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8.1 INTRODUCTION

Ampere defined kinematics as “the study of the motion of mechanisms and methods of
creating them.” The first part of this definition deals with kinematic analysis. Given a
certain mechanism, the motion characteristics of its components will be determined by
kinematic analysis (as described in Chap. 3). The statement of the task of analysis con-
tains all principal dimensions of the mechanism, interconnections of its links, and the
specification of the input motion or method of actuation. The objective is to find the dis-
placements, velocities, accelerations, shock or jerk (second acceleration), and perhaps
higher accelerations of the various members, as well as the paths described and motions
performed by certain elements. In short, in kinematic analysis we determine the perfor-
mance of a given mechanism. The second part of Ampére’s definition may be para-
phrased in two ways: '

1. The study of methods of creating a given motion by means of mechanisms.
2. The study of methods of creating mechanisms having a given motion.

In either version, the motion is given and the mechanism is to be found. This is the es-
sence of kinematic synthesis. Thus kinematic synthesis deals with the systematic design
of mechanisms for a given performance.

The areas of synthesis may be grouped into two categories.

1. Type synthesis. Given the required performance, what type of mechanism will
be suitable? (Gear trains? Linkages? Cam mechanisms?) Also: How many links should
the mechanism have? How many degrees of freedom are required? What configuration
is desirable? And so on. Deliberations involving the number of links and degrees of
freedom are often referred to as the province of a subcategory of type synthesis called
number synthesis, pioneered by Gruebler (see Chap. 1). One of the techniques of type
synthesis which utilizes the “associated linkage” concept is described in Sec. 8.3.

2. Dimensional synthesis. The second major category of kinematic synthesis is
best defined by way of its objective:

Dimensional synthesis seeks to determine the significant dimensions and the starting posi-
tion of a mechanism of preconceived type for a specified task and prescribed performance.

AP A

Principal or significant dimensions mean link lengths or pivot-to-pivot distances on bi-
nary, ternary, and so on, links, angle between bell-crank levers, cam-contour dimen-
sions and cam-follower diameters, eccentricities, gear ratios, and so forth (Fig. 8.1).
Configuration or starting position is usually specified by way of an angular position of
: an input link (such as a driving crank) with respect to the fixed link or frame of refer-
ence, or the linear distance of a slider block from a point on its guiding link (Fig. 8.2).

A mechanism of preconceived type may be a slider-crank, a four-bar linkage, a
cam with flat follower, or a more complex linkage of a certain configuration defined to-
pologically but not dimensionally (geared five-bar, Stevenson or Watt six-bar linkage,
etc.), as depicted in Fig. 8.3.
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(e) (f)

Figure 8.1 Significant dimensions; (a) binary link: has one length only; (b) ternary
link: 3 lengths, 2 lengths and one angle, or 1 length and two angles; (c) bell crank: same
as for ternary link; (d) cam and roller follower: center line distance, follower arm length
11, follower radius ry, and an infinite number of radial distances to the cam surface, r.,
at angles «;, @,, etc., specified from a reference direction; (e) gear pair: center line dis-
tance and gear tooth ratio; (f) eccentric: eccentricity only (this is a binary link).

8.2 TASKS OF KINEMATIC SYNTHESIS

Recall from Chap. 1 that there are three customary tasks for kinematic synthesis: func-
tion, path, and motion generation.

In function generation rotation or sliding motion of input and output links must be
correlated. Figure 8.4a is a graph of an arbitrary function y = f(x). The kinematic syn-
thesis task may be to design a linkage to correlate input and output such that as the input
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(a) (b)

(c)

4

(d)

Figure 8.2 Configuration or starting position: (a) starting position of a crank; (b) start-
ing position of a slider; (c) starting position of a four-bar linkage requires two crank an-
gles, because one crank angle leaves two possibilities for the other crank, as shown in
Fig. 8.2(d).

moves by x, the output moves by y = f(x) for the range x, = x < x,, ,. Values of
the independent parameter, x,, x,, ..., x, correspond to prescribed precision points
P, P,,..., P,on the function y = f(x) in a range of x between x, and x, , ,. In the case
of rotary input and output, the angles of rotation ¢ and ¢y (Fig. 8.5a) are the linear
analogs of x and y, respectively. When the input is rotated to a value of the independent
parameter x, the mechanism in the “black box” causes the output link to turn to the cor-
responding value of the dependent variable y = f(x). This may be regarded as a simple

case of a mechanical analog computer.
The subscript j indicates the jth prescribed position of the mechanism; the sub-

script 1 refers to the first or starting prescribed position of the mechanism, and A¢, Ax,
Ay, and Ay, are the desired ranges of the respective variables ¢, x, {, and y (e.g.,
Ax = |x,1; — xo|, Ap = |d,.1 — by, etc.). Since there is a linear relationship between
the angular and linear changes,

0
b A _ A (8.1)
X, — X Ax
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Tracer Point on Coupler

™~
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(c)

(d)

Figure 8.3 Some mechanisms of preconceived type: (a) four-bar linkage; (b) slider-
crank; (c) geared five-bar linkage; (d) Stephenson III six-link mechanism.

where ¢, is the datum for ¢;, and therefore ¢, = 0. It follows that

_Ae
d)j = A_x (xj x,)
& (8.2)
W, = _lll ()’j - )
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Figure 8.4 Function-generation synthesis: (a) ideal function and generated function;
(b) structural error.

Black Box
Vi
¢
(a) (b)
Figure 8.5 Function-generator mechanism; (a) exterior view; (b) schematic of the
mechanism inside.
These relationships may also be written as
‘pj = R¢(yj - )’1) (8.4)
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Where R, and R, are the scale factors in degrees per unit variable defined by

_Ad
R, = Ar (8.5)
A
R, = — 8.
‘=3 (8.6)

The four-bar linkage is not capable of error-free generation of an arbitrary function
and can match the function at only a limited number of precision points (see Fig. 8.4a).
It is, however, widely used in industry in applications where high precision at many
points is not required because the four-bar is simple to construct and maintain. The num-
ber of precision points that are used in the dimensional synthesis of the four-bar linkage
varies in general between two and five.* It is often desirable to space the precision points
over the range of the function in such a way as to minimize the structural error of the
linkage. Structural error is defined as the difference between the generated function (what
the linkage actually produces) and the prescribed function for a certain value of the input
variable (see Fig. 8.4b).

Notice that the first precision point (j = 1) is not at the beginning of the range
(see Fig. 8.4). The reason for this is to reduce the extreme values of the structural error.
It is also evident from Eq. (8.1) that angles of rotation are measured from the first posi-
tion (e.g., ¢, = 0). Section 8.10 will discuss optimal spacing of precision points for
minimizing structural error.

Figure 8.6 shows a not-to-scale schematic of the input and output links of a four-
bar function generator mechanism in four precision positions, illustrating the relation-
ship between x; and ¢; as well as y; and ;. The dimensional synthesis techniques
described later in this chapter and Chap. 3 of Vol. 2 will show us how to use such preci-
sion-point data for the synthesis of four-bar linkages and other mechanisms for function
generation.

A variety of different mechanisms could be contained within the “black box” of
Fig. 8.5a. In this case, Fig. 8.5b shows a four-bar linkage function generator. A typical

Figure 8.6 Not-to-scale schematic of a
function-generator four-bar mechanism with
four precision positions of the input and
output links x; and y;, i = 1, 2, 3, 4, within
the range Ax = x5 — x and Ay = y5 — yo.
Input rotations ¢ and output rotations s are
the analogs of independent and dependent
variables x and y, respectively.

* Function generation synthesis up to 7 and path generation synthesis up to 9 precision points are pos-
sible, but they generally require numerical rather than the preferable closed-form methods of synthesis.
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—~—— Type Slug

) Cam
Link 1 Rotation
Output of Link 2
Four-Bar Cam //
Mechanism Surface / Cam Follower
y'd
Cam Lever Link 3
Link 6

\

Connecting Link
Link 5

Input of Bell
M:a;'rﬁ;:] Crank Figure 8.7 Four-bar mechanism used as
the impact printing mechanism in an electric
Link 1 typewriter.

example of a function generator is shown schematically in Fig. 8.7. A four-bar linkage
connects a cam follower, driven by the cam, to a type bar of a typewriter printing
mechanism. Here the type must be moved, first by smaller then by larger angles per in-
crement of input rotation, in order to throw the type against the platen roller with an im-
pact. Another application of function generation would be an engine where the mixing
ratios of fuel to oxidant might vary as the function y = y(x). Here ¢ might control the
fuel valve while ¢ would control the oxidant valve. Flow characteristics of the valves
and the required ratio at various fuel rates would dictate the functional relationship to be
generated. Yet another example is a linkage to correlate steering positions of the front
wheels of an all-terrain vehicle with the relative speed at which each individually driven
wheel should rotate to avoid scuffing. Here the input crank is connected to the steering
arm, while the output adjusts a potentiometer controlling the relative speed of the two
drive wheels.

Mechanical function generators may also be of the type shown in Fig. 8.8 in
which a rectilinear displacement may be the linear analog of one variable and the crank
rotation may be the linear analog of another, a functionally related variable. As illus-
trated in Fig. 8.9, a function generator may have more degrees of freedom than one; an
output variable may be a function of two or more inputs. For example, such a linkage
might be used to simulate the addition, multiplication, or any other algebraic or tran-
scendental functional correlation of several variables. Figure 8.10 shows a six-link single-
degree-of-freedom function generator mechanism in which two four-link mechanisms

X
Y
\::%; Figure 8.8 Function generator with rotary
C input and translational output, analogs of
AAANANNNANNNNNN : .
= A the independent and dependent variables of
tnput Qutput the function y = f(x).
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Input Input Output

Figure 8.9 Two-degree-of-freedom function generator for generating the function

z = f(x,y).

Y Scale

Link 3
Float Weir

v

X  Figure 8.10 Flow-rate-indicator mecha-

Link 1" ' T nism, y = K\xK,, where K, and K, are
constants.
are joined in a series. The objective in this linkage is to provide a measure of flow rate

through the weir where the input is the vertical translation x of the water level.

In path generation a point on a “floating link” (not directly connected to the fixed
link) is to trace a path defined with respect to the fixed frame of reference. If the path
points are to be correlated with either time or input-link positions, the task is called path
generation with prescribed timing. An example of path generation is a four-bar linkage
designed to pitch a baseball or tennis ball. In this case the trajectory of point P would be ;
such as to pick up a ball at a prescribed location and to deliver the ball along a pre-
scribed path with prescribed timing for reaching a suitable throw-velocity and direction.

In Fig. 8.11, a linkage whose floating link will contain point P is desired such that
point P will trace y = f(x) as the input crank turns. Typical examples are where
y = f(x) is the path desired for a thread-guiding eye on a sewing machine (Fig. 8.12) or
the path to advance the film in a movie camera (Fig. 8.13). Various straight-line mecha-
nisms, such as Watt’s and Robert’s linkages, are examples of a special kind of path
generator (see Fig. 8.14) in which geometric relationships assure the generation of
straight-line segments within the cycle of the linkage’s motion.

