 
– put(key, context, object), with no return value 

• The get-operation may return more than one object if 
there are version conflicts for objects stored under 
the given key.  

• It also returns a context, in which system metadata 
such as the object version is stored, and clients have 
to provide this context object as a parameter in 
addition to key and object in the put operation. 
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Amazon’s Dynamo Implementation 

• Key and object values are not interpreted by Dynamo 
but handled as “an opaque array of bytes”. The key is 
hashed by the MD5 algorithm to determine the 
storage nodes responsible for this key-/value-pair. 

• To provide incremental scalability, Dynamo uses 
consistent hashing to dynamically partition data 
across the storage hosts that are present in the 
system at a given time 

• To determine conflicting versions, perform syntactic 
reconciliation and support client application to resolve 
conflicting versions Dynamo uses the concept of 
vector clocks 
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Project Voldemort 

• A key-/value-store initially developed for and still 
used at LinkedIn.  

• API consisting of: 
– get(key), returning a value object 
– put(key, value) 
– delete(key) 

• Both, keys and values can be complex, compound 
objects such as lists and maps 
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Project Voldemort 

• The simple data structure and API of a key-value 
store does not provide complex querying capabilities: 
joins have to be implemented in client applications 
while constraints on foreign-keys are impossible; 
besides, no triggers and views may be set up. 

• Project Voldemort allows namespaces for key-/value-
pairs called “stores“, in which keys are unique.  

• Each key is associated with exactly one value 

76 



Other Key-/Value-Stores 

• Tokyo Cabinet and Tokyo Tyrant 
• Redis 
• Memcached and MemcacheDB 
• Scalaris 
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Document Databases 

• They allow to encapsulate key-/value-pairs in 
documents.  

• There is no strict schema documents have to 
conform to which eliminates the need of schema 
migration efforts 

• The two major representatives for the class are 
– Apache CouchDB  
– MongoDB 
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Apache CouchDB  

• The main abstraction and data structure in CouchDB 
is a document.  

• Documents consist of named fields that have a 
key/name and a value.  

• A fieldname has to be unique within a document and 
its assigned value may a string (of arbitrary length), 
number, Boolean, date, an ordered list or an 
associative map 

• Documents may contain references to other 
documents (URIs, URLs) but these do not get 
checked or held consistent by the database  

• A further limitation is that documents in CouchDB 
cannot be nested 79 



Apache CouchDB  

• A wiki article may be an example of such a 
document: 

"Title" : "CouchDB", 
"Last editor" : "172.5.123.91" , 
"Last modified": "9/23/2010" , 
"Categories": ["Database", "NoSQL", "Document 
Database"], 
"Body": "CouchDB is a ...", 
"Reviewed": false 
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Apache CouchDB  

• Besides fields, documents may also have 
attachments  

• CouchDB maintains some metadata such as a 
unique identifier and a revision number for each 
document 

• The document id is a 128 bit value (so a CouchDB 
database can store 3.4x1038 different documents)   

• The revision number is a 32 bit value determined by 
a hash-function 
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Apache CouchDB  

• Documents do not correspond to a fixed schema 
(schema-free) but have some inner structure known 
to applications as well as the database itself.  

• Compared to key-/value-stores data can be 
evaluated more sophisticatedly  

• In the web application field there are a lot of 
document-oriented applications which CouchDB 
addresses as its data model fits this class of 
applications and the possibility to iteratively extend or 
change documents can be done with a lot less effort 
compared to a relational database 
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Apache CouchDB  

• Each CouchDB database consists of exactly one 
flat/non-hierarchical namespace that contains all the 
documents which have a unique identifier (consisting 
of a document id and a revision number aka 
sequence id) 

• CouchDBs way to query, present, aggregate and 
report the semi-structured document data are views  

• A typical example for views is to separate different 
types of documents (such as blog posts, comments, 
authors in a blog system) which are not distinguished 
by the database itself as all of them are just 
documents to it 
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Apache CouchDB  

• Views are defined by JavaScript functions which 
neither change nor save or cache the underlying 
documents but only present them to the requesting 
user or client application.  