Motion-generation or rigid-body guidance requires that an entire body be guided
through a prescribed motion sequence. The body to be guided usually is a part of a float-
ing link. In Fig. 8.15 not only is the path of point P prescribed, but also the rotations Q;
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y = f(x)

e —F T~ =7z

Input

Figure 8.11 A path generator linkage.

Thread Puller

Figure 8.12 In a sewing machine, one in-
put (bell crank 2) drives a path generator
(four-bar mechanism 1, 2, 3, 4) and a func-
tion generator slider-crank (1,2,5,6). The
first generates the path of thread-guide C

and the second generates the straight-line
.’i_ Needle motion of the needle, whose position is a

function of crank rotation.

of vector Z embedded in the moving body. The corresponding input rotations may or
may not be prescribed. For instance, vector Z might represent a carrier link in automatic
machinery where a point located on the carrier link (the tip of Z) has a prescribed path
while the carrier has a prescribed angular orientation (see Fig. 8.16). Prescribing the
movement of the bucket for a bucket loader is another example of motion generation.
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Figure 8.13 Film-advance mechanism of
a movie camera or projector generates the
path of point C as a function of the angle of
rotation of crank 2.

H

i

i
Figure 8.14 Straight-line mechanisms () ;5
Watt’s mechanism — approximate straight- %
line motion traced by point P; AP/PB = 3

BB,/AA,; (b) Robert’s mechanism —
approximate straight-line motion traced by §
point P; AjA = AP = PB = BB, AoBy =

2AB; (c) Scott-Russele mechanism gives

exact straight-line motion traced by point P.

Note the equivalence to Cardan motion (see

chapt. 3, vol. 2); ApA = AB = AP.
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\y

Input

Figure 8.15 Motion-generator mechanism.

Figure 8.16 Carrier mechanism in an assembly machine.

The path of the tip of the bucket is critical since the tip must perform a scooping trajec-
tory followed by a lifting and a dumping trajectory. The rotations of the bucket are
equally important to ensure that the load is dumped from the correct position.

Since a linkage has only a finite number of significant dimensions, the designer may
only prescribe a finite number of precision conditions, that is, we may only prescribe
the performance of a linkage at a finite number of precision points. There are three
methods of specifying the prescribed performance of a mechanism: first-order or point
approximation, higher-order approximation, and combined point-order approximation.*

* Approximate (rather than precise) generation of greater numbers of prescribed conditions are possible
by the use of least squares or non-linear programming methods. These, however, are numerical procedures
rather than closed-form solutions.
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In first-order approximation for function and path generation, discrete points on
the prescribed (or ideal) function or path are specified. Recall that Fig. 8.4a showed pre-
cision points P, to P, of the ideal function. The synthesized mechanism will generate a
function that will coincide with the ideal function at the precision points but will gener-
ally deviate from the ideal function between these points (Fig. 8.4b).

Structural error for path generation may be defined as the vector from the ideal to
the generated path perpendicular to the ideal path or it may be defined as the vector
between corresponding points on an ideal and a generated path taken at the same value
of the independent variable. The latter definition is used when there is prescribed
timing. In motion generation there will be both a path and an angular-structural-error
curve to analyze.

In some cases a mechanism is desired to generate not only a position but also the
velocity, acceleration, shock, and so on, at one or more positions (see Fig. 8.17). For
example, the blade of a cutter that must slice a web of paper into sheets while the web is
in motion would not only be required to match the correct position at the instant of the
cut, but also several derivatives at that position in order to cut straight across and to pre-
serve the sharpness of the blade. For higher-order approximation, the first derivative,
dy/dx, prescribes the slope of function (or path) at that point; the second derivative,
d?y/dx*, implies prescribing the radius of curvature; the third derivative, d’y/dx’, pre-
scribes the rate of change of curvature; and so on (see Sec. 8.24).

The combination of both point and order approximations is called point-order
approximation or approximation by multiply separated precision points [157]. For ex-
ample, one might desire to prescribe a position and a velocity at one precision point,
only a position at a second precision point, and a position and velocity at a third point.

Y4\
Generated or Actual
Path or Function
Prescribe: P;(x;, v;), //
ay| Pyl dy -~
dx " gx2 " g3 T
Prescribed or ldeal
Path or Function
ViF—————
/ |
1 SN

Figure 8.17 Higher-order approximation of function or path.
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Pi V4 2
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P, % // / Machinery

\ )

\\ Figure 8.18 Point-order approximation for

0 —— 3 . v
. Va path generation. There are five prescribed

P3. V o . o
3 Y2/ ))) conditions: three-path points and velocities
C at two of these, tantamount to two infinitesi-
Conveyor 2 mally close prescribed position at P, and P;.

Figure 8.18 shows such an application where a mechanism is desired to pick up an item
from conveyor belt 1 traveling at velocity V, and deposit it on a conveyor belt 2 travel-
ing at V,, having traversed the intervening space in such a way as to avoid some ma-
chinery components. Typical application of this occurs in bookbinding, where signatures
(32- or 64-page sections) of a book from conveyor 1 are to be stacked on conveyor 2 to
form the complete book (see Fig. 6.34).

Kinematic synthesis has been defined here as a combination of type and dimen-
sional synthesis. Most of the rest of this chapter and Chap. 3 of Vol. 2 are devoted to
dimensional synthesis. Before moving on to dimensional synthesis, however, one of the
methods to creatively discover suitable types of linkages for a prescribed task will be in-
troduced. The method is based on structural models or associated linkages. A case study
of type synthesis using another method can be found in the appendix to this chapter.

8.3 TYPE SYNTHESIS [160]

Type synthesis strives to predict which combination of linkage topology and type of
joints may be best suited to solve a particular task. Frequently, a novice designer may
settle for a solution which merely satisfies the requirements, since there appears to be no
method to find a “best” solution. Many experienced designers perform a rudimentary
form of type synthesis, sometimes without being aware they are doing so. These experts
have an innate “feel” for which type of linkage will work and which will not. This abil-
ity is developed only after designing linkages for many years and is difficult to pass on
to younger engineers. Many times, type synthesis is skipped due to ignorance or because
the designer was not aware of the required relations between the form and function of the
linkage. When this happens, a linkage may be chosen which is not capable of meeting
the problem requirements. An example would be to choose a single-degree-of-freedom-
linkage topology for a two-degree-of-freedom task. This is an expensive mistake, since
no choice of dimensions or joint types will yield a viable solution. Besides being rela-
tively unknown, type synthesis is difficult to apply because the principles are not as well
defined as those for dimensional synthesis, and so the technique is usually not utilized to
its full potential usefulness.
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Type synthesis consists of many identifiable steps. For example, the questions
listed below may be considered in the following order. The desired degree of freedom is
known from the problem.

N R LN -

How many links and joints are required for a desired degree of freedom?
What are the link types and how many of each are needed for this link set?
How many different link sets satisfy the desired degrees of freedom?

How many linkage topologies can be formed from these sets of links?
How many unique topologies are available from which to choose?

How many ways can a ground link be chosen for each topology?

How can one predict if any topologic inversions are inherently better than all
others for the task at hand?

8. How many ways can the particular types of joints, required to satisfy the task,
be distributed throughout the linkage?

9. How many different links could serve as the input driver?

Type synthesis can be subdivided into topological synthesis, topological analysis,
and number synthesis [117]. Questions 1 through 3 constitute number synthesis,
questions 4 through 6 are topological synthesis, and questions 7 through 9 are typical of
topological analysis. Figure 8.19 lists the divisions within type synthesis and shows the

place of the field within kinematics.

Type

Synthesis

A

Topological Analysis
Topological Synthesis
Number Synthesis

Y

Dimensional
Synthesis

Y

Kinematic
Analysis

Figure 8.19 The field of type synthesis
within kinematics.

The first step in type synthesis is to determine the number and type of links
needed to form linkages with the correct degree of freedom. This can be done by using
a modified form of the Gruebler equation (see Chap. 1) listed below as Eq. (8.7). Solu-
tion of this equation determines all the sets of higher-order links (those larger than
binaries) which satisfy the desired degree of freedom.

n—(F+3)=T+20+3P+ ... (8.7)

Where n = the total number of links in a mechanism

B = the number of binary links*

T = the number of ternary links

* Not included in Eq. (8.7), because links are not higher-order links.

WA

P AT,
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Q = the number of quarternary links
P = the number of pentagonal links
F = the degree of freedom required to perform the desired task

Each higher-order link set is combined with the necessary number of binary links
to total the number of links required by Gruebler’s equation for the mechanism. Each set
of n links is known as a kinematic link set solution (KLSS). There are methods to gener-
ate these solutions exhaustively and to determine a priori what the final count should be
for any combination of number of links and degrees of freedom [160].

The collection of links comprising each KLSS are assembled into figures using pin
joints at all link connection points. These figures define the topologic structure of the
linkages formed from this set and are called isomers. These isomers are guaranteed to
have the desired overall degree of freedom. Each isomer obtained from all kinematic
link set solutions for a desired degree of freedom and number of links is called a basic
kinematic chain (BKC). It is important to have a complete set of BKCs. The urge to ac-
complish this has attracted much attention over the years [32, 162—164]. Care must be
taken when forming these topologic structures to exclude “bad” BKCs, those which fail
the degree-of-freedom-distribution criterion. This criterion demands that a kinematic
chain not have an imbedded zero-freedom subchain. Such a chain would be an unneces-
sarily complex version of a simpler one, and it should be eliminated before continuing.
All KLSS, except those which describe the binary chain mechanisms, have some bad
isomers. It is predictable which KLSS will yield only bad isomers, but discovering the
useful isomers in the remaining KLSS can be tedious. For example, the one degree of
freedom six bar chains have two kinematic link-set solutions. All isomers of one set fail
the degree of freedom distribution criterion and degenerate to other linkages, while only %5
of the isomers from the second KLSS fail. These isomers must be individually checked.

The next step is to generate all fopologic inversions of a given BKC. These are
formed by grounding each link in a BKC, one at a time, and determining which of the
resulting mechanisms are topologically unique. For example a Watt I is topologically
different than a Watt II and may be capable of performing different tasks as was pointed
out in Chap. 1.

Few methods exist to determine which topologic inversion is best suited for a par-
ticular task. One successful technique is called the associated linkage concept. It is pre-
sented below.

The final three steps determine how drivers and different types of joints can be
chosen and distributed throughout the mechanism. Fig. 8.20 outlines the entire proce-
dure described above for the case of a six-bar one-freedom linkage. At this point the
topology and joint pairs for a mechanism have been determined and all that remains is to
perform a dimensional synthesis.

The Associated Linkage Concept

The associated linkage concept was developed by R. C. Johnson and K. Towligh [91, 92]
to act as a spur to creativity. An engineer armed with this technique should be able to
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2 Kinematic link-set solutions for F=1,n=6

First solution Second solution
B=4,T=2 B=5,Q=1

These 2 KLSS yield 8 basic kinematic chains

6 Isomers 2 Isomers

I I e

@j@@%%% D>

These two
isomers
satisfy the
freedom
distribution
criterion

3 Topologic inversions 2 Topologic Inversions These six fail the freedom distribution criterion:
Stephenson’s chains Watt's chains Isomers c, d, g have structural subchains,

X % Isomers e, f, h have overconstrained subchains.
X\ .

Driving links and different types of joints are chosen depending upon the
application. Many mechanisms are derived from these topologic inversions

Figure 8.20 Demonstration of type synthesis for 6-bar, one-freedom chains.

generate many mechanisms for a specific task. Design rules are translated into their to-
pologic equivalents (steps 6, 8 and 9 from above) and suitable BKCs (step 5 above) are
chosen. The method consists of the following procedure:

1. The determination of rules that must be satisfied for the selection of a suitable
“associated linkage.” These rules are derived by observing the specific design
application.

2. The application of suitable asociated linkages to the synthesis of different types
of devices. (See Table 1.2 for equivalent lower-pair joints for velocity match-
ing of higher-pair connections.)

This technique of applying number synthesis to the creative design of practical
devices will be illustrated by several examples.

£
E:
&
\%‘
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Synthesis of Some Slider Mechanisms

Suppose that it is desired to derive types of mechanisms for driving a slider with rectilin-
ear translation along a fixed path in a machine. Assume that the drive shaft will be fixed
against translation and that it must rotate with unidirectional rotation. Also, assume that
the slider must move with a reciprocating motion.

A basic rule for this example is that a suitable associated linkage must have a
single degree of freedom (F = +1) when one link is fixed. Let us start with the least
complicated associated linkage chain (which is the four-bar) since simplicity is an obvi-
ous design objective (Fig. 8.21a). The four-bar associated linkage has four revolute
joints. If one of the revolutes (joint c-d) is replaced by a slider, the slider-crank mecha-
nism is derived as shown in Fig. 8.21b.

Increasing the degree of complexity, a Stephenson six-bar chain (in which ternary
links are not directly connected) is considered next as a suitable associated linkage
(Fig. 8.22a). By varying the location of the slider one creates the slider mechanisms of
Fig. 8.22b—f, different from the slider-crank of Fig. 8.21. Finally, in Fig. 8.23, from a
Watt six-bar chain (in which the ternary links are direct connected) we derive only one
new mechanism (Fig. 8.23b), which is of the same degree of complexity as those in
Fig. 8.22; Fig. 8.23c, d, and e are merely slider-cranks, with an added passive dyad.
Thus five different six-link mechanisms, each having only a single slider joint, can be
derived for this problem.

This general procedure could be extended to other suitable linkages of greater
complexity, including those containing higher pairs.* Thus cams and sliding pivots may
be incorporated in the derivations of different types of mechanisms, such as those illus-
trated in Fig. 8.24, derived from the four-bar chain as the associated linkage.

Synthesis of Some Gear-Cam Mechanisms

A typical meshing gear set is shown in Fig. 8.25 with two typical teeth in contact. At
the instant of observation the meshing gear set is equivalent to a hypothetical quadric

Associated
Linkage

7.

(a)

Figure 8.21 Slider-crank mechanism and its associated linkage; (a) four-bar chain; (b) slider-
crank mechanism.

* Sec. 6.10 describes this technique applied to cam-modulated linkages.
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Associated
Linkage

Merely a Slider-Crank

(c) (d)

(e) (f)

Figure 8.22 Slider mechanisms derived from Stephenson’s six-bar chain as the associ-
ated linkage. Note that (d) shows merely a slider crank with redundant (superfluous)
links, the passive dyad consisting of links e and f.

chain (see Table 1.2). Hence, as shown in Fig. 8.25, a meshing gear set has a four-bar
chain as an associated linkage. The basic rules for a suitable associated linkage involved
in the synthesis of a mechanism containing a meshing gear set are as follows:

1. The number of degrees of freedom with one link fixed must be F = +1.

2. The linkage must contain at least one four-sided closed loop. This is true since
the meshing gear set corresponds to a four-sided closed loop containing two
centers of rotation, R, and R, and two base points, B, and B,, which are the
instantaneous centers between gear p and the fictitious coupler C and between
gear g and C, respectively. In the gear set, coupler C is replaced by the higher-
pair contact between the tooth profiles. Hence B, and B, coincide with the cen-




Sec. 8.3 Type Synthesis 499

Associated
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Merely a Slider-Crank Merely a Slider-Crank

(c) (d)

(e)

Figure 8.23 Slider mechanisms derived from Watt’s chain six-bar as the associated
linkage.

ters of curvature of the respective involute tooth profiles at their point of contact.
In traversing this four-sided closed loop, the two centers of rotation must be
encountered in succession, such as RRBB rather than RBRB.

3. The four-sided closed loop must contain at least one binary link. This is true
because in the four-sided closed loop the link connecting the two base points
must be a binary link. This is evident since the base points on the meshing
gears are instantaneous and they are joined by a hypothetical connecting rod in
the equivalent quadric chain.
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Figure 8.24 Derivation of some slider mechanisms containing cams and sliding pivots
from the four-bar chain as the associated linkage. Notice that point B is the center of cur-
vature of the cam contour at the point of contact of the cam; (a) four-bar chain; (b) Scotch
yoke; (c) disk cam with translating follower.

Suppose that it is required to design a gear mechanism for driving a slider with ar-
bitrary motion along fixed ways in a machine. Assume that the driving shaft must have
unidirectional rotation and the slider must have a reciprocating motion. One possible de-
sign would be the mechanism shown in Fig. 8.26, where the driving cam provides arbi-
trary motion and a gear and rack drive the slider. In Fig. 8.27 an equivalent linkage for
this mechanism is shown together with its associated linkage. Incidentally, a gear and
rack is a special gear type with one base point and one center of rotation at infinity.

Simplicity in design is a practical goal worth striving for. Suppose that we wish to
explore different, simpler mechanism types for the basic problem described in the pre-
ceding paragraph (assuming that a cam, follower, gear, and rack are to be employed for
driving the slider). The simplest suitable associated linkage for this application would be
either Watt’s chain or Stephenson’s chain. From these chains three different mechanism
types are derived (Figs. 8.28 and 8.29), where Fig. 8.29c would require a flexible shaft
for driving the cam.

Synthesis of Some Internal-Force-Exerting Devices

Kurt Hain [83] has applied number synthesis to the design of differential brakes and dif-
ferential clamping mechanisms by recognizing the analogy with preloaded structures.
This analogy shows that, for the synthesis of internal-force-exerting devices in general,
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Figure 8.25 Meshing gear set with its as-
sociated linkage. B, and B, are the centers
of curvature of the involutes at the contact
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a suitable associated linkage must have F = —1 for the number of degrees of freedom

with one link fixed. Also, forces exerted by the device on the work piece correspond to
binary links in the associated linkage, recognizing that a binary link is a two-force mem-
ber. Let us apply this technique to the synthesis of two practical devices. First, different
types of compound-lever snips are explored, followed by several types of yoke riveters.

Synthesis of Compound-lever Snips. Simply constructed compound-lever
snips are to be designed for cutting through tough materials with a relatively small
amount of effort. The actuating force is designated by P and the resisting force by F..
We will assume that the compound-lever snips should be hand-operated and mobile.
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Figure 8.27 Slider mechanism of Fig. 8.26 with equivalent linkage (a) and associated
linkage (b) from which it was derived.

Gear

Driving

Cam Rack and

Slider

Figure 8.28 Cam-gear-slider mechanism
(b) derived from Watt’s chain.
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Figure 8.29 Cam-gear-slider mechanisms
(c) derived from Stephenson’s chain.

Hence there will be no ground link in the construction. However, a high amplification of
force is required in the device. Therefore, in the associated linkage, binary links P and
F, must not be connected by a single link; otherwise, a simple lever type of construction
will result in relatively low force amplification.

In summary, for application to the synthesis of compound-lever snips, the rules or
requirements for a suitable associated linkage are as follows:

1. F = —1.
2. There must be at least two binary links because of the two forces P and F,.

3. Two binary links P and F, must not connect the same link, because in that case
the snips will be simple instead of compound.

The associated linkages in Figs. 8.30, 8.31, and 8.32 satisfy the requirements.
Each suitable associated linkage yields a different mechanism for compound-lever snips.

Synthesis of yoke riveters. The configuration for an existing yoke-riveter
design [91] is shown in Fig. 8.33. Let us apply number synthesis in the creation of other
types of yoke-riveter designs.
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Figure 8.30 Synthesis of compound lever snips from a suitable associated linkage.

Suitable Associated
Linkage

(b)

Figure 8.31 Synthesis of compound-lever snips from a suitable associated linkage.

The following characteristics are assumed to be requirements for a suitable yoke
riveter in our particular application:

Simple features of construction.

Self-contained, portable unit.

High force amplification between power piston and rivet die.

One part of the two-part rivet die and the relatively large pneumatic power cyl-
inder are fixed to the frame link.

5. Another part of the rivet die and the power piston are to slide relative to the
frame link.

sl ol

From Fig. 8.33 of the existing yoke-riveter design the associated plane linkage
with single pin joints is derived as shown in Fig. 8.34. Applying Gruebler’s equation
(Chap. 1) to the linkage in Fig. 8.34, we obtain F = —1, which is expected, since this
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Figure 8.32 Different design derived from another suitable associated linkage for
compound-lever snips.

Figure 8.33 Existing yoke riveter (a) and the equivalent toggle linkage in inset (b).

value of F is characteristic of the associated linkage for any internal-force-exerting de-
vice: ' = 3(n — 1) — 2f;. Note that n = 10, including the binary links representing P
and F,, connecting a with b and a with A, respectively. Note also that the number of pin
joints, f;, is 14. Therefore,

F=310-1)—214) = -1
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Figure 8.34 Associated linkage for the
existing yoke riveter of Fig. 8.33.

In the synthesis of new configurations of yoke riveters, it will be necessary to re-
verse the procedure just illustrated in going from Fig. 8.33 to Fig. 8.34. Thus first it
will be necessary to select a suitable associated linkage for a new yoke-riveter design.
From a careful study of Figs. 8.33 and 8.34, and from a consideration of the desired
features of a suitable yoke riveter listed previously, the following rules or requirements
for a suitable associated linkage are obtained.

1. F=—1.

2. There must be at least two binary links (for P and F,).

3. The binary links corresponding to P and F, must be connected to the same link
at one end, which is the frame link, and to different ternary links at their other
end. This assures simple construction of the linkage with high force amplifica-
tion between the rivet die set and the power piston.

4. The frame link must be at least a quaternary link for P, F,, and two lower-pair
sliding joints for the rivet die and power piston.

5. The different rernary links mentioned in requirement 3 must be connected to
the frame link, since the power piston and rivet die are to have a lower-pair
sliding connection with the frame link.

Since simplicity of construction is a feature of practical importance, the simpler
associated linkage in the inset of Fig. 8.35a is a suitable choice. From this associated
linkage the simple toggle-type riveter is derived.