• Therefore documents as well as views (which are in 
fact special documents, called design-documents) 
can be replicated and views do not interfere with 
replication. 
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Views 

• Views and are calculated on demand.  
• There is no limitation regarding the number of views 

in one database or the number of representations of 
documents by views 

• The JavaScript functions defining a view are called 
map and reduce which have similar responsibilities 
as in Google’s MapReduce approach 
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Map function 

• The map function gets a document as a parameter, 
can do any calculation and may emit arbitrary data 
for it if it matches the view’s criteria; if the given 
document does not match these criteria the map 
function emits nothing.  

• Examples of emitted data for a document are the 
document itself, extracts from it, references to or 
contents of other documents (e.g. semantically 
related ones like the comments of a user in a forum, 
blog or wiki). 
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Map and reduce functions 

• The data structure emitted by the map function is a 
triple consisting of the document id, a key and a 
value which can be chosen by the map function. 

• After the map function has been executed its results 
get passed to an optional reduce function which can 
do some aggregation on the view 

• As all documents of the database are processed by a 
view’s functions this can be time consuming and 
resource intensive for large databases 

• Therefore a view is not created and indexed when 
write operations occur but on demand (at the first 
request directed to it) and updated incrementally 
when it is requested again 87 



Apache CouchDB  

• CouchDB databases are addressed via a RESTful 
HTTP interface that allows to read and update 
documents 

• The CouchDB project also provides libraries 
providing convenient access from a number of 
programming languages as well as a web 
administration interface 
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Interface 

• CouchDB documents are requested by their URL 
according to the RESTful HTTP paradigm (read via 
HTTP GET, created and updated via HTTP PUT and 
deleted via HTTP DELETE method).  

• A read operation has to go before an update to a 
document as for the update operation the revision 
number of the document that has been read and 
should be updated has to be provided as a 
parameter.  

• To retrieve document urls—and maybe already their 
data needed in an application—views can be 
requested by client applications (via HTTP GET).  
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MongoDB 

• MongoDBs name is derived from the adjective 
humongous 

• It is a schema-free document database 
• MongoDB databases reside on a MongoDB server 

that can host more than one of such databases which 
are independent and stored separately by the 
MongoDB server.  

• A database contains one or more collections 
consisting of documents.  

• In order to control access to the database a set of 
security credentials may be defined for databases 
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MongoDB 

• The documents within a collection may be 
heterogeneous although the MongoDB manual 
suggests to create “one database collection for each 
of your top level objects” 

• Once the first document is inserted into a database, a 
collection is created automatically and the inserted 
document is added to this collection 

• JavaScript is used by the interactive MongoDB shell 
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Collections 

• Collections may also be created explicitly by the 
createCollection-command: 

db. createCollection (<name >, {< configuration 
parameters >}) 
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Documents 

• The abstraction and unit of data storable in MongoDB 
is a document, a data structure comparable to an 
XML document, a Python dictionary, a Ruby hash or 
a JSON document.  

• In fact, MongoDB persists documents by a format 
called BSON which is very similar to JSON but in a 
binary representation for reasons of efficiency and 
because of additional datatypes compared to JSON 

• Documents in MongoDB are limited in size by 4 
megabytes 
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Documents 

• As an example, a document representing a wiki 
article may look like the following in JSON notation: 

{ 
title: "MongoDB", 
last_editor: "172.5.123.91" , 
last_modified: new Date ("9/23/2010") , 
body: "MongoDB is a...", 
categories: [" Database", "NoSQL", "Document 
Database "] , 
reviewed: false 
} 
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Documents 

• To add such a document into a MongoDB collection 
the insert function is used: 

db.<collection >. insert( { title: "MongoDB", last_editor : 
... } ); 
• Once a document is inserted it can be retrieved by 

matching queries issued by the find operation and 
updated via the save operation: 

db.<collection >. find( { categories: [ "NoSQL", 
"Document Databases" ] } ); 
db.<collection >. save( { ... } ); 
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MongoDB 

• MongoDB does not provide a foreign key mechanism 
so that references between documents have to be 
resolved by additional queries issued from client 
applications.  