The associated linkage method for type synthesis is one of the useful techniques
used for synthesizing mechanism fypes. Similar methods of analysis are sometimes em-
ployed in patent cases in determining whether a device is of the same or different type
than others. Another type-synthesis method is described in the appendix of this chapter
by way of a case study.

Observe that nothing yet has been said regarding actual dimensions of these type-
synthesized mechanisms. The specific dimensions will control the relative motions and
the force transmission characteristics of the examples given above.
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Figure 8.35 Simple toggle-type riveter;
(a) associated linkage; (b) the mechanism
(b) derived from (a).

8.4 TOOLS OF DIMENSIONAL SYNTHESIS

The two basic tools of dimensional synthesis are geometric contruction and analytical
(mathematical) calculation.

Geometric or graphical methods of synthesis provide the designer with a fairly
quick, straightforward method of design. Graphical techniques do have limitations of ac-
curacy due to drawing error, which can be very critical and because of complexity of so-
lution to achieve suitable results, the geometric construction may have to be repeated
many times.

Analytical methods of synthesis are suitable for automatic computation and have
the advantages of accuracy and repeatability. Once a mechanism is modeled mathemati-
cally and coded for a computer, mechanism parameters are easily manipulated to create
new solutions without further programming. Although this text emphasizes analytical
synthesis, it is important to have experience in graphical techniques for use in the initial
phases of kinematic synthesis. The next several sections present a review of useful geo-
metric approaches before moving on to analytical synthesis.

8.5 GRAPHICAL SYNTHESIS — MOTION GENERATION:
TWO PRESCRIBED POSITIONS [139]

Suppose that we wish to guide a link in a mechanism in such a way that it will assume
several arbitrarily prescribed distinct (finitely separated) positions. For two positions of
motion generation, this can be accomplished by a simple rotation (Fig. 8.36) about a
suitable center of rotation. This pole (see Sec. 4.2 of Vol. 2), P,,, is found graphically
by way of the midnormals a, and b, to the connecting line segments of two corre-
sponding positions each of points A and B, namely A,, A, and B,, B,.

If pole Py, happens to fall off the frame of the machine, we may use a four-bar
linkage to guide link AB from position 1 to position 2 (Fig. 8.37). Two fixed pivots, one
each anywhere along the two midnormals, will accomplish this task. The construction is
as follows.
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8.12 ANALYTICAL SYNTHESIS TECHNIQUES

Figures 8.37 to 8.39 show that the geometric construction of four-bar motion generators
for two and three prescribed positions is a fairly simple task. Suppose, however, that we
wish to find an “optimal” four-bar motion generator for a specific application — perhaps
a case that has constraints on ground and moving pivot locations, transmission angle,
link-length ratio, and/or mechanical advantage. The construction of Fig. 8.39, although
simple, may be too time consuming to repeat until a suitable solution is obtained. A
graphical search through two infinities of solutions is inconceivable. What other alterna-
tives are available? By choosing the position of the circle point A, in Fig. 8.39, we have
arbitrarily picked two free choices — those free choices in turn specify the corresponding
center point A,. These two free choices for the three-precision-point motion-generation
synthesis of one side of the four-bar linkage can be picked with different strategies in
mind toward various design objectives.

In order to obtain a handle on the design variables and free choices, an analytical
model of the linkage must be developed. Several mathematical techniques for modeling
linkages have been utilized for planar synthesis objectives. These include algebraic
methods, matrix methods, and complex numbers. For planar linkages, the complex
numbers technique is the simplest, yet the most versatile method. In this text we there-
fore concentrate on the latter method. Before exploring the question of free choices ver-
sus synthesis options, the complex-number technique will be reviewed,* especially as it
relates to modeling linkages for synthesis.

8.13 COMPLEX-NUMBER MODELING IN KINEMATIC SYNTHESIS

Any planar mechanism can be represented by a general chain, consisting of one or more
loops of successive bar-slider members (Fig. 8.55). For example, the offset slider-crank

iy A

> x  Figure 8.55 General planar chain.

* A more complete review of complex numbers is given in the appendix to Chap. 3.
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(a) (b)

Figure 8.56 (a) offset slider-crank mechanism; (b) its equivalent general chain.

mechanism of Fig. 8.56a may be derived from the general chain (Fig. 8.56b) by fixing
the sliders to their respective bars between members 1 and 4, 4 and 3, and 3 and 2 as
well as fixing bars 1 and 4 to ground.

Complex numbers readily lend themselves as an ideal tool for modeling linkage
members as parts of planar chains. For each bar-slider member of Fig. 8.55, the position
of the pivot on the slider with respect to the pivot of the bar can be defined by the rela-
tive position vector Z, (Fig. 8.57a) expressible as a complex number. The first or start-
ing position of the kth bar can be written as

Z,=Z,e"™ = Z/(cos 6, + i sin 6)) (8.9)

Prirned
Position

First or Starting
Position iY A

(a) (b)

Figure 8.57 Complex-vector representation of a bar-slider pair; (a) stretch rotation; (b) pure
rotation.
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where i = V —1
k = kth bar of the chain

Z, = |Z,| = length between the pivot of the bar and the pivot on the slider in the first
position

6, = arg Z, = angle measured to vector Z, from the real axis of a fixedly oriented rect-
angular coordinate system translating with the pivot of the bar (angles
measured counterclockwise are positive)

If there is no change in the length of the kth bar in the chain from the first to the primed
(jth) position as shown in Fig. 8.57b, Z; is expressible as

Z! = Z,e " = 7% (8.10)
where

Notice that as a link moves in the plane, a coordinate system is pinned to the base of the
link (Fig. 8.57a). This coordinate system remains parallel to a fixed set of coordinates
so that 6 and 6, are arguments of Z in the jth and first positions respectively while ¢; is
the angle of rotation from position 1 to j. Using Eq. (8.9) yields

Z! = Zp™ (8.12)
If there is a change in length of the kth bar, and if this change is defined by
Z,
== 8.13
p] Zk ( )
then
7, = kajei"’f (8.14)

¢ in Egs. (8.12) and (8.14) is termed the rotational operator [138, 140] and will rotate
a vector from its initial position by the angle ¢, without changing the length of the vec-
tor. The factor p; is the stretch ratio,™ while pjei‘i’f is called the stretch rotation operator
[138]. We may now model any bar-slider member in a planar mechanism by a vector
and express its motion with respect to any reference in terms of an initial position, a
stretch, and a rotation. How can we collect the links of the mechanism into one model
and develop some equations to work with?

8.14 THE DYAD OR STANDARD FORM

The great majority of planar linkages may be thought of as combinations of vector pairs
called dyads [145]. For example, the four-bar linkage in Fig. 8.58 can be perceived as
two dyads: the left side of the linkage represented as a vector pair (W and Z) shown in

* See, for example, the slider-crank of Fig. 8.82 and Eq. (8.83).
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Figure 8.58 Notation associated with a
dyad shown as it would model the left half
of a four-bar linkage. The dyad (W and Z)
is drawn in its first and jth positions.

solid lines, and the right si@) represented by the das_hgi dyad (W* and Z*). The vectors
that represent the coupler AB and the ground link A, B|, are easily determined by vector
addition when these dyads are synthesized [see Eqgs. (8.25) and (8.26)]. The path point
of the coupler link moves along a path from position P, to P; defined in an arbitrary
complex coordinate system by R, and R,;.

All vector rotations are measured from the starting position, positive counterclock-
wise (Figs. 8.58 and 8.59). Angle B, is the rotation of vector W from the first to the
second position, while B, is the rotation from the first to the third position. Similarly,
angles o are rotations of the vector Z from its first to its jth position (see Fig. 8.59).

Suppose that we specify two positions for an unknown dyad by prescribing the
values of Ry, R;, a;, and B; (Fig. 8.58). To find the unknown starting position vectors
of the dyad, W and Z, a loop closure equation may be derived by summing the vectors
clockwise around the loop containing We®/ | Ze™ R;,R,, Z, and W:

We® + Zes — R, +R, —Z — W =0 (8.15)

or

W™ — 1) + Z(e™ — 1) = §, (8.16)

where the displacement vector along the prescribed trajectory from P, to P;is

8 =R, - R, (8.17)

Equation (8.16) is the standard-form equation. This equation is simply the vector
sum around the loop containing the first and jth positions of the dyad forming the left
side of the four-bar linkage. As we will see, Eq. (8.16) is called the standard form if 0
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Moving Plane

Moving Pivot

Figure 8.59 Schematic of the W, Z dyad shown in three positions. The precision
points Py, P,, P; are located by Ry, R;, Rj, while all rotations are expressed from the
first dyad position.

and either o or 3; are prescribed or known. This requirement is consistent with the defi-
nitions of the usual tasks of kinematic synthesis: motion generation, path generation with
prescribed timing, and function generation.

8.15 NUMBER OF PRESCRIBED POSITIONS VERSUS NUMBER
OF FREE CHOICES

For how many positions can we synthesize a four-bar linkage for motion, path, or func-
tion generation? A finite number of parameters (the two components of each vector)
completely describe this linkage in its starting position. Therefore, there are only a finite
number of prescribable parameters which can be imposed in a synthesis effort. The four-
bar motion generator will be used to determine how many positions may actually be pre-
scribed. In Fig. 8.58, the path displacement vectors §; and coupler rotations «; will be
prescribed in a motion-generation task.

Table 8.1 illustrates how to determine the maximum number of prescribable posi- :
tions for the synthesis of a four-bar motion generator. Although Table 8.1 is based on
the left side of the linkage of Fig. 8.58 [Eq. (8.16)], the right side of the linkage will
yield the same results [see Eq. (8.24)]. The table shows that, for two positions there are
two independent scalar equations contained in the vector equation Eq. (8.16): the sum-
mation of x components and the summation of the y components of the vectors. These
are called the real and imaginary parts of the equation, each a scalar equation in itself.
This system of two scalar equations contains five scalar unknowns: two coordinates each

e I P

¥
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Number of Prescribed Positions Versus Number of Free Choices

TABLE 8.1 MAXIMUM NUMBER OF SOLUTIONS FOR THE UNKNOWN
DYAD W, Z WHEN &; AND a; ARE PRESCRIBED IN THE EQUATION:
W — 1) + Z(e™ - 1) = § (8.16)
Number of Number of

positions (n): Number of Number of free choices | Number of
J=2,3,...,n | scalar equations scalar unknowns (scalars) solutions

2 2 5(W, Z, By) 3 0(=)

3 4 6(above + £3;) 2 0(?%)

4 6 7(above + S,) 1 O(")

5 8 8(above + Bs) 0 Finite

of the vectors W and Z (W,, W,, Z,, and Z,) and the input rotation 3,. If three of the
five unknowns are chosen arbitrarily, the equations can be solved for the remaining two
unknowns. Since in general there is an infinite number of choices for each of the three
free choices, the number of possible solutions for the two-position synthesis problem is
on the order of infinity cubed, symbolized by O(”).

In the case of three-prescribed positions of the moving plane, specified by three
precision points P,, P, and P; and two angles of rotation, «, and «;, there are two more
real equations but only one more scalar unknown (8;). Thus two free choices can be
made and O()” solutions are available. Each additional prescribed position in Table 8.1
adds two scalar equations and one scalar unknown. Thus, for four positions, there is one
free choice and a single infinity of solutions. For five prescribed positions there are no
free choices available, and at best a finite number of solutions will exist (see Chap. 3 of
Vol. 2). Five prescribed positions is therefore the maximum number of precision points
possible for the standard-form solutions for the motion-generation dyad of Fig. 8.58.

Table 8.1 correlates the number of prescribed positions, the number of free choices,
and the number of closed-form solutions expected for the standard form. However,
Table 8.1 does not say anything directly about the difficulty in solving the sets of standard-
form equations in closed form. An important question is this: can a linear equation-solver
technique be applied for two, three, four, and five prescribed positions?

The answer lies in the form of the respective sets of equations of synthesis: are they
linear or nonlinear in the unknown reals? A nonlinearity test will be applied to Eq. (8.16)
for each row of Table 8.1.

Two positions. There are three free choices to be made in Eq. (8.16). For ex-
ample, if &, and o, were prescribed, Z and S, could be chosen arbitrarily, yielding a
simple linear solution for the remaining unknown, W:

8, — Z(e™ — 1)

W = .
e® — 1

(8.18)

This case of motion generation for two positions for a dyad is analogous to the graphical
technique described in Sec. 8.5. In both cases there are three infinities of solutions. De-
sign methods can be developed for two prescribed positions with the ability to optimize
i other indices of performance a priori, such as the transmission angle.
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Three positions. Here, according to Table 8.1, two free choices must be made,
so one may expect two infinities of solutions, as in the graphical method (Sec. 8.6). The
system of equations for three positions is

W(e® — 1) + Z(e™> = 1) = 6,

, . (8.19)
W™ — 1) + Z(e™ — 1) = §,

If 8,, 0;, o, and « are prescribed, 3, and 35 can be picked arbitrarily. Thus system (8.19)
is a set of complex equations, linear in the complex unknowns W and Z (the vectors
representing the dyad in its first position) with known coefficients. The system can be
solved by Cramer’s rule:

5 e — 1'
83 €ia3 - 1
W= — : 8.20
e —1 e — 1‘ et
e —1 e —1
eiﬁz - 1 62
-1 8
7 = ¢ 3 (8.21)

e®r — 1 e — 1
e® — 1 e —1

Equations (8.20) and (8.21) are readily programmed on a hand calculator or micro-
computer.

The three-position motion-synthesis case yields a linear solution if 3, and @, are
free choices. The two free choices in Eq. system (8.16) may be made with different strate-
gies (as will be explored in Sec. 8.19 and 8.20), but will always involve two infinities
of solutions [43, 44,58, 61, 64, 108, 124, 125].

Four positions. The system of equations for four prescribed positions of the
moving plane is as follows:

W(e® — 1) + Z(e™ — 1) = 6,
W(e® — 1) + Z(e™ — 1) = &, (8.22)
W(e™ — 1) + Z(e™ — 1) = §,

Table 8.1 allows only one free choice from among the seven real unknowns: coordinates
of W, Z and angles 3,, 3;, and B3,. Recall that &, and «;, j = 2, 3, 4, are prescribed.
Thus only one of the rotations or one coordinate of a link vector can be picked arbi-
trarily. System (8.22) contains three unknown angles §; in transcendental expressions.
Even if we pick one S; as a free choice, Eq. system (8.22) requires a nonlinear equation-
solving technique. Thus three precision points comprise the maximum number which
may be prescribed and yet obtain a linear solution. For the four-position problem, Chap. 3
of Vol. 2 presents a closed-form nonlinear solution for Eq. (8.22), yielding up to an in-
finity of solutions. The LINCAGES and KINSYN software packages are built around
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the three and four prescribed position cases [6, 50, 51, 57, 60, 62, 93,114, 124, 125, 136,
I71]. Refer to color inserts in this book for LINCAGES example output.

Five positions. The system of equations for five positions, which adds one
equation added to Eq. system (8.22) with j = 5, is also nonlinear in the unknowns f3;,
and there are no free choices available. This case is also solved in closed form in Chap. 3
of Vol. 2.

8.16 THREE PRESCRIBED POSITIONS FOR MOTION, PATH,
AND FUNCTION GENERATION

This chapter concentrates on kinematic synthesis objectives that yield linear solutions —
those easily solved graphically, on a hand calculator, or by a simple computer program.
In the preceding section we discovered that, for motion generation of a dyad, three posi-
tions were the limit for a linear solution. Tabie 8.1 shows that there are two free choices
to be made amongst the variables W, Z, 3, and B;. Although there is good logic in
choosing B, and 3;, as was done in Egs. (8.20) and (8.21), other free choices may be
made to satisfy strategies other than one that has a simple equation set. This and the next
section will continue with the standard form solution procedure, followed by other de-
sign strategies for three prescribed positions in subsequent sections.

Notice that the balancing of the number of equations and the number of unknowns
in Table 8.1 was based on motion synthesis. Equation (8.16) has been termed the stan-
dard form with the understanding that both 0, and o; or B; were prescribed. The numbers
in Table 8.1 will be the same if B; were prescribed instead of a;, which, as we know
from Sec. 8.2, is the case for path generation with prescribed timing.

We will look at the four-bar mechanism of Fig. 8.60, as well as a six-bar linkage
in Sec. 8.20, and attempt to express the synthesis of these linkages in the standard form
for motion, path, and function generation. If this can be accomplished, only one com-
puter program will be needed to synthesize these linkages for either of these tasks. (This
generality of the standard form also extends to the nonlinear solutions of Chap. 3 of
Vol. 2.)

Synthesis of a Four-Bar Motion Generator for Three
Precision Points

The four-bar linkage of Fig. 8.60 is to be synthesized for motion generation. As sug-
gested in Sec. 8.14, there are two independent dyads in the four-bar linkage, which will
be called the left-hand side and the right-hand side. Each dyad connects a ground pivot
(a center point) to the path point on the coupler by way of joint A or B of the coupler
(the circle point). The equations describing the displacements of the left-hand side have
already been derived, but in the notation of Fig. 8.60 the standard form is

Zye — 1) + Zy(e™ — 1) = 5, j=23 (8.23)

where &; and y; are prescribed.
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the three and four prescribed position cases [6, 50,51, 57,60, 62,93, 114, 124, 125, 136,
171]. Refer to color inserts in this book for LINCAGES example output.

Five positions. The system of equations for five positions, which adds one
equation added to Eq. system (8.22) with j = 5, is also nonlinear in the unknowns g3;,
and there are no free choices available. This case is also solved in closed form in Chap. 3
of Vol. 2.

8.16 THREE PRESCRIBED POSITIONS FOR MOTION, PATH,
AND FUNCTION GENERATION

This chapter concentrates on kinematic synthesis objectives that yield linear solutions —
those easily solved graphically, on a hand calculator, or by a simple computer program.
In the preceding section we discovered that, for motion generation of a dyad, three posi-
tions were the limit for a linear solution. Tabie 8.1 shows that there are two free choices
to be made amongst the variables W, Z, 3, and B;. Although there is good logic in
choosing 3, and (B;, as was done in Eqgs. (8.20) and (8.21), other free choices may be
made to satisfy strategies other than one that has a simple equation set. This and the next
section will continue with the standard form solution procedure, followed by other de-
sign strategies for three prescribed positions in subsequent sections.

Notice that the balancing of the number of equations and the number of unknowns
in Table 8.1 was based on motion synthesis. Equation (8.16) has been termed the stan-
dard form with the understanding that both &, and «; or 8; were prescribed. The numbers
in Table 8.1 will be the same if B; were prescribed instead of «;, which, as we know
from Sec. 8.2, is the case for path generation with prescribed timing.

We will look at the four-bar mechanism of Fig. 8.60, as well as a six-bar linkage
in Sec. 8.20, and attempt to express the synthesis of these linkages in the standard form
for motion, path, and function generation. If this can be accomplished, only one com-
puter program will be needed to synthesize these linkages for either of these tasks. (This
generality of the standard form also extends to the nonlinear solutions of Chap. 3 of
Vol. 2.)

Synthesis of a Four-Bar Motion Generator for Three
Precision Points

The four-bar linkage of Fig. 8.60 is to be synthesized for motion generation. As sug-
gested in Sec. 8.14, there are two independent dyads in the four-bar linkage, which will
be called the left-hand side and the right-hand side. Each dyad connects a ground pivot
(a center point) to the path point on the coupler by way of joint A or B of the coupler
(the circle point). The equations describing the displacements of the left-hand side have
already been derived, but in the notation of Fig. 8.60 the standard form is

Zy(e™ — 1) + Ze™ — 1) = §,, j=2,3 (8.23)

where &; and vy; are prescribed.
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Figure 8.60 Four-bar motion- and path-
generator mechanism.

The displacement equations for the right-hand side of the linkage may be written as
ZeVi — 1) + Zge™ — 1) = &, j=2,3 (8.24)

where &; and vy; are prescribed.

If we assume ¢; and i, arbitrarily, Eqs. (8.23) and (8.24) can be solved by Cramer’s
rule for Z,, Zs, Z,, and Z,. See the form of solution in Egs. (8.20) and (8.21). The
other two linkage vectors are simply

Z,=17s;— Zg (8.25)
and

Z,=7,+7,— 1, (8.26)

Example 8.3
This example* will help demonstrate the correlation between the graphical and complex
number methods for three-precision-point standard-form motion synthesis. The graphical
solution will be demonstrated first. Figure 8.61a shows a rigid body in three desired posi-
tions. The angular orientation and precision positions of the body in three positions are
known. Suppose points A and B are chosen as proposed circle-point locations. Choosing
these locations constitutes making four free choices, the x and y coordinates of both points.
These choices dictate the location of the ground pivots A, and B, shown in Fig. 8.61b,
found by the intersection of the perpendicular bisectors as described in Sec. 8.6 (refer to
Fig. 8.39). The resulting starting positions of the input and output dyads, W,Z, and
W;Z;, and the arguments of the input and output links at the three precision positions are:

* Contributed by Ray Giese and John Titus.

—
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Figure 8.61 Three position motion synthesis of a four-bar linkage: (a) coupler link AB shown in
three prescribed coplanar positions as a rigid body; (b) graphical construction for locating A, and B,.
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W, = .72 — 1.06i Wy = —.66 — 1.55i
6, = 304.2°, o, = 247.1°

0, = 2.6°, o, = 136.7°

6, = 88.4°, o3 = 116.6°

Z, = .656 — .265i Zy = .265 + .656i

(Z., and Z, are known from the choices for points A and B)

Now we shall try to match the graphically generated solution with the standard-form
method. Solving for the input side first, using path tracer point P, we compute from Fig. 8.61.