• References may be set manually by assigning some 
reference field the value of the _id field of the 
referenced document 

• The MongoDB points out that although references 
between documents are possible there is the 
alternative to nest documents within documents. The 
embedding of documents is “much more efficient” 
according to the MongoDB manual as “[data] is then 
colocated on disk”. 
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Queries 

• Selection Queries in MongoDB are specified as 
query objects, BSON documents containing selection 
criteria, and passed as a parameter to the find 
operation which is executed on the collection to be 
queried 

queried db.<collection >. find( { title: "MongoDB" ); 
• The selection criteria given to the find operation can 

be seen as an equivalent to the WHERE clause in 
SQL statements 
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Selection 

• In the selection criteria passed to the find operation a 
lot of operators are allowed—besides equality 
comparisons as in the example above.  

• These have the following general form: 
<fieldname >: {$<operator >: <value >} 
<fieldname >: {$<operator >: <value >, $<operator >: 
value} // AND -junction 
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Selection 

• Examples of allowed operators 
• Non-equality: $ne 
• Numerical Relations: $gt, $gte, $lt, $lte (representing 

>, ≥, <, ≤) 
• Equality-comparison to (at least) one element of an 

array: $in with an array of values as comparison 
operand, e.g. 

{ categories: {$in: ["NoSQL", "Document Databases"]} } 
… 
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Projection 

• A second parameter can be given to the find 
operation to limit the fields that shall be retrieved—
analogous to the projection clause of a SQL 
statement  

• These fields are again specified by a BSON object 
consisting of their names assigned to the value 1: 

db.<collection >. find( {<selection criteria >}, {<field_1 
>:1, ...} ); 
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Result Processing 

• The results of the find operation may be processed 
further by arranging them using the sort operation, 
restricting the number of results by the limit operation 
and ignoring the first n results by the skip operation:  

db.<collection >. find( ... ).sort({<field >: <1| -1 
>}).limit(<number >).skip(<number >); 
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Inserts 

• Documents are inserted into a MongoDB collection 
by executing the insert operation which simply takes 
the document to insert as an argument: 

db.<collection >. insert( <document > ); 
• MongoDB appends the primary key field _id to the 

document passed to insert. 
• Alternatively, documents may also be inserted into a 

collection using the save operation: 
db.<collection >. save( <document > ); 
• The save operation comprises inserts as well as 

updates: if the _id field is not present in the document 
given to save it will be inserted; otherwise it updates 
the document with that _id value in the collection 102 



Updates 

• The save operation can be used to update 
documents.  

• However, there is also an explicit update operation 
with additional parameters and the following syntax: 

db.<collection >. update( <criteria >, <new document >); 
 

103 



Deletes 

• To delete documents from a collection, the remove 
operation has to be used which takes a document 
containing selection criteria as a parameter: 

db.<collection >. remove( { <criteria > } ); 
• Selection criteria has to be specified in the same 

manner as for the find operation 
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The eval-operation 

• To execute arbitrary blocks of code locally on a 
database server, the code has to be enclosed by an 
anonymous JavaScript function and passed to 
MongoDB’s generic eval operation: 

db.eval( function(<formal parameters >) { ... }, <actual 
parameters >); 
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Implementation 

• MongoDB supports horizontal scaling via an 
automatic sharding architecture to distribute data 
across “thousands of nodes” with automatic 
balancing of load and data as well as automatic 
failover 

• MongoDB uses read/write locks for many operations 
with any number of concurrent read operations 
allowed, but typically only one write operation. The 
acquisition of write locks is greedy and, if pending, 
prevents subsequent read lock acquisitions 

• Replication is asynchronous 
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Column-Oriented Databases 

• The approach to store and process data by column 
instead of row has its origin in analytics and business 
intelligence where column-stores operating in a 
shared-nothing massively parallel processing 
architecture can be used to build high-performance 
applications. 