5 =R, - R, =12+ .25) — (2.0 — 1.1i)) = =8 + 1.35
& =R, — R, =(1.25+1.9) - (2.0-11)=—-.75+3.0i
138° — 293° = —155° = 205°

(¢5)
348° — 293° = 55°

The input link rotation angles are free choices in the motion generation solution. We
choose the same angles as found in the graphical solution to demonstrate the correlation be-
tween the two solutions:

B2 = 0, — 6,
Bs=6;— 0, = 88.4° — 304.2° = —215.8° = 144.2°

o3

2.6° — 304.2° = —301.6° = 58.4°

The input link solution as given by Eq. (8.20) is
&y(e™ — 1) — 8y(e™ — 1)

W, = — . - .
TP DE D) - (@ - D - )
_ 82eia3 - 53eia2 + 63 - 62
Wi = giB2tes) _ oiBsted) _ B2 _ pias 4 P + el

Using Euler’s equation (e = cos @ + i sin 6) and substituting the values for the variables,
we obtain
_ —3.462 + 4.171i
A —4.194 — .403i

W, = .723 — 1.064i = 1.287 X 304.21°

which, when compared to the graphical solution, shows less than 1% difference. This is
well within graphical accuracy. Vector Z, is calculated from Eq. (8.21).

83(eiﬂ2 _ 1) _ 52(eiﬁs — 1)

Z, = — - - -
TP DE ) - @ - D - )
_ 63€iﬁ2 - 826iﬂ3 = 63 + 62

Z,= o (Bates) _ o Bited _ 2 _ a3 | P + e
—2.856 + .847i

Z,= .
—4.1941 — .4025i

Z, = .656 — .265i = .707 X 338°
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This is exactly the value that was chosen for Z, in the graphical solution. The output side
dyad is synthesized using the same values for 8,, 8;, o, and «; but requires two free
choices for the output link rotation angles. Again, we choose the values determined in the
graphical synthesis.

B, =0, — o = 136.7° — 247.1° = —110.4° = 249.6°
B3y =03 — o, = 116.6° — 247.1° = —130.5° = 229.5°
The same procedure is followed for the output side as for the input side, resulting in

—3.462 + 4.171i
W, = .
—1.481 — 2.852i

Wy = —.655 — 1.554i = 1.686 X 247.15°

This is exactly the graphical solution for this link. Finally, the output coupler side is found

to be:
—1.477 — 1.727i
Zy = ]
—1.481 — 2.852i
Zy = .265 + .656i = .707 X 68°

Again, this is the same as that found in the graphical solution.

Synthesis of a Four-Bar Path Generator
with Prescribed Timing

Suppose that the four-bar linkage of Fig. 8.60 is to be synthesized for path generation
with prescribed timing. The very same equations as derived for motion generation, Egs.
(8.23) to (8.26) will apply in this case, but the prescribed angles will be different. In-
stead of ; in Eq. (8.32), ¢; will be prescribed and v;, j = 2, 3, are free choices. Thus
Eq. (8.23) will still be in the standard form. As for Eq. (8.24), in order to connect the
right-hand side with the left side, vector Z¢ must rotate by the same rotations (y;) as Z;.
Thus the same y;, j = 2, 3, that were picked as free choices for Eq. (8.23), are pre-
scribed in Eq. (8.24). Therefore, the four-bar path generator with prescribed timing has
the same solution procedure as the four-bar motion generator.

Synthesis of a Four-Bar Function Generator

The standard form for a four-bar function generator can be derived from Fig. 8.60 as
follows. Recall that in function generation we wish to correlate the prescribed rotations
of the input link (¢b;) and the output link (ys;). Therefore, the upper portion of the coupler
link (Zs and Zg) is of no concern for this task. Figure 8.62 shows the basic four-bar of
Fig. 8.60 in the first and jth position. The vector loop containing Z,, Z,, and Z, is

Zye® — 1) + Zye™ — 1) — Zy(e™ —1)=0 (8.27)

Since this vector equation is not in the standard form, Table 8.2 is formulated to
help correlate the number of free choices and the number of prescribed positions. The
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Figure 8.62 Four-bar function-generator mechanism.

TABLE 8.2 NUMBER OF AVAILABLE SOLUTIONS IN THE SYNTHESIS
OF FOUR-BAR FUNCTION GENERATORS (FIG. 8.62) ACCORDING TO
THE EQUATION

Z,(e™ — 1) + Zy(e™ — 1) — Z,e™ — 1) =0 (8.27)
Number of Number of Number of
positions (n): Number of scalar free choices | Number of
j=2,3,...,n scalar equations unknowns (scalars) solutions

2 2 NZy, Ly, Ly, v2) 5 O()’

3 4 8(above + ;) 4 O()*

4 6 9(above + ) 3 O()?

5 8 10(above + ys) 2 O()?

6 10 11(above + ) 1 O(»)!

7 12 12(above + 7;) 0 Finite

same development as that done in connection with Table 8.1 is repeated here. Notice
that the maximum number of prescribed positions is seven when a triad (three links) is
used and when two of the three rotations are prescribed, as they must be for function
generation.

Picking Z, as an arbitrary choice (Z, could be picked instead) will convert Eq. (8.27)
to the standard form:

Z,(e® — 1) + Zy(e™ — 1) = § = Zy(e" — 1) (8.28)

The justification for picking Z, is twofold: first, by comparing Tables 8.1 and 8.2,
the latter becomes equivalent to the first if two of the original seven real unknowns of
Table 8.2 are picked arbitrarily; second, by choosing Z,, we are actually specifying the
scale and orientation of the function generator. In fact, once a four-bar is synthesized for
function generation, the entire linkage may be scaled up or down and oriented in any di-
rection without changing the functional relationship between input and output link rota-
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tions [{; = f(¢,)]. Therefore, new function-generation solutions do not result from
allowing Z, to be an unknown. (Path and motion generators do change their prescribed
path with a change in scale; therefore, only in function generation synthesis of four-bar
linkages do we pick one of the link vectors arbitrarily).

Equation (8.28) is now in the standard form. In fact, function generation can be
thought of as a special case of path generation with prescribed timing, the path of Z, be-
ing along a circular arc. Note also that the only dyad that needs to be synthesized for
function generation is that of Eq. (8.28) for j = 2, 3.

Sections 8.21 and 8.22 show other techniques for generating design equations for
function generation: Freudenstein’s equation and the loop-closure-equation technique.
The number of free choices here does coincide with the latter method. These other tech-
niques do not necessarily yield the standard form, although they can also be so formu-
lated (see Chap. 3 of Vol. 2).

8.17 THREE-PRECISION-POINT SYNTHESIS PROGRAM
FOR FOUR-BAR LINKAGES*

A program can be written to synthesize a four-bar motion, path, or function generator
mechanism for three finitely separated precision points utilizing the notation of Fig. 8.60
(Fig. 8.63 is a flowchart for this program). The system of equations, Eq. (8.23),j = 2,3
for the left side of the four-bar and the equations for the right side, Eq. (8.24), j = 2,3
are solved by Cramer’s rule as suggested in Eqs. (8.20) and (8.21). The input data re-
quired are the rotations of the input, output, and coupler links: PHI2, PHI3, GAM?2,
GAM3, PSI2, PSI3, (¢,, b3, v, s, Uy, ¥3) and the path displacements: XDEL2,
YDEL2, XDEL3, YDELS3 (the x and y coordinates of &, and &8,). As can be seen by the
examples below, the output of the program can include a repeat of the input data, link
vectors in the starting position of the synthesized linkage in both Cartesian and polar
form, as well as the coordinates of the coupler points: A, B, and P with respect to A,.
Figures 8.64, 8.65, and 8.66 show linkages that have been synthesized for motion, path,
and function generation, respectively.

Notice that arbitrary choices must be made for all three examples according to
Table 8.1. Thus for motion generation, ¢,, ¢,, ¥,, and s, are free choices. For path
generation with prescribed timing vy,, y;, ¥,, and s; are free choices. The procedure of
Sec. 8.16 is not used here in the function-generation case. Rather than expanding the
program of Fig. 8.63, the function generator is synthesized by prescribing ¢,, ¢, U,
;. With this method ,, &,, and y,, 7y, are free choices. The only portion of the output
of interest would be Z,, Z;, Z,, and Z, (see Fig. 8.60 and the example of Fig. 8.66).

Example 8.4: Motion Generation
Completion of an assembly line requires the synthesis of a motion generator linkage to
transfer boxes from one conveyor belt to another as depicted in Fig. 8.64a. A pickup and
release position plus an intermediate location are specified. For simplicity, a four-bar link-

* The computer disc which accompanies this text includes a three position synthesis program that parallels this
section.
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Compute

g2, i3,
e'2, e'73,

eiwz,eiws

[Determinants in the numerators of
Egs. (8.20) and (8.21)]

Compute

D1' D2

Compute

Z(i),i=1-6

Print
85, 65,69, ¢3
;2()7 3.’_\“12' wé Figure 8.63 Flowchart of three-precision-
W = point four-bar synthesis program (see Fig.
Ao Bo A B P 8.60).

age (Fig. 8.60) is the type chosen for the task. From Fig. 8.64a, prescribed quantities for the

motion generation are
8, = —6 + 11i, y, = 22°
6, = —17 + 13i, v; = 68°
The free choices are arbitrarily set* as
¢, = 90°, Y, = 40°
¢b; = 198°, Yy = 73°

Table 8.3 shows a copy of the computer printout for this example, while Fig. 8.64b shows

the solution drawn in three positions.

* By specifying input rotations about twice as large as output rotations, these choices are meant to
bring about a crank-rocker type of four-bar solution. The ability to bring this about is a valuable attribute of

the three-position standard-form method.
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Figure 8.64 (a) three prescribed positions for four-bar motion synthesis; (b) synthe-
sized conveyor linkage of Example 8.4 using the program of Fig. 8.63.
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Prescribed
Path

Figure 8.65 Four-bar path generator with three prescribed path points.

TABLE 8.3 COMPUTER PRINTOUT OF 3-POSITION MOTION-GENERATOR SYNTHESIS OF *
FOUR-BAR LINKAGE

INPUT DATA i
X COMPONENT Y COMPONENT i
DELTA 2 = —6.0000 11.0000 i
DELTA 3 = —17.0000 13.0000 i
PHI 2 = 90.000 GAMMA 2 = 22.000 PSI 2 = 40.000 '
PHI 3 = 198.000 GAMMA 3 = 68.000 PSI 3 = 73.000

COMPUTED VECTORS
X COMPONENT Y COMPONENT  LENGTH DIRECTION (DEG)

722) = 5.7550 .4809 5.7751 4.771

Z(5) = 14.6106 —3.4698 15.0169 —13.359 1
Z4) = 18.3746 —.6611 18.3864 —2.061
2(6) = —1.4207 5.9518 6.1190 103.426
7(3) = 16.0313 —9.4215 18.5948 —30.443 $
Z(1) = 3.4118 —8.2796 8.9550 —67.605

LINKAGE PIVOT AND COUPLER LOCATIONS
X COMPONENT Y COMPONENT

A = 0 0 i
B, = 3.4118 —8.2796
- 5.7550 14809
- 21.7863 —8.9407
- 20.3656 —2.9889

Example 8.5: Path Generation with Prescribed Timing (Fig. 8.65)
A stirring operation requires the generation of an elliptical path. A four-bar linkage is
picked for this task. Since a crank rocker is required, the input rotations are also to be pre-

scribed. Specified quantities are
8, = —1.4 — 0.761, b,
~1,0 — 2.34, b;

126°
252°

Il

Il
Il

0,
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TABLE 8.4 COMPUTER PRINTOUT OF PATH GENERATION EXAMPLE

INPUT DATA
X COMPONENT Y COMPONENT
DELTA 2 = —1.4000 —.7600
DELTA 3 = —1.0000 —2.3000
PHI 2 = 126.000 GAMMA 2 = —-6.000 PSI 2 = 33.000
PHI 3 = 252.000 GAMMA 3 = 37.000 PSI 3 = 37.000

COMPUTED VECTORS
X COMPONENT Y COMPONENT LENGTH DIRECTION (DEG)

7(2) = 5919 .8081 1.0017 53.777
Z(5) = —.5182 1.8246 1.8967 105.856
2(4) = —.9412 2.8331 2.9854 108.376
Z(6) = —1.9958 —.1888 2.0047 —174.596
Z(3) = 1.4776 2.0134 2.4974 53.725
(1) = 3.0107 —.0117 3.0107 —.223

LINKAGE PIVOT AND COUPLER LOCATIONS
X COMPONENT Y COMPONENT

A, 0 0
B, = 3.0107 —.0117
A= 5919 8081
B 2.0695 2.8214
P= 0737 2.6326

Arbitrarily chosen variables are

Y, = —6°, Y, = 33°
vs = 37°, Y, = 37°

Table 8.4 is a copy of the computer-generated output for this example. Figure 8.65 illus-
trates the computer-generated linkage solution in its three prescribed positions.

Example 8.6: Function Generation
Figure 8.66a shows a barber’s chair in which a single control arm is to actuate both the foot
rest and the head rest. Notice the nonlinear relationship between the angles of rotation of
the three members in the three specified positions. The type of linkage chosen for this task
is a Watt II six-bar, which is simply two four-bars in series (usually connected through a
bell crank). Specified quantities for the first four-bar function generator (between the head
rest and the control arm) are

¢, = 50°, Y, = 22.5°
¢y = 75°, Y3 = 45°
Arbitrarily chosen are
E 0, = —0.07 + 0.4i, v, = 7°
6; = —0.3 + 0.7, vy = 12°




‘ Head Rest

\ Arm Rest
75° \

Barber's
Chair

Control Arm

Foot Rest

(c) (d)

Figure 8.66 Four-bar function-generator linkages in reclining chair mechanism; (a) prescribed

corresponding angular positions of foot rest, back rest, and control arm; (b) schematic of the com-

pleted mechanism; (c) head rest linkage; (d) foot rest linkage. The two four-bars in series constitute
542 the Watt II six-bar.
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The second four-bar function generator (between the control arm and the foot rest) has
specified variables of

¢, = 22.5° Y, = 40°
¢ = 45°, ¥y = 70°
Arbitrarily chosen are
8, = —0.07 + 0.4i, v, = 8°
| 8 = —0.3 + 0.7, vy = 13°

Table 8.5 is a printout for both sides of the six-bar linkage. Figure 8.66b illustrates how
both these solutions are put together by appropriate rescaling and reorientation as one of the .
numerous possible Watt’s II six-bar solutions to this problem, while Fig. 8.66¢c and d show
the two four-bar halves in their three design positions.

TABLE 8.5 COMPUTER OUTPUT OF FOUR-BAR SYNTHESES OF RECLINER MECHANISM

HEAD REST LINKAGE

INPUT DATA
X COMPONENT Y COMPONENT
‘ DELTA 2 = —.0700 .4000
? DELTA 3 = —.3000 .7000
‘ PHI 2 = 50.000 GAMMA 2 = 17.000 PSI 2 = 22.500
PHI 3 = 75.000 GAMMA 3 = 12.000 PSI 3 = 45.000

COMPUTED VECTORS
X COMPONENT Y COMPONENT LENGTH DIRECTION (DEG)

2(2) = .0404 —.4640 .4657 —85.022
Z(5) = 1.8676 3.2580 3.7554 60.178
Z4) = 1.0009 2771 1.0388 15.506
2(6) = 2552 —.9384 9725 —74.788
; Z(3) = 1.6124 4.1965 4.4956 68.982
x Z(1) = .6518 3.4548 3.5158 79.315

LINKAGE PIVOT AND COUPLER LOCATIONS
X COMPONENT Y COMPONENT

Ag = 0 0
B, = 6518 3.4548
A= .0404 — 4640
B = 1.6528 - 3.7325
P= 1.9080 2.7941
FOOT REST LINKAGE
INPUT DATA
X COMPONENT Y COMPONENT
DELTA 2 = ~.0700 4000
DELTA 3 = —.3000 7000
PHI 2 = 22.500 GAMMA 2 = 8.000 PSI 2 = 40.000
PHI 3 = 45.000 GAMMA 3 = 13.000 PSI 3 = 70.000
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COMPUTED VECTORS

X COMPONENT

Y COMPONENT

LENGTH DIRECTION (DEG)

72(2) = .9642 .2270 .9906 13.247
Z(5) = .3001 —.6696 7338 —65.859
Z(4) = 5189 —.4332 .6759 —39.857
Z(6) = —.1359 1.6410 1.6466 94.733
Z(3) = .4360 —2.3105 2.3513 —79.315
(1) = .8813 —1.6503 1.8709 —61.897

LINKAGE PIVOT AND COUPLER LOCATIONS
X COMPONENT Y COMPONENT

Ay = 0 0
B, = 8813 —1.6503
A= 19642 2270
B = 1.4002 —2.0835
P = 1.2643 — 4426

8.18 CIRCLE-POINT AND CENTER-POINT CIRCLES

This section describes an alternative approach to choosing the two free choices indicated
in Table 8.1. The angular unknowns will be considered as candidates for parameters on
which the locations of the fixed and moving pivots of the solution dyads will depend.
Loerch [108] discovered that, if an arbitrary value is chosen for one unprescribed angu-
lar parameter while the other angular parameter is allowed to assume all possible values,
the resulting loci of corresponding fixed pivots m and moving pivots k, are found to be
pairs of circles. For example, in Fig. 8.59, if &,, 8;, a,, 3,, and 8, are chosen to have
fixed values, the points m and k, trace circular loci as a; ranges between 0 and 27r.
These will be referred to as M and K circles, respectively. A complex-number formula-
tion will be used to generate these circles analytically.

oA N RO YV 2 i B

Dyad Equations

The vectors of the dyad m, k,, P,, are defined in Fig. 8.67. The loop-closure equations
for the dyad in three finitely separated positions are
First position:

R+W+Z=0 (8.29)
Second position:
R + We™ + Ze™ = §, (8.30)
Third position:
R + We® + Ze™ = §, (8.31)

The unknown location of the moving pivot k, is defined by the vector —Z with re-
spect to Py, the origin of the fixed-coordinate system (as shown in Fig. 8.67), which co-
incides with the given initial position P, of the tracer point of the moving plane. The yet
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Using Eqs. (8.96) and (8.97), we have
D = +6.75 + 0.0/
Z, = 3.89 — 0.59, Z;=—444 + 1.19i, Z,= —1.56 + 0.59;

8.24 THREE-PRECISION-POINT SYNTHESIS:
ANALYTICAL VERSUS GRAPHICAL

Thus far, both graphical and analytical approaches have been presented for three finitely
separated positions of motion-, path with timing-, and function-generation synthesis of a
four-bar linkage. Both techniques are straightforward. Which is better? The answer:
both are equally important. Graphical techniques are extremely useful in the initial
stages of synthesis. If a graphical construction does not yield an “optimal” solution in a
reasonable amount of time or if the error sensitivity is high (e.g., the need to locate the
intersection of lines that form an acute angle), then the analytical standard-form method
is very attractive. In such cases the preliminary graphical solution will yield reasonable
values for arbitrarily assumed (free-choice) quantities, which will help obtain workable
computer solutions. The Cramer’s rule solution described above is easily programmed
for digital computation (the flowchart of a three-precision-point program is shown in
Fig. 8.63) and numerous accurate solutions can be obtained in a fraction of the time re-
quired for a graphical construction. (Section 8.18 shows an alternative computer graph-
ics technique for three precision points, which is a combined graphical and analytical
method.)

A notable correlation between the graphical and analytical methods should be em-
phasized at this point. In both techniques, for the three-position synthesis of each dyad,
there are two infinities of solutions for motion-, path-generation with prescribed timing,
and function generation. As pointed out above, a function-generator four-bar linkage ac-
tually appears to require two additional scalars as free choices: the two components of
the starting position vector of one of the links. However, picking that link specifies only
the scale and orientation of the linkage. No new function generators are obtained by
varying this link, because the functional relationship of the input and output rotations is
not affected by this choice.

A very useful reference for linkage design is an atlas of four-bar coupler curves by
Hrones and Nelson [89]. Approximately 7300 coupler curves of crank-rocker four-bar
linkages are displayed (e.g., see Fig. 8.83). The black dots represent coupler points
whose coupler curves are plotted. These can be used as “tracer points” in a path or mo-
tion generator linkage. Each dash on the coupler curves represents 10° of input crank ro-
tation to provide an indication of coupler point velocity. The crank always has length 1
while the lengths of the coupler A, follower B and the fixed link C vary from page to
page, yielding a variety of families of coupler curves. This atlas is extremely useful in
the initial stages of a path- or in some cases motion-generation synthesis effort. A de-
signer may be able to find several coupler curve forms that nearly accomplish the task at
hand and then use these linkages to come up with proper “free-choices” (see Sec. 8.15)
to help find a more nearly optimal linkage in a shorter time. Also, it may turn out that




Appendix: Case Study — Type Synthesis of Casement Window Mechanisms 571

there are no crank-rocker four-bars that satisfy the design requirements and the lype syn-
thesis step may have to be reconsidered.

APPENDIX: CASE STUDY — TYPE SYNTHESIS OF CASEMENT
WINDOW MECHANISMS [54]

A powerful alternative method of type synthesis to the associated linkage approach pre-
sented in this chapter is applied here in an industrial application.