• The class of column-oriented stores is seen less 
puristic, also subsuming datastores that integrate 
column- and row-orientation 

• The main inspiration for column-oriented datastores 
is Google’s Bigtable  

• Cassandra is inspired by Bigtable 
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Google’s Bigtable 
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Google’s Bigtable 

• The data structure provided and processed by 
Google’s Bigtable is described as “a sparse, 
distributed, persistent multidimensional sorted map”. 

• Values are stored as arrays of bytes which do not get 
interpreted by the data store. They are addressed by 
the triple (row-key, column-key, timestamp) 

• Example of a Bigtable storing information a web 
crawler might emit 
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Bigtable 

• The map contains a non-fixed number of rows 
representing domains read by the crawler as well as 
a non-fixed number of columns:  
– the first of these columns (contents:) contains the 

page contents  
• the others(anchor:<domain-name>) store link texts 

from referring domains—each of which is 
represented by one dedicated column 
 110 



Rows 

• Every value also has an associated timestamp (t3, t5, 
t6 for the page contents, t9 for the link text from CNN 
Sports Illustrated, t8 for the link text from MY-look).  

• Row keys in Bigtable are strings of up to 64KB size.  
• Rows are kept in lexicographic order and are 

dynamically partitioned by the datastore into so called 
tablets, “the the unit of distribution and load 
balancing” in Bigtable.  

• Client applications can exploit these properties by 
wisely choosing row keys as the ordering of row-keys 
directly influences the partitioning of rows into tablets 

111 



Rows 

• Row ranges with a small lexicographic distance are 
probably split into only a few tablets, so that read 
operations will have only a small number of servers 
delivering these tablets 

• In the example the domain names used as row keys 
are stored hierarchically descending (from a DNS 
point of view), so that subdomains have a smaller 
lexicographic distance than if the domain names 
were stored reversely (e.g. com.cnn.blogs, 
com.cnn.www in contrast to blogs.cnn.com, 
www.cnn.com). 
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Columns 

• The number of columns per table is not limited.  
• Columns are grouped by their key prefix into sets 

called column families.  
• Column families are an important concept in Bigtable 

as they have specific properties and implications 
– They “form the basic unit of access control”,  
– They are expected to store the same or a similar 

type of data. 
– Their data gets compressed together by Bigtable. 
– They have to be specified before data can be 

stored into a column contained in a column family. 
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Columns 

• The example shows two column families: content and 
anchor.  

• The content column family consists of only one 
column whose name does not have to be qualified 
further.  

• In contrast, the anchor column family contains two 
columns qualified by the domain name of the 
referring site. 

114 



Timestamps 

• Timestamps, represented as 64-bit integers, are 
used in Bigtable to discriminate different reversion of 
a cell value.  

• The value of a timestamp is either assigned by the 
datastore (i.e. the actual timestamp of saving the cell 
value) or chosen by client applications (and required 
to be unique).  

• Bigtable orders the cell values in decreasing order of 
their timestamp value “so that the most recent 
version can be read first”.  

• In order to disburden client applications from deleting 
old or irrelevant revisions of cell values, an automatic 
garbage-collection is provided 115 



API 

• Read Operations include the lookup and selection of 
rows by their key, the limitation of column families as 
well as timestamps (comparable to projections in 
relational databases) as well as iterators for columns. 

• Write Operations for Rows cover the creation, 
update and deletion of values for a column of the 
particular row.  

• Write Operations for Tables and Column Families 
include their creation and deletion. 

• Administrative Operations allow to change “cluster, 
table, and column family metadata, such as access 
control rights”. 
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API 

• Server-Side Code Execution is provided for scripts 
written in Google’s data processing language Sawzall 

• MapReduce Operations may use contents of 
Bigtable maps as their input source as well as output 
target. 

• Transactions are provided on a single-row basis: 
“Every read or write of data under a single row key is 
atomic (regardless of the number of different columns 
being read or written in the row), a design decision 
that makes it easier for clients to reason about the 
system’s behavior in the presence of concurrent 
updates to the same row” 
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