Structure Phase of Type Synthesis

Freudenstein and Maki [76] suggest separation of structure and function in the concep-
tual phase of mechanism synthesis. They point out that the degree of freedom of a
mechanism imposes constraint on the structure of the mechanism. Rather than using
Gruebler’s equation (see Chap. 1) and Eq. (8.7) for degrees of freedom of mechanisms,
they suggest the following forms:

j
F=N~-j-1D+>Ff (8.98)
i=1
and
Lyp=j—1+1 (8.99)
where F' = number of degrees of freedom of mechanism

[ = number of links of mechanism (including the fixed link; all links are consid-
ered as rigid bodies having at least two joints)

J = number of joints of mechanism; each joint is assumed as binary (i.e., con-
necting two links); if a joint connects more than two links, the number of
joints j = N — 1, where N = the number of links at the common joint

Ji = degree of freedom of ith joint; this is the freedom of the relative motion be-
tween the connected links

A = degree of freedom of the space within which the mechanism operates; for
plane motion and motion on a surface A = 3 and for spatial motions A = 6

Lip = number of independent circuits or closed loops in the mechanism

Combining Egs. (8.98) and (8.99), we obtain

Dfi=F+ My (8.100)

Since we are dealing with planar motion and a single degree of freedom,

F=1, A=3



SISTEMI ARTICOLATI - ESERCIZIO 1 - Generazione di movimenti (3 posizioni)

Progettare un g.a. per trasferire scatole dal nastro convogliatore 1 al nastro 2
DATI:

0, =—6+11i a, =22°
0, =—17+13i o, =68°
Scelti ad arbitrio:

f, =90° po*=40°
S, =198° Lx=173°

Si calcoli il modulo e la fase di W,ZW*,Z*. Si disegni inoltre il quadrilatero articolato nelle tre
posizioni desiderate




TRACCIA DI SOLUZIONE - Suggerimenti per programma in Matlab:

1) inizializzare le variabili:
/180; Straforma gradi in radianti

g 2 r=pi
alfa(2)
alfa(3)

=22*g 2 r;
=68*g 2 r;

delta(2)=

2) definire la matrice A_SX
3) definire la matrice B
risolvere il sistema lineare: x_sx=A sx\B;

4) calcolare il modulo di W e Z (usa il comando abs)

5) calcolare la fase di W e Z (usa il comando angle e poi trasforma in gradi)
usa fprintf per mostrare a video i risultati di modulo e fase — fprintf ('modulo di W:

\n',abs (X SX(1)));
6) ripeti i punti 1-5 per il lato dx

7) Disegnare il quadrilatero articolato ottenuto nelle tre posizioni
s5PLOT DEI RISULTATI%%%%%%%%%%%%%%%%%

o o
°

figure ('position', [100 100 600 600])
hold on
for 3=1:3

W=X SX(1)*exp(i*beta(j)); %da notare che quando k=1 beta(l)=
Wstar=X DX (1) *exp (i*betastar(j)):;

Z=X SX(2)*exp(i*alfa(j)):;
Zstar=X DX (2)*exp(i*alfa(j)):;

AB=Z-Zstar; %e il segmento di biella

AOBO=W+AB-Wstar; %e 11l telaio

$disegno per punti il quandrilatero

A0x=0;

AQy=0;

BOx=real (AORO) ;

BOy=imag(AOBO)

Ajx=real (W

Ajy=imag (W

ij=real(W+Z

Pjy=imag (W+Z)

Bjx:real(AOBO+Wstar)

Bjy=imag (A0OBO+Wstar) ;

plot ([AOx,BOx], [AQy,BOy], 'k

plot ([AOx,Ajx], [AOy,Ajy], 'r

plot ([AJx,Pjx], [AJy,PJyl,'g"', "linewidth',

plot ([Ajx,Bjx], [AJy,Bjyl,'g

plot ([BOx,Bjx], [BOy,Bjy], 'm",
[

grid on

axis([-10 25 =10 257])
end
hold off

', 'linewidth',
', 'linewidth',

', 'linewidth',
', '"linewidth',
plot ([Bjx,Pjx], [Bjy,Pivy],'g', 'linewidth"',
patch ([AJx,Bjx,Pjx], [AJy,Bjy,Pjyl,"'
plot (Pjx,Pjy, 'o', 'linewidth', [3]);

50.3f



SISTEMI ARTICOLATI - ESERCIZIO 3 — Generazione di traiettorie per 3 punti di
precisione

Progettare un g.a. in cui un punto di biella descriva una traiettoria ellittica passante per 3 punti di
precisione.

DATI

0, =—1.4—-0.76i B, =126°  p,*=33°
5,=-1-23i B, =252°" PB*=37°
Scelti ad arbitrio:

a, =—6°

o, =37°

Si calcoli, il modulo e la fase di W, Z, W*, Z*. Si disegni inoltre il quadrilatero articolato nelle tre
posizioni desiderate.

Prescribed
- Path

—_———— e,

/
: \fs ' M
'l/,\ L e AO I ‘ ) \
O-———_-'-;.__"“ zs ;
~ : '/;7 B.D

La traccia di soluzione non viene fornita poiché analoga all’esercizio di guida di corpo rigido.
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N
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\

0 ™ 0 N




SISTEMI ARTICOLATI - ESERCIZIO 2 — Generazione di funzioni (3 posizioni)
Progettare un meccanismo per movimentare schienale e poggiapiedi della poltrona in figura.

DATI del primo quadrilatero

S, =50° p,*=225°
Py =T5° S*=45°
Scelti ad arhitrio:
a,=1° .

; W*=0-1;
a, =12°

DATI del secondo quadrilatero

ﬂz = 2250 ﬂz* = 400
S, =45° p*=70°
Scelti ad arbitrio:
a, =8° )

; W*=0+1;
o, =13°

Si calcoli, per ognuno dei due g.a. il modulo e la fase di W e AB(segmento di biella). Si disegnino
inoltre i quadrilateri articolati nelle tre posizioni desiderate.

— Ll . g = = -

Head Rest

Arm Rest

N\

e

Barber's 22.5°

Chair l 45° a0°
4
Control Arm ‘ ‘
g

- Foat Rest
N .

Occorre che il primo quadrilatero(regolatore dello schienale) per una rotazione di 22.5° e 45° del
“control arm” sposti lo schienale di 50° e 75° rispettivamente.

Occorre che il secondo quadrilatero(regolatore del poggiapiedi) per una rotazione di 22.5° e 45° del
“control arm” sposti il poggiapiedi di 40° e 70°.






TRACCIA DI SOLUZIONE per il quadrilatero 1- Suggerimenti per programma in Matlab:

1) inizializzare le variabili:
g 2 r=pi/180; Straforma gradi in radianti
beta (2)=
betastar (2)=

alfa(2)
Wstar scelto=-i;

delta (2)=Wstar scelto* (exp(i*betastar(2))-1);

2) definire la matrice A (mediante i coefficienti a,b,c,d,
3) definire la matrice B
risolvere il sistema lineare: x=a\B;
4) calcolare il modulo di W e AB (usa il comando abs)
5) calcolare la fase di W e AB (usa il comando angle e poi trasforma in gradi)

usa fprintf per mostrare a video i risultati di modulo e fase — fprintf ('modulo di
AB: 50.3f \n',abs(X(2)));

figure ('position', [100 100 600 600])
hold on
for j§=1:3
W=X (1) *exp (i*beta(j)); %da notare che quando k=1 beta (1l)=0
Wstar=Wstar scelto*exp (i*betastar (j));
AB=X (2) *exp (i*alfa(j));
AOBO=W+AB-Wstar; %e 11 telaio
%$disegno per punti il quandrilatero

A0x=0;

AQy=0;

BOx=real (AOBO) ;
BOy=imag (AORO) ;
Ajx=real (W) ;
Ajy=imag (W) ;
Bjx=real (W+AB) ;

(

plot ([AOx,BOx], [AOy,BOy], 'k', "linewidth', [2]);
plot ([AOx,Ajx], [AQy,Ajy], 'r", "linewidth', [2]);
plot ([Ajx,Bjx], [Ajy,Bivy],'g', "linewidth', [2]);
plot ([BOx,Bjx], [BOy,Bjy], 'm', "linewidth', [2]);
grid on

% axis([-0.5 4 -3.5 1])

end

hold off

7) Ripeti per il secondo quadrilatero

Cosa accade ai quadrilateri articolati se la scelta arbitraria di W* si riduce del 50% in modulo?



Esempio di RISULTATI

0.5

o Quadrilatero 1

-0.5 \
B AN

-1.5

]/

.
_2 SN
N

-2.5

-3

-3.5

-4

-4.5
-0.5 0 0.5 1 15 2 2.5 3 35 4 4.5

Quadrilatero 2

35

. Vs

-0.5
-3

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 15
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How to use and interpret the Coupler Curve and Centrode
Atlas

In order to view the images, your browser must be able to interpret frames, and you will have to
have Adobe Acrobat Reader installed on your computer. It is available for free download .

Once you have Acrobat working properly on your machine, the atlas page should work properly.
You may peruse the images by varying the parameters in the left frame by obvious means. In order
to obtain the best possible scale for your image in the right hand frame, | suggest that you go to
Acrobat in a separate window, and excecute the following: File--> Preferences--> General-->
Default Magnification--> Fit Page. Once you have a set of curves which appears interesting, you
may zoom in or out using the soft buttons provided within your browser by Acrobat.

Each image has lines and curves of several different colors. Below is an explanation of the meaning
of these colors as well as the four-bar linkage

parameters which determine the shapes of the

curves.

The image shown here is a four-bar
mechanism with parameters labeled. The two
double (concentric) circles represent pin joints
located on a fixed link. This ground link is
labelled d. Links a (the input link) and c (the
output link) pivot about these pin joints. In
turn, the coupler link (the blue triangle) is
pinned to link a at A and to link c at B. The
coupler point P is located at some interesting
position on the coupler link. As link a is Four-bar mechanism (not to scale)
rotated, the coupler point will trace out a

special path called the coupler curve.

The following parameters are necessary to determine a unique four-bar mechanism coupler curve:
the lengths a, b, ¢, d, and BP; and the angle gamma which line segment BP forms with line segment
AB. In order to pack more information on each image, several values of BP are shown on each
graph. In the atlas, they are all indicated by small black circles on the edge of the coupler triangle,
all originally located along the x-axis.

To further reduce the number of images necessary, the value of a is set to 1 cm on all graphs. To
obtain results for a different length a, simply scale the whole graph.

If the double circles represent fixed pivots, why are they shown in different positions on various
pages of the atlas? For the purpose of easy comparison, the various coupler points in the
mechanism's starting position are always plotted along the x-axis. The rest of the mechanism is
rotated enough to be plotted in a congruent starting position.

The colors' meanings are below.

The red lines are coupler curves.


http://www.adobe.com/

The yellow line is the path of point A (it may not make a full rotation).

The green line is the fixed centrode.

The magenta line is the moving centrode. It is an imaginary curve which describes the
motion of the coupler in a meaningful way. As the moving centrode rolls on the fixed
centrode, it moves with the same motion as the coupler link. Thus, the moving centrode
could be considered to be fixed to the coupler.

Each dash in the curves mentioned above represents 5° of rotation of line a, as does each of the gaps
between the dashes.

Return to Four-bar Coupler Curve and Centrode Atlas_ main page.

If you beleive there are major omissions of information on this page you may contact:
thompsonl@cedarville.edu

http://www.cedarville.edu/cf/engineering/kinematics/ccapdf/fccca.htm
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IL QUADRILATERO ARTICOLATO.

Reqgola di Grashof

Siano a il lato pit corto, b il lato pit lungo, c© e d le aste intermedie.

a+b<c+d quadrilateri di Grashof (Figura 1: primo, secondo e gquarto caso)
a+b=>c+d quadrilateri non di Grashof  (Figura 1: terzo, guinto e sesto caso)
atb=c+d caso limite  (Figura 2)
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